

North Lebanon Automotive Systems (NLAS)

Products

- Agricultural 4-wheels Electrical Tuk-Tuk
- Transportation 4-wheels Electrical Tuk-Tuk
- Lithium-Ion Batteries and Battery Mangement Systems (BMS)
- Electrical Vehicles for Deep-Sea Research

Address

Bahsas, Haykalieh Str., Harba Bld., Ground Flr., Tripoli, Lebanon

Contact

Dr. Eng. Samir Mourad, CEO

Mobile +49 178 72 855 78 / +961 76 341 526

Email:samir.mourad@aecenar.com

Eng. Mahmud Zohby, Project Management and Suppliers Control

Mobile +961 3 671 621

Laboratory Test vehicle

Agricultural 4-wheels Electrical Tuk-Tuk

Transportation 4-wheels Electrical Tuk-Tuk

		<u>, , , , , , , , , , , , , , , , , , , </u>
Part	quantity	discription
tuk tuk parts	4	
Front sides flashers	1	the two are connected to each other
Rear flashers	2	
differartial regulation axe	2	
rear brake axe	3	
flasher coil 60v	1	
pins for rear dampers	12	
digital 60v dashboard	1	
T shape front suspension axe	1	
12 inch rear rims	2	without standard tires
start switch	1	
rear differatial axe	1	with gear and fising pins
front steering wheel bearing	1	
control circuit for all electric parts	1	
Gear shifter rod	1	
brake sensor	1	
6 pins connector box	1	for power distribution
steering wheel switches and buttons	1 set	
supports for rear damper	2	
controller 1500w 72v BRSH-60	1	
steering wheel	1	
Gear shifter handle	1	
hand brake handle	1	
speed controller FR-3S	1	
rear dampers	2	
electric motor 1500w 72v	1	
Solar panels parts		
MPPT	1	
solar panels 100w	5	
solar system connectror and wires	1 set	
front suspension parts		
Front shock absorber	2	350mm for 200cc ATV
Upper swing arm	2	
Lower swing arm	2	
steering strut knuckle spindle and wheel hub	2	W 6 1 1
Bolts	4	
chassis and body		
long chassis with front suspesion chassis	1	

battery container and driver seat

Battery Mangement System (BMS)

Lithium-Ion Battery Charger (18650)

Battery Management System(BMS)

Theory of Operation

Theoretical and mathematical aspects of Li-Ion battery charging

CC-CV Charging

Li-Ion batteries are charged using the constant current charging (CC-CV) method at a constant current to reach a certain voltage Vmax = 4.2Vcell.

1.2 Control Loop

The "-" battery connected to the positive power supply (by MOSFET) The "-" battery connected to the power supply

1.3 State-of-Charge **Estimation**

The state of charge of the SOC is read through the battery voltage V and compared with the values stored in the lookup table L = (10, 11, ..., 18).

1.4 Safety

The charger implements many safety features, such as undervoltage, over-voltage, short circuit, and open circuit detection.

1.5 Trickle Charging

Once the end-of-charge (EOC) criteria are met, the charger cuts off the charging current, switches to idle mode, and continuously monitors the battery voltage.

Hardware

Hardware design aspects of Li-Ion chargers

2.1 Mechanical Design

We used four LG 18650 HE4 Li-Ion cells and a battery protection board (or battery management system also known as BMS). Modern lithium-ion cells use

Battery Protection Board

It is necessary to use a dedicated battery protection board for each battery pack This provides additional protection to

prevent over-charging or overdischarging due to software or hardware

Circuit Diagram

Li-Ion charger circuit diagram

Li-Ion Charger Circuit Diagram

Different Number

The following values for R2, R4 and

the power supply voltage need to be chosen in order to charge different numbers of Cells:

Nuk	Power Supply	Rı	R ₄
1	5V-6V	2200	39ΚΩ
2	10V-15V	1000	82KΩ
3	14V-20V	2200	120KΩ
4	18.5V-20V	2200	180KΩ

PCB Layout

PCB Layout for Li-Ion Charger

All components are of the punchhole type and are mounted on a PCB board. The Figure below shows the PCB layout of a Li-Ion charges

The pin header located at the top right corner is used for connecting all the external wires. Following is the pinout assuming that pin 1 is at the top right corner and pin 10 is towards the middle of the board

	Purpose
1*	LED+
2*	LED -
3,4 ‡	Power supply +
5,6 4	Battery+
7,8 ‡	Power supply -
9,10 ±	Battery -

User Interface Lithium-ion charger

user interface

5.1 LED Indicator

The charger status is displayed by turning on or flashing a single LED

Blinking Pattern	Meaning
On for half a second every 2 seconds	Ready, waiting for the battery to be connected
Solid on	Battery charging
On For 0.1 second every 2 seconds	Battery fully charged
Blinking fast (0.4 s period)	Error
Blinking very fast (0.2 s period)	Calibration mode

Command-Line

Interface

features a CLI that can be accessed via the

Arduino's RS232. current firmware version and present with a list of commands.

Some of these CLI commands must be supplied with arguments.

	ennomands
	Display the real-time parameters, including the observed described a subject of charge diseased. To sharp charging current is exactioned thereby described a subject of the subject of the subject of the charging visings V _{ent} , maximum charging current L _{ent} and their real ADC values. Vent
*	Show the list of calibration constants that are stored within EFFROM
	Show the contents of the trace
worth.	Net the total number of sells within the balters grash Scan- the value provided as an argument will be validated and stored in EEPBOM
afull integer	Not the leatiery design vaposity Cas in mAh, the value provided as an argument will be validated and stored in ESPROM
ichen -integer	Set the battery charging current Interes the value provided as an argument will be validated and stored in EEPROM
abult.	Set the end of charge current has in mA, the value provided as an argument will be validated and stored in EEFECM
dad- stadios- systiages	Configure the next-of-charge lankup table (L.UT). This command takes and index i = 0, t, b,, t and the reference values by in any as arguments, called, a new reference values; value b is populated into the LUT and stored ione ELPROM.
	more on this in the following
-danger-	Set the chunt resistor value Rams in m2, the value provided as an argument will be validated and stored in EEPECOM
mak makerijstopivajvaj maker	The yestings collibration mode is mirrord by calling and stars and actived by calling and stars and existed by calling callston X ₁ is callibrated using and v ₂ survey V ₃ mirror stars is the measured valuage level in millivalts. Please paper to the next action for mirror details about the

Calibration Procedure

This section provides an example on how to perform the first-time calibration of the Lithium-Ion battery charger using the CLI over the serial monitor.

5.3.1 Initial ranking

Initial configuration parameters by executing a command sequence.

ncells 4	<u>lut</u> 0 3200	lut 5 3710	
cfull 2500	<u>lut</u> 1 3450	<u>lut</u> 6 3825	
ichrg 1500	lut 2 3530	lut 7 3920	
ifull 150	lut 3 3610	lut 8 4020	
rshunt 500	lut 4 3650		
	cfull 2500 ichrg 1500 ifull 150	cfull 2500 lut 1 3450 kchrg 1500 lut 2 3530 ffull 150 lut 3 3610	cfull 2500 but 1 3450 but 6 3825 ichrg 1500 but 2 3530 but 7 3920 ifull 150 but 3 3610 but 8 4020

5.3.2 Voltage calibration

After performing the initial step please proceed to calibrate the ADC readings for voltages V1, V2:

- Enter the Cal start command in the serial monitor
- Connect a constant voltage source between terminal B and ground. Enter the command cal-v2 into the serial monitor
- Connect a constant voltage source between terminal B+ and the
- ground of the power supply.

 Enter the command cal v1 <value> into the serial monitor
- Check the voltage calibration by applying a known voltage to both B+ and B-
- Repeat steps 2, 3,... and 6 until the voltage V readings are correct. Enter the command cal stop in order to exit the voltage calibration mode.

5.3.3 Current calibration

Please proceed with calibrating the reading of the current I by following the steps below:

- Connect a discharged lithium-ion battery in series using a digital ampere meter (set to the 10 A range) to
- terminals B+ and B-.

 2. The Charging message should appear and the current value should begin to increase gradually to
- 3. Enter the command [.] and check the displayed value of I.
- If output of the [.] command is higher than amper meter reading: Increase the Rshunt by $10 \text{ m}\Omega$
- If output of the [.] command is lower than amper meter reading: decrease the Rshunt by $10 \text{ m}\Omega$.
- Repeat steps 3,4,5 until the current I readings are correct.

5.4 **Trace Buffer**

A lithium-ion battery charger records events that occur during the charging process in a circular buffer within the available EEPROM space. The contents of the trace buffer are dumped using the t

command.		
0: * 16760	6: i 1495	106: i 241
0: % 0	8: v 14137	108: v 16759
0: v 7820	8: į 1503	108: i 231
0: T 135	10: v 14206	110: v 16764
0: C 3263	(skipped)	110: i 221
0: S 150	100: v 16767	112: v 16761
0:11500	100: [638	112: i 150
2: v 13222	102: v 16764	113: F 1
2: i 1495	102: i 529	113: t 113
4: v 13719	104: v 16761	113: c 2508
4: i 1499	104: i 381	113: v 16767
6: v 13982	106: v 16754	113: i 139

	Excet	Description		Description	
		Beginning of the charging cycle, indicates the maximum battery	i	Instantaneous bottery current I in mA	
	%	voltage V _{met} in V Initial charge state %	F	Buttery full, indicates the end- of-charge condition (1 = 1 ₅₄	
	Ţ	Maximum permissible charging time T _{max} in minutes		reached, 2 = C _{mo} reached, 3 = T _{mo} reached)	
	c	Maximum permissible charging capacity C _{max} in mAh	t	Actual charging time T in minutes	
	S	Safety charging in progress, last is indicated in m.A	¢	Actual charged capacity C in	
ŀ	1	Normal charge in progress, indicates l _{charge} in mA		mA Error (1 = over-valt, 2 = under-	
	*	Instantaneous battery voltage V=V ₁ -V ₂ in mV	E	valt, 3 = open-circuit, 99 = CRC fail)	

Lithium Battery Production

MANUFACTURING PROTOTYPE OF BATTERY LITHIUM ION

Lithium cell materials: One thousand lithium batteries consist of a metal shell containing three spirally wound foils, a carbon 61xC anode and a lithium cobalt oxide 21xCoO cathode. The universe consists of a thin sheet of plastic between the anode and cathode, this solution is mostly an electrolyte. This third layer is immersed in various electrolysis agents.

Lithium-ion cells - The lithium-ion battery is surrounded by a metal easing, and this metal easing is necessary to protect battery contents. The cover contains special safety when the temperature rises. The battery pressure increases beyond the permissible limit.

Electrical Vehicles for Underwater (Deep-Sea) Research

Planned

