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1. Useful Concepts in Molecular Modelling / S ol p—ﬁ‘-&l‘

1 B dor !

1.1 Introduction /.l

What is molecular modelling?
“Molecular” clearly implies some
connection with molecules. The
oxford English Dictionary defines
“model” as ‘a simplified or
idealized description of a system or
often in mathematical
terms, devised to facilitate
calculations predictions’.
Molecular modelling
therefore appear to be concerned
with ways to mimic the behavior of
molecules and molecular systems.
Today, modelling is
invariably associated with
computer modelling, but it is quite
feasible to perform some simple
molecular modelling studies using
mechanical models or pencil, paper
and hand calculator. Nevertheless,
computational
revolutionized molecular modelling
to the extent that most calculations
could not be performed without the
use of a computer. This is not to
imply that a more sophisticated
model is necessarily any better than
a simple one, but computers have
certainly extended the range of
models that can be considered and
the systems to which they can be
applied.

process,

and
would

molecular

techniques have
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The that
chemists first encounter are

‘models’ most
molecular models such as the
‘stick’ devised by
Dreiding or the ‘space filling’
models of Corey, Pauling and
Koltun (commonly referred to
as CPK models). These models
enable

models

three-dimensional

representations of the
structures of molecules to be
constructed. An  important

advantage of these models is
that
enabling the user to pose ‘what
if ... or ‘is it possible to ...
questions.  These
models continue to play an
important role both in teaching,
and in research, but molecular
modelling is also concerned

they interactive,

are

4

structural

with some more abstract
models, many of which have a
distinguished ~ history. = An

obvious example is quantum
mechanics, the foundations of
which were laid many years
before the first computers were
constructed.

There is a lot of confusion over
the meaning of the terms
chemistry’,
‘computational chemistry’ and
‘molecular modelling’. Indeed,
many practitioners use all three
labels to describe aspects of
their research, as the occasion
demands!

‘theoretical

ckinson/)

Fig3: space filling model of
formic acid

clnybill 2atd Space-tilling’ =344
(Source:
http://www.answers.com/topic/
molecular-graphics)

Fig4: Stick model
(Created with Ball View)

‘Stick’ =3¢

¢

Figb: ‘Ball and Stick” model of

proline  molecule  (Source:

http.//commons. wikimedia. org/

wiki/File:L-proline-zwitterion-

from-xtal-3D-balls-B.png)
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‘Theoretical chemistry’ is often considered
with  quantum  mechanics,
whereas computational chemistry encompasses
only quantum mechanics but
molecular mechanics, minimization,
simulations, conformational analysis and other
computer-based methods for understanding
and predicting the behavior of molecular

synonymous

not also

systems. Most molecular modelling studies

involve three stages. In the first stage a model is

selected to describe the intra- and inter-
molecular interactions in the system. The two
most common models that are used in
molecular modelling are quantum mechanics
and molecular mechanics. These models enable
the energy of any arrangement of the atoms
and molecules in the system to be calculated,
and allow the modeler to determine how the
energy of the system varies as the positions of
the atoms and molecules change. The second
stage of a molecular modelling study is the
itself, energy
minimization, a molecular dynamics or Monte
Carlo simulation, or a conformational search.
Finally, the calculation must be analyzed, not
only to calculate properties but also to check

that it has been performed properly.

calculation such as an

1.2 Coordinate Systems/ s/l L

It is obviously important to be able to specify
the positions of the atoms and/or molecules in
the system to a modeling program. There are
two common ways in which this can be done.
The most straightforward approach is to
specify the Cartesian (X, y, z) coordinates of
all the atoms present. The alternative is to use
internal coordinates, in which the position of

[8]
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each atom is described relative to other atoms
in the system. Internal coordinates are usually
written as a Z-matrix. The Z-matrix contains
one line for each atom in the system.

A sample Z-matrix for the
staggered conformation of ethane
(see Figb) is as follows:

1 C

2 C 154 1

3 H 10 1 1095 2

4 H 1.0 2 1095 1 180.0 3
5 H 1.0 1 1095 2 60.0 4
6 H 1.0 2 1095 1-60.0 5
7 H 10 1 1095 2 180.0 6
8 H 1.0 2

1095 1 60.0 7  pig

In the first line of the Z-matrix we define
atoml, which is a carbon atom. Atom
number2 is also a carbon atom that is a
distance of 1.54 A®° from 1 (columns 3 and 4).
Atom 3 is a hydrogen atom that is bonded to
atom 1 with a bond length of 1.0 A% The angle
formed by atoms 2-1-3 is 109.5%, and the
torsion angle (defined in fig7) for atoms 4-2-1-
3 is 180° Thus for all except the first three
atoms, each atom has three internal
coordinates: the distance of the atom from one
of the atoms previously defined, the angle
formed by the atom and two of the previous
atoms, and the torsion angle defined by the
atom and three of the previous atoms. Fewer

[9]
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internal coordinates are required for the first
three atoms because the first atom can be
placed anywhere in space (and so it has no
internal coordinates); for the second atom it is
only necessary to specify its distance from the
first atom and then for the third atom only a
distance and an angle are required.

It is always possible to convert internal to

Cartesian coordinates and vice versa.
However, one coordinate system is usually
preferred for a given application. Internal
coordinates can the
relationship between the atoms in a single
molecule, but Cartesian coordinates may be
appropriate  when

collection of discrete molecules.

usefully  describe

more describing a

Internal coordinates are commonly used as
input to quantum mechanics programs,
whereas  calculations using  molecular
mechanics are usually done in Cartesian
coordinates. The total number of coordinates
in the

coordinate system is six fewer than the

that must be specified internal
number of Cartesian coordinates for a non-
linear molecule. This is because we are at
liberty to arbitrarily translate and rotate the
system within Cartesian space
changing the relative positions of the atoms.

without

[10]
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What is a Torsion angle?

A torsion angle A-B-C-D is
defined as the angle between
the planes A, B, C and B, C, D.
A torsion angle can vary
though 360° although the
range -180° to +180° is most
commonly used.

9ol WY 4yy)y 2L

K, ABCD sV a5 &8
BCD , ABC  p wsl )l 243
= ow gl A O AW ) Sy
o> 180+ 4 520 3,5 180

1.3 Potential Energy Surfaces/diolS/| @lbll @b/

In  molecular modeling the  Born-
Oppenheimer approximation is invariably
to operate. This enables the
and nuclear motions to be
separated; the much smaller mass of the
electrons means that they can rapidly adjust
to any change in the nuclear positions.
Consequently, the energy of a molecule in its
ground electronic state can be considered a
function of the nuclear coordinates only. If
some or all of the nuclei move then the energy
change.
positions could be the result of a simple
process such as a single bond rotation or it

could arise from the concerted movement of a

assumed
electronic

will usually The new nuclear

large number of atoms. The magnitude of the
accompanying rise of fall in the energy will
depend upon the type of change involved.
For example, about 3 kcal/mol is required to
change the covalent carbon-carbon bond
length in ethane by 0.1A° away from its
equilibrium value, but only about 0.1kcal/mol
is required to increase the non-covalent
separation between two argon atoms by 1A°
from their minimum energy separation. For
small isolated molecules, rotation about single
bonds usually involves the smallest changes

[11]
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in energy. For example, if we rotate the
carbon-carbon bond in ethane, keeping all of
the bond lengths and angles fixed in value,
then the energy varies in an approximately
sinusoidal. The energy in this case can be
considered a function of a single coordinate
only (ie. the torsion angle of the carbon-
carbon bond), and as such can be displayed
graphically, with energy along one axis and
the value of the coordinate along the other.

Changes in the energy of a system can be
considered as  movements on a
multidimensional ‘surface” called the energy

surface.
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Lalgy e Lad 13 ¢ JEN f Jo Ll 3 ) pad)
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1.4 Molecular Graphics/ 4 in/ wlogu,

Molecular graphics (MG) is the discipline and
philosophy of studying molecules and their
properties through graphical representation.
IUPAC limits the definition to representations
on a "graphical display device".

Computer graphics has had a dramatic impact
upon molecular modelling.

It is the interaction between molecular graphics
and the underlying theoretical methods that has
the accessibility of
modelling methods and assisted the analysis
and interpretation of such calculations.

enhanced molecular

Over the years, two different types of molecular
graphics display have been used in molecular
modelling. First to be developed were vector
devices, which construct pictures using an
electron gun to draw lines (or dots) on the
screen, in a manner similar to an oscilloscope.
Vector devices were the mainstay of molecular
modelling for almost two decades but have now

[12]
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been largely superseded by raster devices. These
divide the screen into a large number of small
"dots", called pixels. Each pixel can be set to any
of a large number of colors, and so by setting
each pixel to the appropriate color it is possible
to generate the desired image.

Molecules are most commonly represented on a
computer graphics using stick' or 'space filling'
representations.
these two basic types have been developed, such
as the ability to color molecules by atomic
number and the inclusion of shading and
lighting effects, which give 'solid' models a more
realistic appearance.

Computer-generated models do have some
advantages compared with their
mechanical ~ counterparts.  Of  particular
importance is the fact that a computer model can
be interrogated to provide
quantitative  information, simple
geometrical measures such as the distance
between two atoms to more complex quantities
such as the energy or surface area. Quantitative
information such as this can be very difficult if
not impossible to obtain from a mechanical
model. Nevertheless, mechanical models may
still be preferred in certain types of situation due
to the ease with which they can be manipulated

Sophisticated variations on

when

very easily

from

and viewed in three dimensions.

A computer screen is inherently two-
dimensional, whereas molecules are three-
dimensional  objects. = Nevertheless, some

impression of the three-dimensional nature of
an object can be represented on a computer
screen using techniques such as depth cueing (in
which those parts of the object that are further
away from the viewer are made less bright) and
through the use of perspective. Specialized
hardware three-
dimensional stereo images to be viewed. In the
future ‘virtual reality’ systems may enable a
scientist to interact with a computer-generated
molecular model in much the same way that a

enables more realistic

[13]
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mechanical model can be manipulated.

Even the most basic computer graphics program
provides standard facilities for the
manipulation of models, including the ability to
translate, rotate and ‘zoom’ the model towards
and away from the viewer. More sophisticated
packages can provide the with
quantitative feedback on the effect of altering
the structure. For example, as a bond is rotated
then the energy of each structure could be
calculated and displayed interactively.

some

scientist

For large molecular systems it may not always
be desirable to include every single atom in the
computer image; the sheer number of atoms can
result in a very confusing and cluttered picture.
A clearer picture may be achieved by omitting
certain atoms (e.g. hydrogen atoms) or by
representing groups of atoms as single “pseudo-
The that
developed for displaying protein structures
nicely illustrate the range of computer graphics
representation possible. Proteins are polymers
constructed from amino acids, and even a small
protein may contain several thousand atoms.

atoms’. techniques have been

One way to produce a clearer picture is to
dispense with the explicit representation of any
atoms and to represent the protein using a
‘ribbon’. are
represented using the
developed by ] Richardson.

Proteins also  commonly

cartoon drawings

[14]
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1.5 Surfaces/abw/ wbluw

Many of the problems that
are studied using molecular
modelling involve the non-
interaction

two or more
The study of
interaction

covalent
between
molecules.
such is often
facilitated by examining the
van der waals, molecular or

accessible surfaces of the

molecule. The van der
waals surface is simply
constructed from the

overlapping van der waals
spheres of the atoms, Fig 8.
It corresponds to a CPK or
space-filling model. Let us
now consider the approach
of a small “probe” molecule,
represented as a single van
der waals sphere, up to the
van der waals surface of a
larger molecule.

The finite size of the probe
sphere means that there will
be regions of ‘dead space’,
that are not
accessible to the probe as it
rolls about on the larger
molecule.

crevices

This is illustrated in fig 1.4. The amount of
dead space increases with the size of the
probe; conversely, a probe of zero size would
be able to access all of the crevices. The

accessible surface

- /
-
*

. ~ ’
LS " -ﬂ‘
*-—’

van der Waals surface

Fig 8: The van der Waals surface is
shown in red. The accessible surface
is drawn with dashed lines and is
created by tracing the center of the
probe sphere (in blue) as it rolls along
the van der Waals surface.(Source:
http://en.wikipedia.org/wiki/ Accessibl

e surtuce)

wan der Waals’

,mhé/ suface
¢ ]
’\ \

o d

P N ]

Frobe sphere
Molecdar suface

Fig9 : (Source:
http.//www.ccp4.ac.uk/.../newsletter38/03

surfarea.html(

molecule surface contains two different types

of surface element.

The contact surface
corresponds to those regions where the

[15]
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probe is actually in contact with the van der
waals surface of the ‘target’. The re-entrant
surface regions
crevices that are too narrow for the probe
molecule to penetrate. The molecular surface
is usually defined using a water molecule as

occur where there are

the probe, represented as a sphere of radius
1.4 A°.

The accessible surface is also widely used. As
originally defined by Lee and Richards this is
the surface that is traced by the center of the
probe molecule as it rolls on the van der
waals surface of the molecule (Fig.1.4). The
center of the probe molecule can thus be
placed at any point on the accessible surface
and not penetrate the van der waals spheres
of the atoms in the molecule.

&t~ re-entrant surface —J) ik gy 'Oud)' b
A e med VoG wa) G asls
s r o8 pldoiialy s(8 ) b 30 L UL, 3 5l
14 sl iy ¢ 635w 3 Jiuh e S

.‘\-7.-)5

Pl Iy L@\ accessible surface —J pisins
o ed) ol (%}43\ Richards § Lee i, )
Jb s 06 sl S b ) @l el S e of oy
o s S e ey Sa QW L (Figl4) sl
(,_.M_;,.\ J= ol o 9> accessible surface —JI 3 b géi

A s ) ol oy S

1.6 Computer Hardware and Software/ sisuesf cibiana sy i iga/

The workstations that are commonplace in
many laboratories now offer a real alternative
to centrally maintained 'supercomputers' for
molecular modelling calculations, especially
as a workstation or even a personal computer
can be dedicated to a single task, whereas the
supercomputer has to be shared with many
other users. Nevertheless, in the immediate
future there will always be some calculations
that the power that
supercomputer can offer. The speed of any
computer system is ultimately constrained by
the speed at which electrical signals can be
transmitted. This means that there will come a

require only a

time when no further enhancements can be
made using machines with ‘traditional’
single-processor architectures,
parallel computers will play an ever more

important role.

serial and

MWy sl o il 3 53935l fadl STU o5
& ‘supercomputers’ sl &L ool sl
O S et ¢ g sl ol Ll Slleally o
OF o 3 by gl pad a8 Sl o 4l el
AT s e e 8 i 056 BVl Ol
pam Wil dls 08w @ i) @ el ay
VI el OF Se Y S s )l oLl
ke gl alla (ol ae 0] LlaB BSlesl) sl
ol o Moy 3L S oLl b i ) ae
Pl Slgeodl o 1 ) S8 Y el b
aloloze aaad asly dlee o Rala' 55
2y sl o Al ST g0 cald g i1l ol A

2
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To perform molecular modelling calculations
one also requires appropriate programs (the
software). The software used by molecular i~il)l (3 deascll oLz Ji oA (b)) Al

modelers ranges from simple programs that L iie 3 C N RTNT
perform just a single task to highly complex i R I S

packages that integrate many different & LI .. S R = R SRR R AP
methods. There is three items of software ) Y

doil & ) el ) T s, 2k
have been so widely used: the Gaussian series o £l o gl B e
of programs for performing ab intio quantum gb Qi Gaussian o sl gesl 2 kst o ply Bl

mechanics, the MOPAC/AMPAC programs MOPAC T, .
| GO
for semi-empirical quantum mechanics and / G V_Q T ntio

the MM2 program for molecular mechanics. ~ MM2 #1520 2l w8 (SO SGKL AMPAC
A A SG

ol Lal aa i e dad) Ll ol o Ol

1.7 Units of Length and Energy/ 4a/ls skl <ilaa

Z-matrix is defined using the angstrom as | Llj ;.- 5 b5 i) plisall, Zematrix i s o
the unit of length (1 A°= 10 ° m=100pm). . _ . .
The angstrom is a non-SI (International «* {3/~ s 100 =2 10 7 19 4y i)
System of wunits) unit but is a very . i eSSy ¢ ot Ll SUSIUREPHCRYA PR
convenient one to use, as most bond . 1

lengths are of the order of 1-2 A°. One {3/ A e e SRR
other very commonly non-SI unit found in 4. - R sy dla of LS
molecular modelling literature is the o )
kilocalorie (1 kcal=4.1840 KJ). Other systems 27 lmeedl 1l 0 sl ol 2 8 oo peit 7
of units are employed in other types of s, .(Js> kS 41840 = %)) > 5~ 1) kilocalorie
calculation, such as the atomic units used . . . Le .
ot S VS 3 s Ol )l e 6 ] el Lyl

SIS @ ptsied ) 20 o ) e (LA

in quantum mechanics.

1.8 Mathematical Concepts/ 4usl J adlio)

Y Ab initio quantum chemistry methods are computational chemistry methods based on quantum chemistry/
(353 AW LSy 28 g 50 ) oS 6™ ) it ) B8 3305kl B b e 2 AD T0EEHO I

[17]



A full appreciation of all the techniques of
molecular modelling would require a
mathematical treatment. However, a proper
understanding does benefit from some
knowledge of mathematical concepts such as
vectors, matrices, differential equations,
complex numbers, series expansions and
lagrangian multipliers and some very

elementary statistical concepts.

Sl o i ol e sl ) Akl WLl (s
ol emlill amy B om0 U R A Al
<Yl (matrices ©Usiall ¢ vector axill  Jze
saaall Al Ny ¢ differential equationsikolidl
oliclzey  Olaw gl dlde ¢ complex numbers

AV Ao Y Ul am g ol 2
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1.9 References / ga//

S Gk R

http:/[www.giantmolecule.com/shop/scripts/prodView.asp?idproduct=6

http:/[wwwl.imperial.ac.uk/medicine/people/r.dickinson/
http://[www.answers.com/topic/molecular-graphics

http://commons.wikimedia.org/wiki/File:L-proline-zwitterion-from-xtal-3D-balls-B.png)

http://en.wikivedia.org/wiki/ Accessible surface

http:/lwww.ccp4.ac.uk/.../newsletter38/03 _surfarea.html

[19]



2 Computational _Quantum __Mechanics _/ 4-3*‘-‘,}-"—“

2 LSlSse

2.1 Introduction / dosio

There are number of quantum theories for
treating molecular systems. The one which has
been widely used is molecular orbital theory.
However, have been
developed, some of which we shall also describe,
albeit briefly. We will be primarily concerned

with the ab initio and semi-empirical approaches

alternative approaches

to quantum mechanics but will also mention
techniques such as Huckel theory, valence bond
theory and Density functional.

A aalY) abll (S ol ks e sae dls
LS Ylemzal S 2 il ¢ SR SRIE e ppeIcy
ab ) zalu NIRRT ) am w2y
L‘S.(,.Q\ oL semi-empirical —J\s initio
4k ¢ Huckel & Je Uil aw Laf S0
iabs Jl B & ks 4 valence bond @l 5SS

.Density functional

The starting point for any discussion of quantum  syiy| il o Schrodinger x>, ables O

mechanics is the Schrodinger equation. The full,
time-dependent form of this equation is:

eq.2,1 ;2 P
(_ 2m (3:1:2 "

Eq. (2,1) refers to a single particle (e.g. an
electron) of mass m which is moving through
space (given by a position vector
r = xi+ yj + zk ) and time (¢) under the
influence of an external field V (which might
be the electrostatic potential due to the nuclei
of a molecule). & is Planck’s constant divided
by 27t and i is the square root of -1. ¥ is the
which the
particle’s motion; it is from the wavefunction
that we can derive various properties of the

dy- 0=z

wavefunction characterizes

[20]
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particle. When the external potential V is zus . <0 (3 M e e e Vi W il 0S5 L

independent of time then the wavefunction <. ) . "™
can be written as the product of a spatial part ST 2s = e 5l it

and time part: ¥(r,t) =¥(r) T(t). We shall eyl s oYW 02U Of 2 W (r,t) = ¥(7) T(2)

only consider situations where the potential is sl © cesdl alas Sl oS L
independent of time, which enables the time- > = (3l 2o R djg s

dependent Schrédinger equation to be written  Lg » &l st lis e 5 0l ce3 b alag U xisy i

in the more familiar, time-independent form: i
U IE

2

2,2 h
= E(r) = =5 = V(r) + V(r)u(r).

E is the energy of the partlcle and we have Jlas=Y e Jlezl by e L wlb o~ E
used the abbreviation V*(pronounced ‘del )

squared’): (“del squared’ Sy V2

eq.2,3 o2 o2 52
Vi=—5+-5+
oz® ' Oyt 02

It is usual to abbreviate the left-hand side of eq. [y A (1 1) ) A5kl o (S o) gl ez 2 asle
(1,1) to H V¥, where H is the Hamiltonian o .
Hamiltonian operator: _» H_ o et
operator: i
eq.2,4 ) ?‘12

H=-——V*+V

" 9m

This reduces the Schrodinger equation  zjslell odn J;L A¥ = F% 1l ass,s dbsles 22
to H¥ =E¥. To solve the Schrodinger

equation it is necessary to find values of E
and functions W. The Schrodinger equation | 1510 dei)l o Yslek < A J,,pu,jb iy all ¥slall as
falls into the category of equations known as
partial differential eigenvalue equations in
which an operator acts on a function (the : aslx e Ly Jle (@514 Ay scalar — g e
eigenfunction) and returns the function
multiplied by a scalar (the eigenvalue). A
simple example of an eigenvalue equation is:

Jotls sy e sl o Wy B ) 5] (4
s>’y s(eigenfunction) aads s e UL sasd) NI

45100 ae )

[21]



Eq.2,5

d
S O)=ry

The operator here is d/dx. One eigenfunction
of this equation is y=¢ ** with the eigenvalue r
being equal to a. Eq.1,5 is a first-order

equation. The  Schrédinger
is a second-order differential

differential
equation

equation as it involves the second derivative
of W. A simple example of an equation of this

type is

Eq.2,6
dy
Y
The solutions of eq26 have the

form v = A cos kx + B sin kx, where A, B and k
are constants. In the Schrodinger equation W
is the eigenfunction and E the eigenvalue.

2.1.1 Operators / O gad!

to® oladl odd Eigen ) aiby . dfdx s L Jeadl
15 3\l . 2 gl () 2edlly 7815 =€ 2y
A Q) g ol axy W) Lol s )
bl Loy Jlee W ) gaadd fazsy (o) Lolid)
g s e

« v=Acoskx+ Bsinkx JfZ, 6 skl :):- dy

by a W omags le 300 ABK O e

Mgrad o2 E—JIy Eigen !

The most commonly used operator is that for e = v S Jael) e Blall Ol Jrie O

the energy, which is the Hamiltonian operator
itself, F. The energy can be determined by
calculating the following integral:

Eq.2,7
[T w = Bwdr X

E="=_ =}J-¥$H¥de=j‘f’#E‘PdT
Jowsdr

(P*) : the wavefunction may be a complex

number.
E: scalar and so can be taken outside the
integral.
If the wavefunction is normalized then the

denominator in eq.2,7 will equal 1.
[22]
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The Hamiltonian operator is composed of two : lLilgul S Eostood o Oskels aae Lilly
parts that reflect the contributions of: kineticand | L i L1 3
potential energies to the total energy. The kinetic Jria Bl Jla) e posl Bl a5 A W)

energy operator is: P en a5 A Gl

Eq.2,8
_r Y2

-

A.nd the .operator for tl'le'po’fential energy Ll ikl Blal Cs aoy Bl : ty
simply involves multiplication by the . T L 5 e
appropriate expression for the potential iy sl S 855 3 0y AN By Bl U
energy. For an electron in an isolated atom or e Sl 4 igg\ oM la) = S sl - 5y
molecule the potential energy operator -
comprises the electrostatic interactions =LA 0 AW e SR S
between the electron and nucleus and the o) 31y 3l gy Al QL;QX;[ Ll .L;J;'-iﬂ
interactions between the electron and the
. D AU ) o) Bl |rie OB (U 554 )
other electrons. For a single electron and a Gl e Bl Jase 0 e gy
single nucleus with Z protons the potential
energy operator is thus:

Eq.2,9
Ze?

drer

Operator for linear momentum along the x ; See 3 Al 1S L) aLS ;T el a5 4 5 Jas
direction : ) i .
X ol2YI

The expectation value of this quantity can o IVt e 2 S1 b & A as e J st ug; 3
thus be obtained by evaluating the following <
integral: DU s

Eq.2,11
hd

o = [¥= 55 wdT

[ ¥ =wdT

[23]



2.1.2  Atomic Units / 83} il

The atomic units of length, mass and energy AW el e s wladly J gl g aleSU B, 0 ol )
are as follow: ) )

* 1 unit of charge equals the absolute o, <)) amezd wallell 2@l (solud suxly ims ®
charge on an electron,
lel =1.60219x 1071 le] =1.60219 x 1079 (

e 1 mass unit equals the mass of the

. X | “ o | - PY
electron, m, = 9.10593 X 10~ kg 105 AV ST (5 gld By 38T 2 B

m_ =9.10593 x 10 kg

e 1 unit of length (1Bohr) is given by
ag =P oy Ay ol ox g3t 1) dokll sasy ol @

gy =K

Kd}?r “1mi, e® = 5.29177 X 1071 m
Kﬁl?r “m, e? =05.29177xX 107 1m

It is the radius of the first orbit in
Bohr’s treatment of the hydrogen
atom. It also turns out to be the most * b“";’ 4'55“ LI ng’ of A W-" s

probable distance of 1s electron from e 9 oAb 55 23 PRI ;ﬁi Is
the nucleus in the hydrogen atom. )

e b 50 e 238 sl g s )

. 1t1)yumt of energy (1 Hartree) is given Aol yy (6 1y BUall 50y Jaxd @
E, =e’/4msya; = 4.35981 X 107*¢] E, =e?/4ms,a, = +.35981 X 107¢]

It corresponds to the interaction .
Legheady o5 9 S onmimd O ST e 383 ) LaS™
between two electronic charges A o HoEE S

separated by the Bohr radius. The (& o) Is_J wik)) ¢ 5o% Sol . ps ¢ lad
total energy of the 1s electron in the

(S5 0.5 oy )bl 85
hydrogen atom equals -0.5 Hartree. €s ST 82

2.2 One-electron Atoms

In an atom that contains a single electron, the (L J_(Jj, (A1 g ‘J)J"Q\ g s sz\ 5,0

potential energy depends upon the distance Y ) . Sl S
between the electron and the nucleus as given Slae st Bllly Oy SIY) Bl e 2Sl

[24]



by the Coulomb equation. s S
It is more convenient to transform the . . . P
Schrodinger equation to polar coordinates r, 0 DLW Aoy ps Bl Jost dadle SV ey
and ¢, (wavefunction) where: DG (K e W13) g O Al
r: the distance from the nucleus
0: the angle to the z axis

¢: the angle from the x axis in the xy plane Z =i 0

S\jjwa.ét.ml\:r

xy s fll 3 x sl e Byl D
Eq.2,12
i’I'Ir;"::;':ﬂ = Rni(rjyim['g’ gbj

Y(0,p) : angular function called a spherical S35 3ol end Tl aadsy 1Y(0,0)
harmonic iLeled a2k 9 (R(1)
R(r) : radial function 21,0 1 g ~Sisae
n: principal quantum number: 0, 1, 2,... (n-1),...,1,0 :L:gﬁWJ\ V‘Q\ sie ]

I: azimuthal quantum number : 0, 1,..., (n-1) 1,(-1)...0...-(1-1),-1 : bl ("Q‘ sie m

m: magnetic quantum number : -1, -(I-1), ...0...(l-
1),1

Eq.2,13

27 n—I1—1)! 1/2 o\ 1ome
Ru(r) == l(ﬁ)s ﬁl Exp(—gjp‘i—;‘ﬂ (p)

p = 2Zr/na,, where na, is the Bohr radius. s g et o may S S0 = 2Z7/na,

L3 (e) is a special type of function called a . N

Laguerre Polynomial Laguerre  oooi L4l o 308 ¢ 5 L)
Polynomial

Eq.2,14

Y (6. 9) = 0,,,, (8)F,, (@)

With:

2,,(¢) = —exp (im¢)

21+ 1) (1= mD? .
O (0) = 5 L+ fm)! P, (cos@)
#,.(¢): The solutions to the Schrodinger e g 5 Akl S 10, (6)

equation for a particle on a ring. ) T loml
F‘,l’”'lI (cos8): Series of function called the the associated ) = Ay 1By (cos6)

associated Legendre polynomials. ( Legendre polynomials.

[25]
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o |
b ' by

Fig2.1:
The common graphical representations of s, p and d orbitals/

S,p,d ik 8zl g I Lzad)
Src: http://butane.chem.uiuc.edu/pshapley/GenChem?2/Intro/orbit.gif

Th.e e.nergy of each solution is a function of. the Lz P ) ("Q‘ sl aibs & > 5 sl o)
principal quantum number only; thus orbitals

with the same value of n but different 1 and m
are degenerate. The orbitals are often 3y IS 3 e g2 ST ol J:M L Ulsy . aakee

represented as shown in fig 2.1. These graphical T G IS8 sis 2.1
representations are not necessarily the same as JAL 85 55l o B JBAA eda 2

the solutions given above. For example, the il i’ Jodl ¢ JEU L o ool 5, 570
‘correct” solutions for the 2p orbitals comprise
one real and two complex functions:

055G I m ded Ll aed i W ol ) o) LU,

D ovAaxa 'Mb“”'*') ”;2,39-:* J\D-\)"J.ﬂ djgﬁ 2p

2p(+1) = 4/3/4mR(r)sinf e*?
2p(0) =+ 3/4nR(r)cos B
2p(=1) = 4/3/4mR(r)sinfe™'?

R(r): The radial part of wavefunction e ol A e sleid ¢ 541 IR (r)
| P— . . -

y/3/4m: A normalization factor for the angular . —

part C,,sj\j“ ;PLU L“SJL’" WJ.ALC— :1...'3‘.-"4?1'

2p (0): function corresponds to the 2p. orbital Fig 2.1 & ,sall 2p, s e il 55 22l 4 :2p (0)

that is pictured in Fig 2.1.
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The linear combinations below are the 2px and
2py orbitals shown in Fig 2.1.

2py ey 2px ok sew slsl abedl oLl

Fig 2.1 (3 cpo g sl

2p, = 1/2[2p(+1)+ 2p(—1)] =+ 3/4n R(r) sin B cos ¢

2p,.

These linear combinations still have the same
energy as the original complex wavefunctions.

—1/2[2p(+1) — 2p(—1)] = v/ 3/4m R(¥)sin & sin ¢

e sh) DI B ki Ll J1) Lo i) Lol ) o
?L;.Lp‘y\ fhwfjl‘

2.3 Polyelectronic Atoms and Molecules/ &l 31y Ol saas O 5 S}

Solving the Schrodinger equation for atoms
with more than one electron is complicated by
a number of factors. The first complication is
that the Schrodinger equation for such systems
cannot be solved exactly (solutions can only be
approximations to the real true solutions).

A second complication with multi-electron
species is that we must account for electron
spin.

Spin is characterized by the quantum number
s, which for an electron can only take the value
V4. The spin angular momentum is quantized
such that its projection on the z axis is either
+h or —h. These two states are characterized by
the quantum number ms , which can have
values of +1/2 or -1/2, and are often referred to
as ‘up spin’ and ‘down spin’ respectively. The
spin part defines the electron spin and is
labeled a or 3. These spin functions have value
of 0 or 1 depending on the quantum number
ms of the electron. Each spatial orbital can
accommodate two electrons, with paired spins.
In order to predict the electronic structure of a
Polyelectronic atom or a molecule, the Aufbau
principle is employed, in which electrons are
assigned to the orbitals, two electrons per
orbital. For most of the situations that we shall
be interested in the number of electrons, N,

[27]
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will be an even number that occupy the N/2
lowest-energy orbitals.

Electrons are indistinguishable. If we exchange
any pair of electrons, then the distribution of
electron density remains the same. According
to the Born interpretation, the electron density
is equal to the square of the wavefunction. It
therefore follows that the wavefunction must
either remain unchanged when two electrons
are exchanged, or else it must change sign. In
fact, for electrons the wavefunction is required
to change sign: this is the antisymmetry
principle.

Eq.2,15

«(3)=1x(5)=0p(+3)=08(=3)

=1

N el SN sy WD e 02b ) OV ol
T sdec N2 oW wll e esy Oy

Tl b Led 3Laplen iy SOY) O
o) U gt iy B 557 06 iy SY)
i M A CaSs (5 glas 05 SN BLST O 05
o Lo Ll as ¥ Of (g 2wl 1 0] S
G A o g b Yy Uy AW e ) s
oo b SIW el &gl B 1 WY O w31 )

Bl ade fods O ya b Liay Al i

2.3.1 The Born-Oppenheimer Approximation/ s\gx 5i—C ¢t & e

The electronic wavefunction depends only on
the positions of the nuclei and not on their
momenta. Under the
approximation the total wavefunction for the
molecule can be written in the following form:

Born-Oppenheimer

Eq.2,16

¥ . (nuclei, electrons) = ¥(electrons)¥(nuclei)

The total energy equals to the sum of the
nuclear energy and the electronic energy. The
electronic energy comprises the kinetic and
potential energy of the electrons moving in the
electrostatic field of the nuclei, together with
electron-electron repulsion:

Eq.2,17
E

tot

E(electrons) + E(nuclei)

[28]
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23.2  General Polyelectronic Systems and Slater Determinants / S <1342 5 delall Sdadll O 5 2SIy dalasf

A determinant is the most convenient way to
write down the permitted functional forms of
a Polyelectronic wavefunction that satisfies the
antisymmetry principle. In general, if we have
N electrons in spin orbitals X1,Xz,..., X~ then an
acceptable form of the wavefunction is:

il ) IS B0 aamsle S aR b s Al o)
pde T e ) b Y1 el ar Sl Wl 2Ll
Sl g by SN L 08713 ale Sy . bL)

D WU s L A ISKs 0 ¢ X, X, X A

Eq.2,18
X1(1) Xx2(1) XN(1)
wo = [¥1(2) X2(2) XN (2)
R ; :
X1(N) X2(N) };’N(N]|

X1(1): indicates a function that depends on the
space and spin coordinates of the electron
labeled “1".

'__.o

N
normalized.

ensures that the wavefunction is

This functional form of the wavefunction is
called a Slater Determinant and is the simplest
form of an orbital wavefunction that satisfies the
antisymmetric principle.

(If any two rows of determinant is identical,
then the determinant vanishes)

When the Slater determinant is expanded, a total
of N! terms results. This is because N! different
permutations of N electrons.

For example, for the three-electron system the
determinant is

X1(1) X2(1) X3(1)
1 x1(2) X2(2) X3(2)
lx1(3) x2(3) X3(3)

p=_1

Expansion of the determinant gives the following

expression:

[29]
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X1(1)X2(2)X3(3) — X1(1X3(2)x2(3) + X2(1)x3(2)X1(3)
—X2(1)X1(2)X3(3) + X¥3(1)X1(2)x2(3) — X3(1)X2(2)X1(3)

This expansion contains six terms (= 3!). The
six possible permutations of three electrons
are: 123,132,213,231,312,321. Some of these
permutations involve single exchanges of
electrons; others involve the exchange of two
electrons. For example, the permutation 132
can be generated from the initial permutation
by exchanging electrons 2 and 3 (If we do so
we will obtain the wavefunction with a
changed sign -W).By contrast, the permutation
312 requires that electrons 1 and 3 are
exchanged and then electrons 1 and 2 are
exchanged. (This gives rise to an unchanged
wavefunction).

In general an odd permutation involves an
odd number of electron exchanges and leads
to a wavefunction with a changed sign; an
even permutation involves an even number of
and returns the

electron  exchanges

wavefunction

The Slater determinant can be reduced to a
shorthand notation. In one system of the
various notation systems, the terms along the
diagonal of the matrix are written as a single-
row determinant

Eq.2,19

X1(1) X2(1) X3(1)

X1(2) X2(2) X3(2)|=Ix1 x2 Xx3|
X1(3) Xx2(3) X3(3)

The normalization factor is assumed. It is
often convenient to indicate the spin of each
electron in the determinant; this is done by
writing a bar when the spin part is 3 (spin
down); a function without a bar indicates an
spin (spin up). Thus, the following are all
commonly used ways to write the Slater

Joobdh O L=31)( g Ee e gt Sl s
ot <y SOV Sl i)
ool sda a5 45.123,132,213,231,312,321:
sard) sk v 3 Uy SV e 82 ke Yo e
St 0F 58 Stin oy SOV e ot sl e =Y
b e &V A e e 132 dadl e
o hami (L s 13)3 0y Sy 20, Y
s WSy (W LML e e der sl W)
Jes F ey 3s T by Sy s 312 W

(5 pxie b A e W13 e Lo 1) 25 1 Uy SN
oo e ke Dol e ssall aadl ssky le Sy
S shy ¢ A Adle a1 op L ol S
Uy S oz e b5 e d i) W)

j;-;&"' O}b 74.;.:-)1\ iy J‘-:’-.’.j

b i) e Wi desez U O sas als Ss
S5 b e 53 o 55l S 55 ¢ aleal) 1)
LD he 3L CanaS R.éjjz,,a_&\

ol O L U 50 o) sl il g
b oo s any ol 3 0s S U s ) 8yl
Bl e 0,5 Lus b G5 Bl s 4l
A ds) O Ll s 0 s LT e el ) U8

[30]



determinantal wave function for the Be atom el s sl by s O 0SS Ak ) ol (e

(which has the electronic configuration 1s* )
5500 el A e sue ST deasald) @ L &

2s?)
(A5725% a4y SV o) 5) 2 seh )
Eq.2,20
¢ (1) 6,.(1) ¢,.(1) 6,.(1)
W= 1 ¢’u(2] Eju@) ‘i-":g(z] E’jzstzj

VIR @y (3) 01.(3) 5(3) 6,.(3)
¢1:(4) 6,.(4) ¢:(4) 6, ()

= | ';bls ﬂjﬁ' ""J-b:s ﬂ!s

= |15 15 25 25|

An important property of determinants is that , e f v_? e ol & Slsdeall dagll Sl cas)
a multiple of any column can be added to i . . s
another column without altering the value of Mo sdall 2 ks 09y AT 2pele J) Sl OF oS

the determinant. This means that the spin Ll gilal Sy b3 cod ol J3 O on
orbitals are not wunique; other linear 15 s o “;‘
combinations give the same energy. 1S Bl (ol 0T 5 Y

2.4 Molecular Orbital Calculations / &3 it bl

2.4.1 The Energy of a General Polyelectronic System/ pla! susd! (4 5 2SIy alal) dBua)

For N n-electron system, the Hamiltonian takes ISl e 0 sabald) s ¢ 09 S0 Nl ‘_}:.-T o
the following general form:

Ifw\

. 2 1 1 1

ﬁ=(—1z?t —— +—+ )
T Nha Te Nz Mg

i=1
A, B, C, etc: indicates the nuclei. sl Je Juy ;a ...A,B,C
1, 2, 3, ...: indicates the electrons. '
The Slater determinant for a system of N 03 AN e d 1,23
electrons in N spin orbitals can be written: S Ny O ;?Ql N (.u;._;j S 4] LS ug“

[31]



G Y U ey

X1(1) X2(1) .. XN(1)
X1(2) X2(2) .. XN(2)
X1:(N] XE:(N] XN:(N]

Each term in the determinant can thus be (1)Xj(2)Xk(3)... Xu(N- —S 5321 3 2> S S S
written Xi(1)Xj(2)Xk(3)...Xu(N-1)Xo(N) where )

ij,k,...,u,0 is a series of N integers. P NS ol o> Bk 1,0 e DX0(N)

As usual, the energy can be calculated from s Bl Ol - Ss slWS
YHY
E= J
[ vy

J PHY = J J- dpydry - dry [[Xi(lJ%'(szk(Ej -]
X (—%Z Vi (/my) - (1/ng) et (/) + (1frﬂ]+---)

X [Xfil]X}-[EJX,{[Ej ]I
J vy = J- j dr1d7g o dlr‘.j{[Xi[ljxj[Zijk (3) ... ][x{.[]_jxj{z]xk @)..])

If the spin orbitals form an orthonormal set ;... uc w2 e R ol odd J-

then only products of identical terms from . , .

the determinant will be non-zero when < =2 U &Ll (term do- o) 25l O Aok
integrated over all the space. oS bis ho s glas Y sud
(If the spin orbitals are normalized, integral
will equal 1)

(If the term involves different electrons, it 4w (sgluy 6lb ke wby ) Lo I ol | J= (3)
will equal zero, due to the orthogonality of

(Aol 5 Lol (& sl (bl T Bn 2301 il 5187 13))

spin orbitals). (A e el

The numerator in the energy expression can
. . M e dleds (L) .\“w'wxvﬂ@"-s&
be broken down into a series of one-electron o Y s G T

and two-electron integrals. Each of these iS5 .05 SV o od¥1 @Ml sl gl 04 STY

individual integrals has the general form: alal) S 1 iy S o e 3 i

J J dryds, ... [terml]operator[term2]

[32]



[term1] and [term2] each represent one of the
N! terms in the Slater determinant. To
simplify this integral, we first recognize that
all spin orbitals involving an electron that
does not appear in the operator can be taken
outside the integral. For example, if the
operator is 1/ria, than all spin orbitals other
than those that depend on the coordinates of
electron 1 can be separated from the integral.
The orthogonality of the spin orbitals means
that the integral will be zero unless all indices
involving these other electrons are the same
in [term1] and [term?2].

For integrals that involve two-electron
operators (i.e. 1/rj), only those terms that do
not involve the coordinates of the two
electrons can be taken outside the integral.

It is more convenient to write the energy
expression in a concise form that recognizes
the three types of interaction that contribute to
the total electronic energy of the system.

First, there is the kinetic and potential energy
of each electron moving in the field of the
nuclei. The energy associated with the
contribution for the molecular orbital Xi is
often written Hi“* and M nuclei. For N
electrons in N molecular orbitals this
contribution to the total energy is (the actual
electron may not be ‘electron 1'):

(X

o A su2 e U= S [term2]  [term1] I ‘_};f
S Js o Vil 8w of 2 (oS s Lo ]
e oh S Rl el ¥ 00 e gy L3
OB (Jxall oo 1/r1a 08 13) (JEU Lo Jo. LS e
Sl e Odezn gl e L JA ol e IS
S dales O WS e agliad S 1oy Sy
S BV e gl LIS OF o 23
3k o oY Sl SO eds s ol 2l
.[term2] s [term1]

Uy S e ol e e ) SIS Al
oo Nl (terms) s gad) eds Lis ((1/ry) Jle
orog A Ol e Sl S e oY) Sl
JaS

g Sty k) Bl 5 jle B8 Ll
25 Y Bl U] 3 s G O ST g
plall

0359 I o Bty 28”1 wslal) Sis s N
e sl Alag 0 Blall S L Uit s gl s 8 s
& O3 AUN Jorl o w5 My Hieore 118 Xi s 54!
o Bl e e pleoY) e s> ol N

(“electron 17 3, w2l wod xdll 05 SIY))

'|.|'

N M :
: z
Efotar = E J-di!'lxi (1) (_ Y- Z :TJ-_A)XEUJ = E' HZ™"e
i=1 = 4

A

The second contribution to the energy arises
from the electrostatic repulsion between pairs
of electrons. This interaction depends on the
electron-electron  distance  (Jij).The  total

[33]
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Coulomb contribution to the electronic energy g Bk lasl dd J.:QY\ (‘w‘ Bl syl
of the system is obtained as a double — ‘
summation over all electrons, taking care to Bty 0 ST S e e o e ey SN IS

count each interaction just once:

1

LET

N
Eﬁfau!omb :zdrldrz Xi(lj){;(zj X}(E]Xiflj
j=i

1

LT

X:(2)X;(2)

-
&

N
= Z drydry X;(1)X; (1)
J=i

The third contribution to the energy is the L U RV S U B ple!

exchange ‘interaction’. . TR " .
If two electrons occupied the same region of Oy sbadl 3 afal) o8 o SIY) o ) ol 13

space and had parallel spins then they could be | '("Q\ fgj TP TR 05 clj‘y b e

considered to have the same set of quantum | TRt " Ul e ‘
number. Electrons with the same spin thus tend = - d R () d) 2ls 2y S
to 'avoid' each other, and they experience a L (oY) oo S dold) Bhes agiiy andl Leian

lower Coulombic repulsion, giving a lower P
bl Vs - sl RSN I v
energy. The total exchange energy is calculated Blall Pl o B QU] 2 gl Bl o

by the following equation: sl
N N . N N
E:::::MQE = Z Z ﬂ. dridr; X, (1}7{}(2) (T )X:'(Ej‘%'(lj = z Z Kz‘_:"
i=1j =i+1 12 j=1i =i+l
K;;: Energy due to the exchange. (oLl dilene w3t
The prime on the counter j'indicates that the Lo o U5 s e sl ol
summation is only over electrons with the o ool e gt o o
same spin as electron i. d 0 SV e o dlaze (J3) G 3 <y SIY

2.4.2 Calculating the Energy from the Wavefunction: The Hydrogen Molecule / s> i 1 Al o Blal Ol

T 9yt

In the most popular kind of quantum V‘Q‘ SO pled) Slled! o ns ST SRt
mechanical calculations performed on . ] .
molecules each molecular spin orbital is ©=%* *&7 e IS A pn el Lo s s )

expressed as a linear combination of atomic

[34]



orbitals (the LCAO approach)’. Thus each gz i) o) ol Jad| gLy g by 35 ol e
molecular orbital can be written as a T . )
summation of the following form: & e Js SO (S 1Sy (A ol

ZQ_LL:J\ JQ':J\ Cf"“{

Eq.2,21
o
P = Z Cui Pu
p=1

where 1f; is a molecular orbital represented as - S e k ¢ S ;a; ’ o A s e

the sum of k atomic orbitals ¢, each y o . -

multiplied by a corresponding coefficient c,;, * 3G el Jolas e dly JS R0
oo Oleg dla Ll 3 gl & CA_A.-\ o

and u represents which atomic orbital is @Y Bl 3 2w Sas lislas Sl o Sy S
o> G o O iy ((ogl comndl) L}&l\ Sl

combined in the term.3 There are two oyt 5,00 5T e e oY

electrons with opposite spins in the lowest

energy spatial orbital (labeled 1og), which is

formed from a linear combination of two

hydrogen-atom 1s orbitals:

Eq.2,22
lo, = A(1s, + 1s5)

To calculate the energy of the ground state of .. bl s el AW Bl Ol J,j o
the hydrogen molecule for a fixed

internuclear distance we first write the Al Yl s 0 e sl B adslil Bl

wavefunction as a 2 ¥ 2 determinant: 2 X 2 345eaS Al

Eq.2,23
x1(1)  x2(1)

= X1(2) x2(2)

= Xx1(1)x2(2) — x1(2)x2(1)

2 LCAO is a quantum superposition of atomic orbitals and a technique for calculating molecular
orbitals in quantum chemistry.(Ref:Wikipedia)/ sLeS™ & &t ) ol ) Olud a:a5 g a4 )l ol i s (._<J\ S e
~SILCAO

3 Ref: http://en.wikipedia.org/wiki/Linear combination of atomic orbitals molecular orbital method
el
J

[35]



(See paragraph 2.1.1 operators) In

units the Hamiltonian is thus:

Eq.2,24a

A=-1V? _ 1V 4 75 ‘4

Eq.2,24b

=H, +H, +(1/m,)

1 and 2: indicate the electrons.
A and B: indicate the nuclei.

Za and Zs:nuclear charges =1.

The energy of this hydrogen molecule:

Eq.2,25

[T w = Bwdr
E=—=

[ w s wdr

atomic 3, i ol ) 3 0l L (Jasdl 211 sdll 4l

it

Sl e U A B
by S Je s 01,2
N Sl ) Ll ZpsZa

to 9 el o5 o Bl

The normalization constant for the wavefunction 39 rgy SRS (- VL S /RSN PR RO |

of the two electrons hydrogen molecule is 1/32

and so the denominator in Eq.2, 25 is equal to 2.

Substitution of hydrogen molecule wavefunction

into Eq.2, 25

Eq.2,26

E= ij drdp{[X1(1)X2(2) — X2(1)X1(2)][H, + H,
+ (1/m,)][x1(1)x2(2) — x2(1)x1(2)]}

Eq.2,27

E= ﬂ dT1dT2x1(1)x2(2)(H, )x1(1)Xx2(2)

- J( dT1dT2x1(1)x2(2)(A,)x2(1)x1(2) + -+

+ﬂ dT1dT2Xx1(1)x2(2)(H,)%1(1)x2(2)

- J( dT1dT2X1(1)x2(2)(H,)¥2(1)X1(2) + -~

[36]
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! )xzmjm(z)

i

1 )X2[1jx1(2j+---

12

+J(f dT1dT2X1(1}X2(EJ(
—ﬂ dT1dT2X1(1jXE(2)(

Each of these individual terms can be Yo ekl of UasY 13 (s im O 0 Jipl S
simplified if we recognize that terms dependent )
upon electrons other than those in the operator Uy SN S Sl SIY) e Sexee (terms

can be separated out. For example, the first ,sU3 e Jls Lo ug; P ;34\ &3 334 sl

term in the expansion, Eq.2,25,is: -
: Eq.2,25 Aslal) e J oY) O

Eq.2,28
ﬂ dT1dT2X1(1) X2(2)(H,)x1(1)x2(2)

The operator H is a function of the coordinates |3 | 09 SN Sy diy gn I:I el o)

of electron 1 only, so terms involving electron 2 . ) .
can be separated as follows: QU 2 05 S 2kl Slodlanal) foab LS

Eq.2,29

ﬂ dT1dT2X1(1)X2(2)(H,)x1(1)X2(2)

=Jdmxz(zsz(zjfdmmm(— v‘ﬂl_i_i)m(g

TNa Mg

B

If the molecular orbitals are normalized, the J_,,\_{;j\ ol ‘QJL,_T CORIPYP-SS & RS [ KVRTEI C gy P

integral [ dT2x2(2)x2(2)=1.
integral [ (2)x2(2) 1 syl [dT2x2(2)%2(2)

Eq.2,30
1572 1 1
J dr1 (1) (_ z v 1 _)Xiiﬂ
- Ta Tie
1 2 1 1
= | d, 10, (1) (— SV —— - —) 10,(1) | doya(1)a(1)
“ Tha Tin
d» indicates integration over spatial coordinates. A SUY eSS e e do i

ds indicates integration over the spin ,
coordinates. The integral over the spin JSA O I Syl JlSS se e do e
coordinates =1. T sl 3 CUIY) e
Now we can substitute the atomic orbital
combination for 1og:

kit ek 10y vzl OY) LS

[37]



Eq.2,31

demguj (—é?ﬂl—i—i) 10, (1)
z Ty Tip
= .ilzjdapl{lsA[1]+ 153[11}(—% v, —% —é) {1s, (1) + 1s5(1)}

The integral in Eq.2,31 can in turn be factorized . .. (oY ic ez Ul Eq.2,3 J,«\_{:.S\ cS A S ;
to give a sum of integrals, each of which

involves a pair of atomic orbitals: gl S e g5 L -y S
Eq.2,32
1oe 11
[ dvedas, () + 15, (03 (=5 T == ) s, () + 15510
Ta Tie
1. 1 1
= | dv, 15,(1)(-= V* ————)1 1
J vy 1sy( j( 12 1 T].-l“l 1;15' 5,(1)
sV ____)
+Jd?}'1 15_4(1:]( T 1s5(1) +

If we apply the same procedure to the second sl (3 24l e Sl Yl i gabn L 1)

term in Eq.2,27 : ’
‘Eq.2,27

Eq.2,33

ﬂ dT1dT2X1(1)X2(2)(H,)x2(1)X1(2) = Jdmm[n [H}szjjdmxz[zjxuz)
Eq.2,34

J dT2X2(2)X1(2) = 0

Eq.2,34 equals zero because the molecular ;iilaw. oot ol e 0¥ in Eq.2,34 aslal) s olos
orbitals are orthogonal.

2.4.3 The energy of a Closed-shell System/ dlal! ddal) sl 28U

In a closed-shell system containing N electrons .. 5O N/2 309N @ st dales a3 b ol 3

in N/2 orbitals, there are two spin orbitals ,
S e dsty IS ke J ) ol e s o) Sl

[38]



associated with each spatial orbital Yot and  5s SIY Bla)l Cluz=l Seapf 5 Yo S

Ala (.TYJT O 9 b (S Bl olue=Y dile Z\.E.gjia_:
¥ip. The electronic energy of such a system can = > .o 35 21 85l Jlg 3 & n 04 S IS @l
OIST13] L HEPT® wlall 0S5 Xa g e 3 09 S

be calculated in a manner analogous to that for Sl e T T
the hydrogen molecule. Firs’c,g there is the HET 2 B 05 g s S e o s
energy of each electron moving in the field of s ol plgw) é\-“’*‘ 5} j§4 9.l N/2
the bare nuclei. For an electron in a molecular
orbital Xi, this contributes energyHZ". If there
are two electrons in the orbital then the energy
is 2H °™ and for N/2 orbitals. The total

contribution to the energy will be:

NfZ

Z EHEGE_G?"E

i=1

The Coulomb interaction between each pair of RO JSJY\ T J5 o s‘ﬁjﬁﬁ‘ R E
electrons in the same orbital must be included; , _

there is no exchange interaction because the OV S Joli dmy ¥ oSy leeW) o il
electrons have paired spins. The total energy is Jal 0 Ax i (U) Sl Lol oy SIY)
thus given as:

113) a3a)
fu = K
Ni2Z NfZNS2
1Y o s 3 (1,1,
i=1 i=1j=1

2.5 The Hartree-Fock Equations/ 2 #- j,» <Yste

In most electronic structure calculations we are ol Z;Lo Jald (i, jg;u\ ) obles (F)é_,u &
usually trying to calculate the molecular
orbitals. But for many-body problems there is
no ‘correct’ solution; so the variation theorem aJi il & i U (.:u; 1Y ‘”C‘*’“”” J= sl Hls us

provides us with a mechanism to decide i il T 1 A S 1S L 3 ol
whether one proposed wavefunction is ‘better’ oo Bl el SEBLL A e e

[39]
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than another. (The best wavefunction is the RN J@fﬁ\ WRUE R '6;_:}“ " J-de”

one with the lowest energy). The Hartree-Fock
equations are obtained by imposing this
condition on the expression for the energy.

The Fock operator (f;) takes the form:

— W Vsl e J gad uﬁ.«f .(d;}!\ Bl g

sl 4 ) 8Ll 3 bl s Jbes) Y e 2 g8
P ey fi( &5 samae dxy

f) = HE (D + ) (1,0 — K (1)

The Fock operator for a closed-shell system, has
the following form:

P SCadle aall) aidall allad ) fi( 4 i Al

NjzZ

F)=HEer () + ) (2,0~ K, (1)
i=1

The Hartree-Fock equations then take on the
standard eigenvalue form:

fiX; = &&X;

2.5.1

The Hartree-Fock equations are usually solved
in different ways for atoms and molecules. For
atoms, the equations can be solved numerically
if it is assumed that the electron distribution is
spherically these
numerical solutions are not particularly useful.
Fortunately, analytical approximations to these

symmetrical. However,

solutions can be used with considerable
success. These approximate analytical functions

thus have the form:

RN I DU Y O e S PR P PR P

Hartree-Fock calculations for Atoms and Slater’s Rules/ jMw s 8y &1yl & - g 5 )l Clas!

of a8k oA Bls 8 ims )ls Y¥slee U
3 Les, oMbl e S ol Al ol 4
Ny Bl (555 Ky ds e Uy SIY) Of Al
SSag bt ad sds Lol o a3 1 I 0n
oda el ISCay Jd dd ) o plsl

P e b gl o) By i) (sl )

11'!’ = Rn! (Tjnmtgrg&j

Y is a spherical harmonic and R is a radial
function. Slater suggested a simpler analytical
form for the radial functions:

[40]
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R, (r) = (26)" ¥/2[(2m)1] 2t

These functions are universally known as Slater (STOs) S oljlbs ¢ S LAL; sl I sl 2 Al

type orbitals (STOs). The first three Slater o e
functions are as follows: 'L}w‘ J@‘ e a5l 5 O J ) s

R,.(r)= 2¢¥2e—m

4 gy 1/2
st Ef'j = Rz'p [Tj = (T‘;) re

El{;? 1/2
Ry.(r) = Rin (r) =Ry (r) = (E) rie

To obtain the whole orbital we must multiply .1, Jorl e comldl g L R(r) oo o2

R(r) by the appropriate angular part. Slater ) ) .

provided a series of empirical rules for deldll Ak B bzal sl e
uﬂ%l&dj.a_;-\uga;ggﬂ\ cwt}!\)\ﬂb-\[ Mﬂj\

choosing the orbital exponents ¢, which are

given by:

Z is the atomic number and o is a shielding 2 n* .ol shielding sie 2 G 5,5 sus s Z
constant. n* is an effective principal quantum L R
number, which takes the same value as the true ("Q | de b b deh e Jle S (’5 e

principal quantum number for n=1, 2, 3, but for j{, 456=-n U= 3 Ll 1,2,3=n— _Jxdl e gl
n=4, 5, 6 has the values 3.7, 4.0, 4.2, respectively. i )

The shielding constant is obtained as follows: e Jo ol (S 37, 40,42 gl 2 A
First, divide the orbitals into the following M e ol shielding

groups: U Sl sel U O s N o
(15): (252p); (35, 3p); (3d); (45, 4p); (4d): (4f); (55, 5p); (54)

For a given orbital, o is obtained by adding = D e O e et Sisds S W= 3
together the following contributions: )

a) Zero from an orbital further from the ) oleleny)
nucleus than those in the group; sl eVgs ool e SPRNINW ot e (A

b) 0.35 from each other electron in the ) .
same group, but if the other orbital is Aol G
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the 1s then the contribution is 0.3; 3 lele el i 3 O;;QL JS o 035 (b
c) 1.0 for each electron in a group with the

quantum number 1 fewer than the U3 e 05 Ts 2l O 13) il

current orbital.; T sslus o5 50 53 000l (3 05,50 IS 10 (C
d) For each electron with a principal AUl e

quantum number 1 fewer than the G e B

current orbital: 1.0 if the current orbital . » |51 1 (s5ley sy o5 300 33 0550 U (d
is d or f; 0.85 if the current orbital is s or
P

The shielding constant for the valence P s SUH Il 0815, 0.85

electrons of silicon is obtained using Slater’s s
SEP. el ghieldi sl S
rules as follows. The electronic configuration SR < shielding sae e ’

of Si is : AU el e ) sl B sl O 5Sledd 281K
D2 Si 0 Shel) (g SIY) w5 5

of sfd Wl of Al 3 1.0 tJW

(1s%) (252p®)(3573p%)

We therefore count 3x0.35 under rule (b), 2.0 _ .2 20 b susli)l st 3x0.35 oot s e ;u
under rule (c) and 8x0.85 under rule (d), giving )

a total of 9.85. When subtracted from the C>%5 & ¥ «d Saeldl st 8x0.855 cc sacldl
atomic number (14) this gives 4.15 for the o 14 o C}.&\ | > J>= & .9.85 sl

value of Z-o.
Z-0-N i iS 415 s J st

2.5.2 Linear Combination of Atomic Orbitals (LCAO) in Hartree-Fock Theory/ & i & &)1 <yl Jad-1 31 5l

& -5 gyl

The most popular strategy, to find solution of P s wbll > sy dies Jg{fy\ ORI SN
the Hartree-Fock for the molecules, is to write ) . ' e
each spin orbital as a linear combination of A 35S ol JpE 5 RS a0 oyl

single electron orbitals: 3,4l 05 SN ol ylud

Y, = Z Coc®s

The one-electron orbitals ¢, are commonly .. _asls Su @, 14 O ,&N\ ol e O JJ
called basis functions and often correspond to
the atomic orbitals.

K: number of basis functions. el sl S sas K

A5 ol e Jus b Wi,
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At the Hartree-Fock limit the energy of the
system can be reduced no further by the
addition of any more basis functions; however,
it may be possible to lower the energy below
the Hartree-Fock limit by using a functional
form of the wavefunction that is more extensive
than the single Slater determinant.

For a given basis set and a given functional
form of the
determinant) the best set of coefficients c,; is
that for which the energy is minimum, at which
point

wavefunction (i.e. a Slater

oE
dac

for the coefficientsC,;. The objective is thus to
determine the set of coefficients that gives the
lowest energy for the system.

vi

I e pllad) B 2id Sy (s 5 d s
Bl 2id S& el Y sl I e anls g T dL)
Bl abd Sl plasat - 54l oS
Al swwgzﬁ;ﬁﬂx:@ i 5l
ISy i mlal 5 5adt g Jolas 8 g L2l O)
o (A (PO 3dos sy 2ol Bl saz il
ol ods 3 30V Laag Bl 0SS

Q\ J,a\.al\ is gost L o \:\ Cudl ol L0 JALA
Uadd a3l |51 s

2.5.3 Closed-shell Systems and the Roothaan-Hall Equations/ JWw— 5y <¥3las g ddkall dikal) allas

We shall initially consider a closed-shell
system with N electrons in N/2 orbitals. The
derivation of the Hartree-Fock equations for
such a system was first proposed by
Roothaan [Roothaan 1951] and
(independently) by Hall [Hall 1951].Unlike
the integro-differential form of the Hartree-
Fock equations, Roothaan and Hall recast the
equations in matrix form, which can be
solved using standard techniques and can be
applied to systems of any geometry.

The standard form for the expression for the
Fock matrix in the Roothaan-Hall equations:

@ Oy SN e il azlell ol (Lgf JStae poni s
M Jol 8 gs—gs 5 w¥olas L] 18] ¢ Ll N/2
JSas)s Roothaan [Roothaan 1951] 3 e cpllad
integro- K& OS2 Hall [Hall 1951] (Jétws
Jlay Uy, slel (J-c 5 bl Vsl differential
e S s K5 Q) SN L
oz ol e lpahisanl Sy mwlal Ol alisaaly

Lo

Vsl 3 Jp wiaal 3 sl Ll IS

ey

= Hi"® +Z Z P, (;.wl.lcr] ——(,u.llvcr:]]

A=1e=1
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2.5.4 Solving the Roothaan-Hall Equations /J s2—0b 9y <Yl J>

The Fock matrix is a KxK square matrix is Ji. (3 Bolie b sheas & KxK &5 25000 0,5
symmetric if real basis functions are used. )

The Roothaan-Hall equations can Dbe clestis Tpwlo¥ (25U G SIS

conveniently written as a matrix equation: UsleoS” s e -0l oY¥oles alS ugx
't j.a_.,a.a

FC=SCE

The elements of the KxK matrix C are the C #4020 KxK sl

coefficients Cui:

€11 Ciz Crx
C = €21 Gy Cok
CHl CK,E CH.-K
E is a diagonal matrix whose elements are the A bl » s sl Of &t 1 yinas Jia.: P E
orbital energies: ) )
g 0 0
p= 0 = 0
0 0
K
A common scheme for solving the (AU e J-0U I ¥sles J;L el bl
Roothaan-Hall equations is as follows: ) Fods s . 1
1. Calculate the integrals to form the Fedp wjian JSo ) Jolall bzt
Fock matrix, F. S b aal) 2w olas) L2
2. Calculate the overlap matrix, S. S L 3
3. Diagonalise S. T ’
4. Form S12. S |1 Sas 4
5. Guess, or otherwise calculate, an . _— ¢ P
initial density matrix, P. Bohall B colent gl Bl e S
6. Form the Fock matrix using the P oaa L)
integrals and the density matrix P. o . . U .
7. Form F'=S12.F S12 B hall BUSy Jolll plsanly 858 8 skan JS25 6
8. Solve the secular equation |F’-EIl=0 P
to give the eigenvalue E and the ..
F=S12Fs12 | S5 7

eigenvectors C’ by diagonalising F’.
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9. Calculate the molecular orbital
coefficients, C from C=S12.C’.

10. Calculate a new density matrix, P,
from the matrix C.

11. Check for convergence. If the
calculation has converged, stop.
Otherwise repeat from step 6 using
the new density matrix, P.

This procedure requires an initial guess of
the density matrix, P.

The result of a Hartree-Fock calculation is a
set of K molecular orbital, where K is the
number of basis functions in the calculation.
The N electrons are then fed into these
orbitals in accordance with the Aufbau
principle, two electrons per orbital, starting
with the lowest energy orbitals. The
remaining orbitals do not contain any
electrons; these are known as the virtual
orbitals.

il Jo Jpadl =l e IF-EII=0 dsbd) J> .8
F jasis pe O il olgmdl 5 Bl
C=S512.C o C e F5H ) bles Clazl 9

. Cabgaall o, Peid ginnol) 500 0LS Oluc>t .10
Lol O J 3 o)W sy e gl 11
KRS RR K RSP PINE F N PT-

P2 shaal) S, B szl o 6 5 b s
P asaall BT Ll e o) Y s sy
ek e aegaz o dormis s Bl Bhedl s )

Apled 2hadd) 3 2l il sae ket (g

o) sl Ol Baeldl Wby el all ¢ e 0y S0 N p i

Blall o gd ol e RRCS IRV RTERLY Uy SIY) e

L33V

L 0, 6 e w522 Y Wy 2aa) ol L

) Y

2.5.5 A Simple lllustration of the Roothaan-Hall Approach/ J s»—0G 3 ce-l L bl

Example: HeH+.

Objective: how the Roothaan-Hall method
can be used to derive the wavefunction, for a
fixed internuclear distance of 1 A°.

There are two basis functions, 1sa (centered
on the helium atom) and 1ss (on the
hydrogen).

Each wavefunction is expressed as a linear
combination of the two 1s atomic orbitals
centered on the nuclei A and B:

HeH+.: s

=T e d-0Uy, 4k b aldsa) 448 3 e :E
AT gl ol ol Bl e Sl A &J—ra;s
50 e 550 Isa LYl Ll e ol Sus
(O gl o) Tsny (p st

Is a,dl bhal) ddas 50148 G g dls S 04

:BJAL;j.-J\L;;sJ{Ji\

Yy =cyylsy + cplsg
Yy =515, +coplsy

Solving the Roothaan-Hall:

-1 and 2- Calculate the integrals (here there is 2

Aoy L) el Olaas) =251- i) e-00y )
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electron integrals) to form the Fock matrix, F,
and calculate the overlap matrix, S:

The diagonal elements of the overlap matrix, S,
are equal to 1.0 as each basis function is
normalised; if the off-diagonal elements have
smaller, but non-zero, values that are equal to
the overlap between 1sa and 1ss for the
internuclear distance chosen. The matrix S is:

1.0
5= (0.392

The core contributions H;7™ can be calculated
as the sum of three 2x2 matrices comprising the
kinetic energy (T) and nuclear attraction terms
for the two nuclei A and B (Va and Vs). The
elements of these three matrices are obtained
by evaluating the following integrals:

F2lsb asiae |Sa5 ol o (09 SV ol o o)
S aSGLadd) @ shal) Oluas|
IS aly by ¢ S alaal) Bsaal) ole s O
co ol OF Jlm @ DalT Al Al 2k,
ow Shlad s olus ot rol 1Y 8 ded SR Ladl
:@S@M’ \.szﬂ\J}\JR;ﬂmiAMISB)lSA
0.392)
1.0
BW g semaS el Sl oluasl S
Oldlezey (T) a5 4 Bla)l o (2x2) ©lbsias
Sl (VB 3 Va) B 5 A 3yl e Y (5950 O
A el

T, =fdy1¢m(—;vg )qby(ij

Voo = | (D (= 22) (D)

VB,.,u.z:

The matrices are:

- [ o, (- -2 0.0

iR

fP b saall

= (1.412 0.081) _(—3.344 —D.?SB) v :(—0.525 —IZI.EIIIB)
0.081 0760/ 4 —0.758 —1.026/ F —0.308 —1.227
H core is the sum of these three: M) sl oo > Hoo
corg — _2.45? _0.985
f (—0.955 —1.493

As far as the two-electron integrals are
concerned, with two basis functions there are a
total of 16 possible two-electron integrals. There
are however only six unique two-electron
integrals, as the indices can be permuted as

[46]
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follows:

(i)(1s, 1s4|1s,1s,) = 1.056

(ii) (15415, [1s,15;) =(1s,1s,|15515,)=(15,155115,15,) = (1s51s,|1s,15,) = 0,303
(iii) (1s,1s55|15,1s;) = (15,155 |1s51s,) = (1s51s,11s,1s,) = (1spls,|1s,1s,) =0.112
(iv) (15415, 1551s;) =(1s5 155 |15,15,)=0.496

(v) (15415515515, )=(15515, 1515, ) = (15515, |1s,15.) = ( 1sp1s5|15.15,)=0.244
(vi) (1sglsglisglsg) = 0.775

To reiterate, these integrals are calculated as AL el pe M o (AT
follows: ’ .

eolio) = [ dv,dv,8, (18,0 -=2,@90,

£

Having calculated the integrals, we are now 3 sl Sl e OV 2 J,,L(:j\ Ol dw
ready to start the SCF calculation. To formulate
the Fock matrix it is necessary to have an initial
guess of the density matrix, P. The simplest o) P 4.2l 610 J B e Hls 0, OF (59 )
approach is to use the null matrix in which all

oo w6l B waios Blo > e SCFl Ol

elements are zero. In this initial step the Fock &= S ot a8 8 5hal) plasinl o b L)

matrix F is therefore equal to H <. A b dbgian S olus R.»JJ‘Y\ skl oda 3 . do s sls

The Fock matrix must be transformed to F’ by Heere ¢ F

pre- and post- multiplying by SV
— ol any 18 e BT S5 w ke b s

:S12
13 —1.065 -0.217
s =
(—0.21? 1.06e5 )
F’ for the first iteration is thus: 3 J_i) J jy )
r _ —2.401 —0.249
F (—0.249 —1.353]
Diagonalisation of F' gives its eigenvalues and DM Al 2SI Al ey B aeids O
eigenvectors, which are: ) )
_ {—2.458 0.0 r_ (0975 —0.220
E= ( 0.0 —1.292) ¢ (0.220 0.975 )
The coefficients C are obtained from C=512 C’ D C=S12C M= 0 C elal) o J sead Ry
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and are thus:

c= (0.991 —0.446)

0.022 1.087

To formulate P the density matrix P we need to a2l ol Jull s 3t 2 (P U X P
identify the occupied orbital(s). With a two- . .

electron system both electrons occupy the & MY i SIY ST JoF 0 ST gl e
orbital with the lowest energy. At this stage the L kel oY) Bl Al Lol (3. 3oV WUkl
lowest-energy orbital is: )

Y = 0.991 1s, + 0.022 1s;

Ehle orbital 1is Comp;sedbof the sforbi’cal1 on the A ole Jb- (3 Glae S e bl B g 3l s,

elium nucleus; in the absence of any electron- )

electron repulsion the electrons tend to AL el L Uy S 0y S0 S

congregate near the nucleus with the larger wy ailell © 4inll BUS o 2ms ST o 3l e

charge. The density matrix corresponding to .
.. . . . :@U)Y\%’r‘}l‘

this initial wavefunction is: -

p— (1.964 0.(!44)

0.044 0.001

The new Fock matrix is formed using P O;;ﬂl—gﬁﬁ\ J,\g;j P sl sugd) 24 5 gian s
and the two-electron integrals together
with Heore,

The complete Fock matrix is: P ARSI 55 A ghae O

. Hcore C"

—1.406 —0.690
FZ(—u.ﬁau —0.615)

The energy that corresponds to this Fock matrix 3 | ¢ 5 s -3.870 £ & yiwac. las o Bl ¢yl
is -3.870 Hartree. In the next iteration, the S i )
AW S e s el b il (LU 1S

various matrices are as follows:

—1.305 -—-0.347

Vo _ [—1.427 00
F _(—0.34? —0.445) _( )

0.0 —3.25

cl = 0.943 —D.33-4) C:(D.‘}El —[I.Sﬁl])

0334 0943 0.150 1.076

1.735 0.280 —1.436 —0.738
P = F =
(G.EEG 0.045 (—ﬂ.?EE —I:I.E':-’-l--’-l-]

Energy =-3.909 Hartree
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The calculation proceeds as illustrated in the
table below, which shows the variation in the
coefficients of the atomic orbitals in the lowest-
energy wavefunction and the energy for the
first four SCF The energy is
converged to six decimal places after six

iterations.

iterations and the charge density matrix after
nine iterations.

The final wavefunction still contains a large
proportion of the 1s orbital on the helium atom,
but less than was obtained without the two-
electron integrals.

o) J gl 3 ond) IS g gl bl azs
L sl 3 a0 o) e @oglis o s
Bl O, LSCF 1SS am )T J oY aslally ae L) all
Ay 8 siall BUS i g ST B A By i ST
S s

o iS58 JF Y B A A o)
dyadl ¢ @l o BT Sy ot 3,40 180l
0 SV iS5 0 g e

Iteration C(1sa) C(1ss) Energy
1 0.991 0.022 -3.870
2 0.931 0.150 -3.909
3 0.915 0.181 -3.911
4 0.912 0.187 -3.911

Table: wvariation in basis set coefficients and
electronic energy for the HeH+ molecule.
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3. Empirical Force Field Models: Molecular Mechanics/

gty o) LGISaal) 5 6B i sy sl 7 sl

3.1 Introduction/doséa//

Many of problems that we would like to
tackle
unfortunately too large to be considered
by quantum mechanics. Quantum
mechanical deal with the
electrons in a system, so that even if
some of electrons are ignored (as in the
semi-empirical schemes) a large number
of particles must still be considered, and
the consultations are time-consuming.
Force field methods (also known as
mechanics)  ignore the
electronic motions and calculate the
energy of a system as function of the
nuclear
mechanics is thus invariably used to
perform

in molecular modeling are

methods

molecular

positions  only. Molecular

calculations on  systems
containing significant numbers of atoms.
In some cases force fields can provide
answers that are as accurate as even the
highest-level = quantum

calculations, in a fraction of the computer

mechanical

time. However, molecular mechanics
cannot of course provide properties that
depend upon the electronic distribution
in a molecule.

That molecular mechanics works at all is

due to the validity of several assumptions.

The the
Oppenheimer approximation, without
which it
contemplate writing the energy as a
function of the nuclear coordinates et all.
Molecular mechanics is based upon a
rather simple model of the interactions
within a system with contributions from

first of these in born-

would be impossible to

dadl 3 lekles 55 ) S e
EECR VAR S W TRJNE PET
Sy S e BSOS G IL ey (SIS
T I L Lt
e i ok @ L) ol S
Clep ol e sS sds ekl Loy
" Ol Gl lsb By B riay | sladl
Joles b SO ul el oy Al
e ey alal) Bl Ol g 355 SN L)
i 1 SO L pdois L Ladh &y g o) sl )
et sl e ) Slhed) A
Jyit So oYW ma 3ol e 858 slasd
Slld) o o B 81 Olls] eds b3
e 3 SO Gt el e 2SS
SO S Y mdallse el a5 seneSdl 23
e Jo et o ailad) g O ag
A
s OV e (3 e o) A CEHUO
Lol Y ods J gy bl Bl sus dmas 1) &3

£S5 ¢

&)y < "born-Oppenheimer " &5 3 »
Blal s 3 Sl Jowdl o 0K Wy
gt U5 5 Ry SLIY e 3iby Lo s
o VN b 238 e dn A SO s
Oldaall o DS 22V me plladl Jels o el

[50]



processes such as the stretching of bonds,
the opening and closing of angles and the
rotations about single bonds. Even when
simple functions (e.g. Hooke’s law) are
used to describe these contributions the
force field can perform quite acceptably.
Transferability is a key attribute of a
force field, for
parameters developed and tested on a
relatively small number of cases to be
applied to a much wider range of
problems. Moreover, parameters
developed from data on small molecules
can be wused to study much larger
molecules such as polymers.

it enables a set of

3.1.1

Many of the molecular modeling force
tields in use today for molecular systems
can be interpreted in terms of a relatively
simple four component picture of the
intra- and inter- molecular forces within
the system. Energetic penalties
associated with the deviation of bonds

are

and angles away from their ‘reference’ or
‘equilibrium” values, there is a function
that describes how the energy changes as
bonds are rotated, and finally the force
field contains terms that describe the
interaction between non-bonded parts of
the system. More sophisticated force fields
may have additional terms, but they
invariably contain these four components.
An attractive feature of this representation
is that the various terms can be ascribed to
changes in specific internal coordinates
such as bond lengths, angles, and the
rotation of bonds or movements of atoms
relative to each other. This makes it easier
to understand how changes in the force
field parameters affect its performance,
that can be used to model single molecules

5 gl By my ey ) e ) e
Lile p=9 daly )l u) J ol wlles
o) (dpn 058 Jao) Bany by plisinl oy
@35 o S sl Jis @ ol sda
ol sa Jdl g sV ahB LK J i Sy
Jolsall o a et SE WY (A Jad )
OV o L phes 348 e b jlastly Ls y ohos
S 1S el Bl e il o
o Sady e pldsaal (Kol e 5 dle
ST ol bl pe ol e ol

s oo

A Simple Molecular Mechanics Force Field/ M‘ 3,3.');3\ LSl @‘-‘:‘-‘5‘ 5 sal)

psind g b dxdadl) 2l S e )
FYRIE R R R RN JUR
Jotts talladl ot 1s 858 dayl e Al L Bz

Lol ) G Led
Waly Loty 3 3121 w2 Blal) O saall Lo 5
b S s WGl e 3 e i)
S S LS @Blall ol s aaS Msj‘
& olbdlaall 33 Jim g2 1l g 0 Ll )
Al e abyl e i Y o Jelad) (s
Ly sk SN B 0K o Ke
N S e )
gl s Jiedl A p Rege Bpe Ll
Wld Y1 (3 soas lstls ol pad il Slollanzs
DA T Ll N g5y g L N b
Sl e Jat e andl e By o,
A Jim e @ ol S8 ST et O
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9r assemblies of atoms and/or molecules __ _; 3 Ll & Qsj\ h) LN S SE

1S:

(4.1)

@o\.b“f-

kj ki Un
E(Tw)zzbonds? (EL — Ei,0)2+2aﬂgle¢: ? (er, — mi,ﬂjz'l'z'torsiaﬂs ?(14_

cos(nw — y))+ i, Z?;H 1(%eij [(ELL) N (ﬂ)l

?"”'

£ (™ Denotes the potential energy, which is a
function of the positions (R) of N particles
(usually atoms). The various contributions are
schematically represented in figure 4.1. The
tirst term in Equation (4.1) models the
interaction between pairs of bonded atoms,
modeled here by a harmonic potential that
gives the increase in energy as the bond
length [; deviates from the reference valuel,,.
The second term is a summation over all
valence angles in the molecule, again modeled
using a harmonic potential ( a valence angle is
the angle formed between three atoms A-B-C
in which A and C are both bonded to B). The
third term in Equation (4.1) is a torsional
potential that models how the energy changes
as a bond rotates. The fourth contribution is
the non-bonded term. This
between all pairs of atoms (i and j) that are in

is calculated

different molecules or that are in the same
molecule but separated by at least three
bonds(i.e. have a 1, n relationship where n =
4). In a simple force field the non-bonded
term is usually modeled using a Coulomb
potential term for electrostatic interactions
and a lennard-Jones potential for van der

Waals interactions.

[52]
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Fig 4.1: Schematic representation of the b2 ) 2 ) ol adosdl L)

four key contributions to a molecular o i i S 3
mechanics force field: bond stretching, s gl ¢t iy s A G 88
angle bending and torsional terms and e ) e ooelidly o) VI

non-bonded interactions.

Fig. 4.2: A typical force field model for .. (s bl s aian 0Ly, 530 o i
propane contains ten bond-stretching L =
terms, eighteen angle-bending terms, N e B e B Ll

eighteen torsional terms and 27 non- 27 , . e ae U @l
bonded interactions.
s U e edlelad

We shall discuss the nature of these | il a5 ailll GLALL oda Gab gl

different contributions in more detail in 4.10-4 o
Sections 4.3-4.10, but here we consider G B Lle L L"QJ «4.10-4.3 S M
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how the simple force field of equation
(4.1) would be used to calculate the
energy of a conformation of propane
(Figure 4.2). Propane has ten bonds:
two C-C bonds and eight C-H bonds.
The C-C bonds are symmetrically
equivalent but the C-H bonds fall into
two classes, one group corresponding
to the two hydrogens bonded to the
central methylene (CH,) carbon and one
group corresponding to the six
hydrogens bonded the methyl
carbons. In some sophisticated force
tields different parameters_would be
used for these two different types of C-
H bond, but in most force fields the
same bonding parameters (i.e. k;and
I;0) would be used for each of the eight

to

C-H bonds. This is an example of the
way in which the same parameters can
be used for a wide variety of molecules.
There are 18 different valence angles in
propane, comprising one C-C-C angle,
ten C-C-H angles and seven H-C-H
angles. Note that all angles are included
in the force field model even though
some of them may not be independent
of the others. There are 18 torsional
terms: twelve H-C-C-H torsions and six
H-C-C-C torsions. Each of these is
modeled with a cosine series expansion
that has minima at the trans and gauche
conformations. Finally, there are 27
calculate,
comprising 21 H-H interactions and six
H-C The
contribution would be calculated using
coulomb’s law from partial atomic
charges associated with each atom and
the van der Waals contribution as a
Lennard-Jones potential with
appropriate =; and g;; parameters. A

non-bonded terms to

interactions. electrostatic

sizeable number of terms are thus

A1) ol e alaec) 25000 558 plaszal 348
(4.2 iy oty WSas g sl oLt
Ly, iy CC ool 1 danly, 5 e 4 0Ly
Ly ) Sy tiwtzs 4 CC Lty ) .CH
o oY dilen sz o () denie GH
central 50 cdite JU cakes U e g,
sty 0n S () CH,methylene) (
Jel 05 S a0 G g pes B yllate S
oS 5yskill 33l oV ey 3 (methyl)
o4 parameters_would sue s
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included in the force field model, even
for a molecule as simple as propane.
Even so, the number of terms (73) is
many fewer of
integrals that would be involved in an
ab
mechanical calculation.

than the number

equivalent initio quantum

o3 Oyl oo oy e(s A1 OIS S 5 5l
BT sae o8 (73) wllleall sas 06 ¢ @l o

lﬁwwgﬂ)m&\o%@\zwwﬁﬁ,
.ab SIS ole ) sl

3.2 Some general Features of Molecular Mechanics Force

Fields / 4SulSioll duiy i/l 599 Jai>] dolell il uall b2

To define a force field one must specify
not only the functional from but also the
parameters (i.e. the various constants
such as k;V;, and g;; in Equation (4.1));
two force fields may use an identical
functional form yet have very different
parameters. Moreover, force fields with
the same functional form but different
parameters, and force field should be
considered as a single entity; it is not
strictly correct to divide the energy into
its individual components, let alone to
take some of the parameters from one
tield them with
parameters from another force field.
Nevertheless, some of the terms in a
force field are sufficiently independent
of the others (particularly the bond and
angle terms) to make this an acceptable
approximation in certain cases.

The force fields used
modeling are primarily designed to
reproduce structural proprieties but they
can also be wused to predict other
proprieties, such as molecular spectra.
However,
tields can rarely predict spectra with
great accuracy (although the more recent
molecular mechanics force fields are
much better in this regard). A force field
is generally designed to predict certain

force and mix

in molecular

molecular mechanics force
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proprieties and will be parameterized
accordingly. While it is useful to try to
predict other quantities which have not
been included in the parameterization
process it is not necessarily a failing if a
force field is unable to do so.

Transferability of the functional form
and parameters is an important feature
of a force field. Transferability means
that the same set of parameters can be
used to model a series of related
molecules, rather than having to define a
parameters each
individual molecule. For example, we
would expect to be able to use the same
set of parameters for all n-alkanes.
Transferability is clearly important if we

new set of for

want to use the force field to make
predictions. Only
systems, where particularly accurate
work is required may it be desirable to
develop that
molecule.

for some small

a model specific to
One important point that we should bear
in mind as we undertake a deeper
analysis of molecular mechanics is that
force fields are empirical; there is no
‘correct’ form for a force field. Of course,
if one functional form is shown to
perform better than another it is likely
that form will be favored. Most of the
force fields in common use do have a
very similar form, and it is tempting to
assume that this must therefore be the
optimal functional form. Certainly such
models tend to conform to a useful
picture of the interactions present in a
system, but is should always be borne in
mind that there may be better forms,
particularly when developing a force
tield for new classes of molecule. The
functional forms employed in molecular

mechanics force fields are often a
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compromise between accuracy and
computational the
accurate functional form may often be
unsatisfactory for efficient computation.
As the performance of computers

increases so it becomes possible to

efficiency; most

incorporate more sophisticated models.
An additional consideration is that in
order to use techniques such as energy
minimization and molecular dynamics,
it is usually desirable to be able to
calculate the first and second derivatives
of the energy with respect to the atomic
coordinates. A concept that is common
to most force fields is that of an atom
type. When preparing the input for a
quantum mechanics calculation it is
usually necessary to specify the atomic
numbers of the nuclei present, together
with the geometry of the system and the
overall charge and spin multiplicity. For
a force field the overall charge and spin
multiplicity are not explicitly required,
but it is usually necessary to assign an
atom type to each atom in the system.
The atom type is more than just the
atomic number of an atom; it usually
contains its
hybridization state and sometimes the
local environment. For example, it is
necessary force fields to
distinguish  between  sp3-hybridized
carbon atoms (which adopt a tetrahedral
sp*-hybridised
(which are trigonal) and sp-hybridised
carbons (which are linear). Each force
field parameter is expressed in terms of
these atom types, so that the reference
angle 8, for a tetrahedral carbon atom
would be near 109.5° and that for a
trigonal carbon would be near120°. The

information about
in most

geometry), carbons

atom types in some force fields reflect
the neighbouring environment as well as
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the hybridisation and can be quite
extensive for some atoms. For example,
the MM2, MM3 and MM4 force fields of
Allinger and co-workers that are widely
used for calculations ‘small’
molecules [Allinger 1977, Allinger et al.
1989, 1990a, b, 1996a, b; Lii and allinger
1989;Nevins et al. 19964, b, c] distinguish
the following types of carbon atom: sp?,
sp*®, sp, carbonyl, cyclopropane, redical,
cyclopropene and carbonium ion. In the
AMBER force field of Kollman and co-
workers [Weiner et al. 1984; Cornell et al.
1995] the carbon atom at the junction
between a six- and a five-membered ring
(e.g. in the amino acid tryptophan) is

assigned an atom type that is different

on

from the carbon atom in an isolated five-
membered ring such as histidine, which
in turn is different from the atom type of
a carbon atom in a benzene ring. Indeed,
the ANBER force field uses different
atom types for a histidine amino acid
depending upon its protonation state
(Figure 4.3). Other, more general, force
tields would assign these atoms to the
same generic ‘sp” carbon’ atom type. It is
often found that force fields which are
designed for modeling specific classes of
molecule (such as proteins and nucleic
acids, in the case of AMBER) use more
specific atom types than force fields
designed for general-purpose use.
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1977, Allinger et al. 1989, 1990a, b, 19964, b;
Lii and allinger 1989;Nevins et al. 1996a, b,
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Fig. 4.3: AMBER atom types for the amino

acids  histidine,  tryptophan  and
phenylalanine. There are three possible

protonation states of histidine.

We now discuss in some detail the
individual contributions to a molecular
mechanics force field, giving a selection
of the various functional forms that in
common use. We shall then consider the
important task of parameterisation, in
which values for the
constants are derived. Our discussion
will be illuminated by examples chosen
from fields in
widespread use and the
MM2/MM3/MM4 and AMBER force
tields in particular.

many force

contemporary force
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3.3 . Bond Stretching/ /i siaj

The potential energy curve for a typical
bond has the form shown in figure 4.4. Of
the many functional forms used to model
this curve, that suggested by Morse is
particularly useful. The Morse potential
has the form:
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4. Monte Carlo Simulation Methods / (siige 3o cullul

s

4.1 Introduction/dosia/

The Monte Carlo simulation method
occupies a special place in the history of
modeling, as it the
technique wused to perform the first
computer simulation of a molecular
system. A Monte Carlo
generates configurations of a system by
making random changes to the positions
of the species present, together with their
orientations and conformations where
appropriate. Many computer algorithms
are said to use a ‘Monte Carlo” method,

molecular was

simulation

meaning that some kind of random
sampling is employed.
simulations ‘Monte Carlo” is
always used to refer to methods that use a
technique called importance sampling.
Importance sampling methods are able to
generate states of low energy, as this
properties to be
accurately. We can calculate the potential
energy of each configuration of the
system, together with the values of other

In molecular
almost

enables calculated

properties, from the positions of the
atoms. The Monte Carlo method thus
samples from 3N-dimensional space of
the positions of the particles. There is no
momentum contribution in a Monte Carlo
simulation, in contrast to a molecular
dynamics simulation. How then can
Monte Carlo simulation be wused to

calculate  thermodynamic  quantities,
given that phase space is 6N-
dimensional?

To resolve this difficulty, let identical
particles of mass m can be written:
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The factor N! Disappears when the g et AN VJ Lze N1 Lolell oty o i
particles are no longer . . S w_}" 5
indistinguishable. H(P¥,+™  Is  the flall s o Gl gl H(PT, 7. s
Hamiltonian that corresponds to the 3 3N s 5 a1 BN s 0 el :_u s
energy of the system? The value of the

Hamiltonian depends upon the 3N fw\ 3 e
positions and 3N momenta of the

particles in the system

The canonical function of an ideal gas: fod UGl a8 el aals )

vy (znkBTm)E"”’ :
Q;".'_Vl'- - NI h:

This is often written in terms of the de 4, _J plbas OVl e S 3 SO 1S

Broglie thermal wavelength, A: ‘Broglie thermal wavelength

Vﬁ."
QJ".'-VI- = M!ﬂﬂﬁj

e o
Where A= /h?/2rk;Tm

Any deviations from ideal gas Jls ool 4 LW 8l 4 G
behavior are due to interactions within , . o .
the system as a consequence of these b ode Ll L oMlelid) odd Bmns” plld)
interactions. So we have this partition  apncid

function :
ideal BXCHES
Qa"."'? T= @a"."'?l' + Qa"." VT

excess _ 1 N V':?"N::'
Where Q= = Fj dr¥exp [— p— ]

4.2 Calculating Properties by Integration/ bl ulus pailas

To calculate the partition function fora ST ssaaly Noly3 o pllad b s ld
system of N atoms using this simple
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Monte Carlo integration method g ju et bt o liny 1S o5 ol L) J»Li;ﬁ\
would involve the following steps: )
1. Obtain a configuration of the

system by randomly generating s, b = sl 45 Sy s Jde sadi-1

3N Cartesian coordinates, )
- b - - . ;‘ S .
which are assigned to the & a5 Sl -y e SN St 5

particles. RCSPRTY Lgens o

2. Calculate the potential energy . . B 5
of the configuration, V(rN). AYCORTIESH gl et Bl ol

3. From the potential energy, yw el asla)) o Obds il ol -3
calculate the Boltzmann factor,

exp (- V(IrYKsT). (V(r™M)KEeT)

4. Add the Boltzmann factor to the ol 5l vf‘fl‘ 84‘ by el wBlol—4
accumulated sum of Boltzmann

factors and the potential energy 8252y (ST AN fer ) S Bl 22lsy Ol
contribution to its accumulated J j‘y\ 5 gl | A
sum and return to stepl. L < Jo N 5
Ao w OB IS e Al dAe -
5. After a number, N trial of : = e o ‘ '
iterations, the mean value of the Pl Wl 058G 2alSY) 3sL))
potential energy would be
calculating using;:

vty = Bt T expl V() T
T exp[—V, () /ksT]

Unfortunately, this is not a feasible sailadl Old Lhee bud o s (b o)
approach for calculating

thermodynamic properties due to the ** B S S or S 248 2y o By H
large number of configurations that JIs e “U ol Hed Ll 6 el Qo sl e
have extremely small Boltzmann
factors caused by high-energy overlaps
between the particles.
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Fig 8.1: Evaluation of a one-dimensional integral using the
trapezium rule. The area under the curve is approximated as the
sum of the trapezium,

Fig 8.2:
Simple Monte Carlo Integration. (a) The 4 alllali aakad) (@) . J 187 o5sk L) jucel
shaded area under the irregular curve )
equals the ratio of the number of random
points under the curve to the total number L) suc £ 2 o ey P sl
of points, multiplied by the area of the b\ o .
bounding area. (b) An estimate of 7 can be Jpadd S (0 8l 2l 2aaie 3 g an
obtained by generating random numbers  |-|5 il 5 o Sy sk o s e
within the square. m. Then equals the ) ) .
number of points within the circle divided J2 o G B s by BT
by the total number of points within the | GJ’U Jeels Lladl sus ¢ 2 5 L e 5 511
square, multiplied by 4.
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4.3 Some Theoretical Background to the Metropolis Method:
olass sio @bl 4 bill 4l ey

The Metropolis algorithm generates a
Markov chain of states. A Markov
chain satisfies the following two
conditions:
1. The outcome of each trial
depends upon the

preceding trial and not upon

only

any previous trials.

2. Each trial belongs to a finite set
of possible outcomes.
Condition (1) provides a clear
distinction between the molecular

dynamics and Monte Carlo methods,
for in a molecular dynamics simulation
all of the states are connected in time.
Suppose the system is in state m. we
denote the probability of moving to
state n as I, the various can be
considered to constitute an NxN matrix
[I(the transition matrix),where N is the
number of possible states. Each row of
the transition matrix sums to 1 (i.e. the
sum of the probabilities ,,, for a given
m equals 1).The probability that the
system is in a particular state is
represented by a probability vector p:
P=(01, Dy, e ves Pps Pras s Poy)

Thus p; is the probability that the
system the
probability that the system is in state m.
If p(1) represents the initial (randomly
chosen)  configuration, then the
probability of the second state is given
by: PR)=p(D)IT

The probability of the third state is:

PPy m=p(1l)mtm

is in state 1 and p,,
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The equilibrium distribution of the
system can be determinate by
considering the result of applying the
transition matrix an infinite number of
times. This limiting distribution of the
Markov chain is given by

Pitimit) =Iimﬂ_,m’pm:r:“

One feature of the limiting distribution
is that it is independent of the initial
guess p(1).The limiting or equilibrium
distribution for a molecular or atomic
system is one in which the probabilities
of each state are proportional to the
Boltzmann factor. We can illustrate the
use of the probability distribution and
the transition matrix by considering a
two-level system in which the energy
levels are such that the ratio of the
Boltzmann factors is 2:1.

The expected limiting distribution
matrix enables the limiting distribution
to be achieved:

H=(ﬂi5 065)

We can illustrate the wuse of this
transition matrix as follows. Suppose
the initial probability vector is (1,0) and
so the system starts with a 100%
probability of being in state 1 and no
probability of being in state 2.Then the
second state is given by:

P=10(% %) =(0s 09

The third p(3)=(0.75 ,
0.75).Successive applications of the
transition matrix give the limiting
distribution (2/3,1/3).

When the limiting distribution is
reached then applications of the
transition matrix must return the same
distribution back:

Piimit™Plimic T

Thus, if an ensemble can be prepared

state is
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that is at equilibrium, then one
Metropolis Monte Carlo step should
return an ensemble that is still at
equilibrium. A consequence of this is
that the elements of the probability
vector for the limiting distribution must
satisfy:

Zin P Tonn =P

This can be seen to hold for our simple

two-level example:
e (M e 1

We will henceforth use the symbol (p)
to refer to the limiting distribution.
Closely related to the transition matrix
is the stochastic matrix, Whose elements
are labelede,,,. This matrix gives the
probability of choosing the two states m
and n between which the move is to be
It the
underlying matrix of the Markov chain.
If the probability of accepting a trial
move from m to n is p,, then the
probability of making a transition from
m to n(m,,,) is given by multiplying the
probability of choosing states m and
n(e,,,) by the probability of accepting
the trial move (pp,,):

made. is often known as

ﬂmn=amnpmn
It is often assumed that the stochastic
matrix « (i.e. the

probability of choosing the states m and

is symmetrical

n is the same whether the move is
made from m to n or from n to m). If the
probability of sate n is greater than that
of state m in the limiting distribution
(i.e. if the Boltzmann factor of n is
greater than that of m because the
energy of n is lower than the energy of
m) then in the Metropolis recipe, the
transition matrix element for
progressing from m to n equals the
probability of selecting the two states in

the first place (i.e.®,, =@, (Pn = Pm)).
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If the Boltzmann weight of the state n is
less than that of then
probability of permitting the transition
is given by multiplying the stochastic
matrix element «,,,, by the ratio of the
probabilities of the state n to the
previous state m.

state m,

This can be written:

H‘H'HI- =aﬂ1ﬂ (p'ﬂ- E pﬂl)

Ty "y (P [Pm)  (Pn < D)

These two conditions apply if the initial
and final states m and n are different. If
m and n are the same state, then the
transition matrix element is calculated
from the fact that the rows of the
stochastic matrix sum to 1:

ﬂmu=1'zm =0 Tmn
Let us now

to reconcile the

try
metropolis algorithm as outlined in
section with the more formal approach
that we have just developed. We recall
that in the Metropolis method a new
configuration n is accepted if its energy
is lower than the original state m.

If the energy is higher, however, then
we would like to choose the move with
a probability according to Equation
(8.24). This is achieved by comparing
the Boltzmann factor
exp(-AE(r™) [k T)(AE (™)
) ))

To a random number between 0 and 1.
If the Boltzmann factor is greater than

[ f(rﬁj o

the random number then the new state
is accepted. If it is smaller than the new
state (m) then the new state is rejected.
Thus if the energy of the new state (n) is
very close to 1, and so the move is likely
to be accepted. If the energy deference
will be very close to 1, and so the move
is likely to be accepted. If the energy
difference is very large, however, then
the Boltzmann factor will be close to

aiz (Metropolisy edss e dioy 3 o
O et Nl m e Tmn Qs @il aie
IV O (3 bew Ul et Jlazs) (5 gl

D55 013 (Wnn (pn = pm) =Hmn"*si)
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zero and the move is unlikely to be
accepted.

The metropolis method is derived by
imposing the condition of microscopic
reversibility:  at the
transition between two states occurs at
the same rate. The rate of transition
from a state m to state n equals the
product of the population (p,,) and the
appropriate element of the transition
matrix (7,,,). Thus, at equilibrium we

equilibrium

can write:

TI?‘J"I.?‘! pm =N N p?‘!

The Ratio of the transition matrix
elements thus equals the ratio of the
Boltzmann factors of the two states:

O 5] Wshe o Skt AU I3 Jlpaall 45
AU 2y x5 ¢ () sad) W e el
3,1 o Mo 2y 3 (1) 30l A @l & 50,k
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N yiio Jusy) 0
24 = e metropolis ol slasl
JEsY @ 0l 1 g oY (B ALt b ok
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4.4 Implementation of the Metropolis Monte Carlo
Method/ #1148 (iise (sl s g o cisdasf  Gaudai

A Monte Carlo Program to simulation an
atomic fluid is quite simple to construct.
At each iteration of the simulation a new
configuration is generated. This is usually
done by making a random change to the
Cartesian coordinates of a single
randomly chosen particle using a random
number generator. If the random number
generator produces numbers (£) in the
range 0 tol, moves in both positive and
negative directions are possible if the

[68]
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coordinates are changed as follows:
Koew=Xoigt2 5 — 1)8

Tmﬂx
}Tnaw=}rplri+(2 E - 1) Srmrzx
me=me+(2 <— 1)5

Tmr:.‘r
A unique random number is generated

for each of the three directions X, Y and

Z.0%,,, is the maximum possible
displacement in any direction. The energy
of the new configuration is then

calculated; This need not require a
complete recalculation of the energy of
the entire consequence, the neighbor list
used by a Monte Carlo simulation must
contain all the neighbors of each atom,
because it is necessary to identify all the
atoms which interact with the moving
atom (recall that in molecular dynamics
the neighbor list for each atom contains
only neighbors with a higher index).
Proper
periodic boundary conditions and the
minimum convention
generating configurations
calculating is higher in energy than its
predecessor then the Boltzmann factor,
exp(-A&(rV)/kgT), is compared to a
random number between 0 and 1. If the
Boltzmann factor is greater than the
random then the
configuration is accepted; If not then it is
rejected and the initial configuration is
the This
acceptance condition can be written in the
following concise fashion:

Rand(0,1) < exp(-A&(r™)/kgT)

account should be taken of

image when

new and

number new

retained for next move.

The size of the move at each iteration is

governed by the maximum
displacement, 47, .

This is an adjustable parameter whose
value is wusually chosen so that

approximately 50% of the trial moves are
accepted. If the maximum displacement is

[69]
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too small then many moves will be
accepted but the states will be very
similar and the phase space will only be
explored very slowly. Too large a value
81, and many trial moves will be
rejected because they lead to unfavorable
overlaps. The maximum displacement
can be adjusted automatically while the
program is running to achieve the desired
acceptance ratio by keeping a running
score of the proportion of moves that are
accepted. Every so often the maximum
displacement is then scaled by a few
percent: if too many moves have been
accepted then the
displacement is increased; too few and
6
As an alternative to the random selection
of particles it is possible to move the
atoms sequentially (this requires one
the
generator per iteration). Alternatively,
several atoms can be moved at once; If an
appropriate value for the maximum
displacement is chosen then this may
enable phase space to be covered more
efficiently.

As
simulation, a Monte Carlo simulation
comprises an  equilibration  phase
followed by a production phase. During
equilibration, appropriate
thermodynamic and structural quantities
the total energy(and the
partitioning of the energy among the
components), square
displacement and order parameters (as
appropriate) are monitored until they
achieve stable values, whereupon the
production phase can commence. In a
Monte Carlo simulation from the
canonical ensemble, the volume will
change and should therefore also be

maximum

is reduced.

fewer «call to random number

with  a molecular dynamics

such as

various mean

[70]
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monitored to ensure that a stable system .. i 4 R V"'"L\ S e el

density is achieved.

441

The random number generator at the
heart of every Monte Carlo simulation
program accessed a very large number of
times, to generate
configuration but also to decide whether
a given move should be accepted or not.
Random number generators are also
used in other modeling applications; for
example,

not only new

in a molecular dynamics

simulation the initial wvelocities are

normally assigned wusing a random
number  generator. The  number
produced by a random number

generator are not, in fact, truly random;
the same sequence of numbers should
always be generated when the program
in run with the same initial conditions (if
not, then a serious error in the hardware
or software must be suspected!). The
sequences of numbers are thus often
referred to as “pseudo-random’ numbers
are they possess the statistical proprieties
of ‘true’ sequences of random numbers.
Most random number generators are
designed to generate different sequences
One
simple strategy is to use the time and/or

of numbers if a different seeds.

date as the seed; this is information that
can often be obtained automatically by
the program the computer’s
operating system.

The numbers produced by a random
number generator should satisfy certain
statistical proprieties. This requirement
usually supersedes the need for a

from

computationally very fast algorithm as
other parts of a Monte Carlo simulation
take much more time (such as calculating

tlad) )R] BLS 544 Olaia) bids ) L

Random Number Generators:/ 214534 4y g <l galidi) gnl)

u«,_J ‘)‘SJL{ L:,;.’j.ﬂ e o CA\.’J.’ J.( g,,l.'é Jl
13 LA Ll Sy k) S )l s
L.,aj (MJY jT Lme Sjb- Jj.j W ol
oliks (3 adlsiall slaed a5 ¢S il
S [ o S L oot
i ol e a0 N ol
ij e Cwi\ sdall a5 sl sl W ga AREME
Lo Ui Slade W0 3 e 31 saall a6 Y
O Ledls gy &I W) Oyl s (3 ol ) ks
E s Lol AN ks s W
U L (el ) ol 85em 8 3 gl U olzsy)
ol i e as” GG ad A6 Y1 ks
oW M aslasYl aslad) 0 Sk
SN IRCHRVIVIPN-IVRPOINS JUC TS S PR S I TEPN
TR TN IR FE-J WA 'OPU P I X PV
(& Aoy 341 g Gl 2l Adli (Js2¥y o,
GMJ cdwy\wéjw\ ji/jd}s‘ r\.)oﬁ.wb
WL Lde Jpad) (S b 1S ol bl o

S g S et ol i S e
i sl 2B Y1 Sl g Lz Bl 2B, s
J.é osle LJ,:J\ e Ldies 5le>| Al EY
ety o Amy o Ba) gl gl U] B 2
o STy G )5 i s e s ]
Aty bt (@lall 3 ) Oleo ooy 2K U

[71]



the change in energy). One useful and
simple test of random number generator
is to break sequence of random numbers
into blocks of k numbers, which are
to be
dimensional space. A good random

taken coordinates in a k-

number should give a random
distribution of points. Many of the
common generators do not satisfy this
test because the points lie on a plane or
because they show clear correlations
[Sharp and bays 1992].

The linear congruential method is widely
used for generating random numbers.
Each number the sequence
generated by taking the
number, multiplying by a constant (the
multiplier, a), adding s second constant
(the increment, b), and taking the
remainders when dividing by third
constant (the modulus, m). The first
value is the seed, supplied by the user.
Thus

¢[1]=seed

&[i]=MOD/{(£[i-1] xa+b),m}

in is

previous

The MOD the
remainder when the first argument is
divided by the second (for example,
MOD (14.5) equals 4). If the constants are
chosen carefully, the linear congruential
method generates all possible integers
between 0 and m-1, and the period (i.e.
the number of
sequence starts to repeat itself) will be
equal to the modulus.

function returns

iterations before the

Fig 8.3:

Two 'random' distributions obtained by
plotting pairs of values from a linear
congruential random generator. The
distribution (a) was obtained using

s oS ) gzl eVl Wige o dainy y Aok
dows o kAT e T AL atsnall SN
0 OF ey Sl kO sladl @ L
Seie miy damoa S Y ke sae s
Ma B Y 5l ol e gl B
5 WYl mlas S 855 gn Bl O jLaxY)
[Sharp and bays 1992]. imsly ol )
< skl L P E SELY
sl oo Ladlsie W61 W congruential

linear

¢ sle sae B Pl e audl @ osae I8
ol Bl ¢ (Aol fule) col sda o
ol mand e SU ATy o (b sty gl
S a LW adl L m ¢ el Bas ) S0

ULy atsandl L3 e 5500y

&[1]=seed
£[1]=-MOD{&[i-1]xa+by,m}

b 0K Le SU MOD bl oo 5
MOD ¢ Jeli e Joy gl e i J5Y)
5 Rla cl gl L) #1304 s oly(14.5)
&= linear congruential Ji ol Wy
syedly am = 1 5 0y i) demeall slasl)
S eded Ty 0l 8 @) S sas ()
A s a0,

(modulus)

ke fad ol ' pial! Sl ) e OW
il Jpte o Waa o ol 2151 e

=M plisiel ads Jead) @) mS5 g

[72]



m=32769, a=10924, b-11830. The , b- 11830 10924 -a 32769
distribution (b) was obtained using

m=6075, a=106, b=1283. Data from [Sharp = [t oke Jpadl ¢ (b) w9
and Bays 1992]. oo bl b=1283 | 106 = a 6075
[Sharp and Bays 1992]

[73]



The period cannot of course be greater
than m. The linear congruential method
generates integral values, which can be
converted to real numbers between 0 and
1 by dividing by m. The modulus as
often chosen to be the largest prime
number that can be represented in a given
number of bits (usually chosen to be the
number of bits per word; 2**-1 is thus a
common choice on a 32-bit machine).

Although popular, by virtue of the ease
with which it can be programmed, the
linear congruential method does not
satisfy all of the requirements that are
now regarded as important in a random
number generator. For example, the
points  obtained from a linear
congruential generator lie on (k-1)-
dimensional planes rather than uniformly
filling up the space. Indeed, if the
chosen
linear

constants a, b and m are
inappropriately ~ then  the
congruential method can give truly
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terrible results, as shown in figure 8.3.0ne
random number generator that is claimed
to perform well in all of the standard tests
is that of G Marsaglia, which is described
in Appendix 8.1.

Godmse iy Bl sde e Yo g el
2 Sacmya, boea g el £ 15 1
linear congruential o skl 04, les
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OF pdatoy Aty Jlpie o3 W 8.3 5,54l
O [ E o O S e Rt
8.1 sl 3 o ) (G Marsaglia

4.5 Monte Carlo Simulation of molecules/wl sl o/, ciigo 65550

The Monte Carlo method is most easily
implemented for atomic systems because
it is only necessary to consider the
translational degrees of freedom. The
algorithm is easy to implement and
accurate results can be obtained from
relatively short simulations of a few tens
of thousands of steps. There can be
practical applying the
method systems, and
especially to molecules
significant degree of
flexibility. This in such
systems, it is necessary to permit the
internal degrees of freedom to vary.
Unfortunately, such changes often lead to
high-energy overlaps either within the
molecule or between the molecule and its
neighbors and thus a high rejection rate.

problems in
to molecular
which have a
conformational
is because,

451 Rigid Molecules / 4thall ciliy jad|

For rigid, non-spherical molecules,
the orientations of the molecules
must be varied as well as their
positions in space. It is usual to
translate and rotate one molecule
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during each Monte Carlo step. There
are various ways to generate a new
orientation of a molecule. The
simplest approach is to choose one of
the three Cartesian axes (x, y or z)
and to rotate about the chosen axis
by a randomly chosen angle {w,
chosen to lie within the maximum
angle variation,{w,,.. [Baker and
Watts 1969]. The rotation is achieved
by applying routine trigonometric
relationships. For example, if the
vector (xi, yj ,zk) describes the
orientation of a molecule then the
(X', y’j, 2z'k) that
corresponds to rotation by {w about
the x axis calculated as follows:

new vector

G_Q_;J\

A el Lds ax g clady dde B b sl

X, ) i oW @ el e Ay Ll ea LoV

EW ay) |3 oo 2 2 Jm b yliy (Y OU Z

el bl (3w Of ol ¢ Wlsne o

lf-"""?:".ru.z;r ¢ aﬂj‘ju

oo Oy sll gamn. [Baker and Watts 1969]
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Fig. 8.4: The Euler angles.*

cos Ow Z

A rotation represented by Euler angles
with (¢,0,)=(-60°, 30°, 45°) using the 3-

1-3 (Z-X-Z) co-moving axes rotations

*http://en.wikipedia.org/wiki/Euler_angles
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(

—cosd @ sin dy — sin §@ cos 868 cos Sy

¢ & 5 |
The same rotation alternatively
expressed by (¢,0,1)=(45° 30°, —-60°)
using the 3-1-3 (Z-X-Z) fixed axes
rotations

The Euler angles are often used to
describe the orientations of a molecule.
There are three Euler angles; @, 6 and 4. @
is a rotation about the Cartesian z axis;
this has the effect of moving the x and y

axes. # [s arotation about the New X axis?
Finally,¥ is a rotation about the new z
axis (Figure 8.4). If the Euler angles are
randomly changed by small amounts d&¢,
oY and &y then a vectorV,,,
the

is moved
according to
equation:

following matrix

V‘I‘I—E‘H"=A Vnir.i
Where the matrix A is

cosd @ cosdyr — sin 50 cos &8 sin Sy

sin 8@ cos 56

It is important to note that simply
sampling displacements of the three Euler
not lead to
distribution; it is necessary to sample
from cos# rather than # (figure 8.5).

angles does uniform

sind @ cosdyf — cosd@ cosdd sindy
—sind @ sin Y — cos 8@ cos §6 cos fy

X

B DRI (J\)).U\
(9,0,y)=(45°, 30°, —60°)
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Fig. 8.5:5 : 8.5 5,54
To achieve a uniform distribution of ; . ;
gy 0 JQ\ cJaw L;Lc Ll a- 9o C‘U Y é:.a:;ﬂ
points over the surface of a sphere it is . SR g ) .
necessary to sample from cos@ Rather I R R
than@ . If the sampling is uniform in @ ., 3 Ll sae bl b3 3 Bus 0 Sloa
then the number of points per unit area .
. . N . v H . -
increases withé , leading to an uneven & S 5 g Aol U el ALl

distribution over the sphere. B s

E’ new =m GId+2(€ - 1)5{3’ max
COSD 10, =C0SD ,;+2(¢ — 1)G(c0SE) 1ran
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The alternative is to sample in @ and to
modify the acceptance or rejection criteria

as follows: s N ol J ) e iy @ 3 s s L)

DU el e

o= cosiﬂcns%(ﬂ—klp)
qdo= siniﬂcnsi(ﬂ—klpj
qo= sin>Bsin= (0 + )
Qo= cns%ﬂsin%(ﬂ—i—wj
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be written

3
A=\ 2(q,q, — 9,9,
2(q,q, + q,9,)

2 2 2
q, T4, - 4q,

2 2 2
9 — 9, T 9,

To generate a new orientation, it is

necessary to rotate the quaternion vector

to a new (random) orientation. As it is a

four-dimensional vector, the orientation

must be performed in four-dimensional
space. This can be achieved as follows

[Vesely 1982]:

1. Generate pairs of random numbers
((,¢,) between -1 and 1 until
5i=¢1+85<1

2. Do the same for pairs {5 and ¢, until
Si=83+8i<1

the

dimensional

four-
vector (SRTY
§37/ (1 — 51/52), §ay/ (1 — 51/52).
To achieve an appropriate acceptance
rate the angle between the two vectors
that describe the new and old
orientations should be less than some
value; this corresponds to sampling
randomly and uniformly from a region

3. Form random  unit

on the surface of a sphere.
The
component

introduction of an orientation
as well as translational
moves is made. Trial and error is often
the most effective way to find best

combination of parameters.

2(q,q, + 4,9,

2(q,q, — q,9,)

2(q,9, — q,q,)
2(q,a, — 9,9,

2
- q,

)

N D A
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9, -4, -4, T4,
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({115:2/
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452 Monte Carlo Simulations of Flexible Molecules: /4 sall cilisjall g1l i ga 5lSlaa

Monte Carlo Simulations of flexible
molecules are often difficult to perform
successfully unless the system is small, or
some of the internal degrees of freedom
are frozen out, or special models or
methods are employed. The simplest way
to generate a new configuration of a
flexible molecule is to perform random
changes to the Cartesian coordinates of
addition  to
translations and rotations of the entire

individual atoms, in
molecule. Unfortunately, it is often found
that very small atomic displacements are
required to acceptable
acceptance ratio, which means that the
phase space is covered very slowly. For
example, even small movements away
from an equilibrium bond length will
cause a large increase in the energy. One

achieve an

obvious tactic is to freeze out some of the
internal degrees of freedom, usually the
‘hard” degrees of freedom such as the
bond lengths and the bond angles. Such
algorithms have been extensively used to
investigate small molecules such as
butane. HOW-ever, for large molecules,
even relatively small bond rotations may
cause large movements of atoms down
the chain. This invariably leads to high-
energy configurations as illustrated in
tigure 8.6. The rigid bond and rigid angle
approximation must be used with care,
for freezing out some of the internal
degrees the
distributions of other internal degrees of

freedom.

of freedom can affect
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Figure 8.6 8.6 \<u
A Bond rotation in the middle of a . ' . .
molecule may lead to a large movement s e 3 B )01 ps 535 O S

at the end. Sl L 35S 1~ )

4.6 Models Used in Monte Carlo Simulation of Polymers/
/ ladsdl o 8,68 ciigo 65150 09 dorsiuall E3laill

A polymer is a macromolecule that is 3 ShasS Loy D e Wil 1S e 52 el

constructed by chemically linking )

together a sequence of molecular Lol Sl 3 A el o Al 23 4

fragments. In simple synthetic polymers jT (polyethylene) el J 5! S gPLI,E_\pY\

such as polyethylene or polystyrene all )

of the molecular fragments comprise the Sl e e (S olystyrene) oy 2t
same basic unit (or monomer). Other L. ) 2wl susJl i 0 0S5y
olymers contain mixtures of . ¢

Eloiomers- Proteins, for example, are B e g5 62V Syl (monomer

polypeptide chains in which each unit -1 fude 2 ¢ JUU Lo Jo ¢ Ol )l o

one of the twenty amino acids. Cross- .
s L s s ) (pol tidey aed
linking between different chains gives e By 5 ¢ ) (POIYPEPUIAE)

rise to yet further variations in the kel LSl o gl L op il BN

constitution and structure of polymer. L :

Sy el [Keay A )i Lol o
All of these features may affect the 3 s R B
overall proprieties of the molecule, s¢s ol el jailadl Lo 55 Ol D) ol mead
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one may be interested in the proprieties
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conditions, such as in solution, in a
polymer melt or in the crystalline state.
Molecular modeling can help to develop
theories the
proprieties of polymers and can also be
used to predict their properties.

for understanding

A wide range of time and length scales
are needed to completely describe a
polymer’s The
ranges from approximately 107** S (i.e.
the period of a bond vibration) through
to seconds, hours or even longer for
collective phenomena. The size scale

behavior. timescale

ranges from the 1-2Aof chemical bonds
to the diameter of a coiled polymer,
which can be several hundreds of
angstroms. Many kinds of model have
been used to represent and simulate
polymeric systems and predict their
proprieties. Some of these models are
based upon very simple ideas about the
nature of the intra-and intermolecular
interactions within the system but have
nevertheless proved to be extremely
useful. One famous example in Flory’s
rotational isomeric state model [Flory
1969]. Increasing computer performance
now makes it possible to use techniques
such as molecular dynamics and Monte
Carlo simulations to study polymer
systems.
Most simulations on polymers are
performed using empirical
models (through with faster computers
and new methods it is becoming possible
to apply quantum mechanics to larger
and larger system). Moreover, there are
which  the
conformational

energy

various  ways in

configurationally and
degrees of freedom may be restricted so
as to produce a computationally more

efficient model. The simplest models use
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a lattice representation in which the
polymer is constructed from connected
interaction centers, which are required to
occupy the vertices of a lattice. AT the
next level of complexity are the bead
models, where the polymer is composed
of a sequence of connected ‘beads’. Each
bead represents an ‘effective monomer’
and interacts with the other beads to
which it is bonded and also with other
nearby beads. The ultimate level of detail
is achieved with the atomistic models, in
which each non-hydrogen atom is
explicitly represented (and sometimes all
of the hydrogen as well). Our aim here to
is give a flavor of the way in which
Monte Carlo methods can be used to
investigate polymeric systems. We
divide the discussion into lattice and
continuum models but recognize that is a
spectrum of models from the simplest to
the most complex.
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46.1 Lattice Models of Polymers\_Jtasl s} 4Sud zid

Lattice Models have provided many
insights into the behavior of polymers
despite the obvious approximations
involved. The simplicity of a lattice
model means that many states can be
generated and examined very rapidly.
Both  two-dimensional and three-
dimensional lattices are wused. The
simplest models use cubic or tetrahedral
lattices in models are wusually very
simple, in part to reflect the simplicity of
the representation but also to permit the
rapid calculation of the energy.

More complex models have been
developed in which the lattice
representation in closer to the ‘true’
geometry of the molecule. For example,
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in figure 88 we show the bond o 8.8 5, al 3 JE b s L2z ]
fluctuation model of polyethylene, in

which the ‘bond’ between successive s e Ly, e Csfé
moments on the lattice e ) 4 e sy (polyethylene)ugéz

A e e ok
Figure 8.7 8.7 sl

Cubic and tetrahedral (diamond) lattices, .
which are commonly used for lattice L:SJU s (L) Cﬁw‘ e Ly« S

simulations of polymers Ol ed sl Ol BT Ssle P

Figure 8.8 8.8 Kzl

The bond fluctuation model. In this
example three bonds in the polymer
are incorporated into a single il ol esee" sty "l Lyl L) e gl 8
‘effective bond' between 'effective .

monomers'. (Figure adapted (Flgure adapted BaSChnagel J, K
Baschnagel ], K Binder, and W paul, Bil’ldel‘, and W paul, M Laso, U
M Laso, U suter, I Batoulis, W jilge suter, I Batoulis, W jﬂge and t
and t burger 1991. On the

construction  of  coarse-Grained burger 1991.
models for linear Flexible Polymer- J &, ik Cb\»—ﬂ S old el 3y -

Chains-Distribution-Functions of
ol s sl 5— 25— M=ol o s
Groups of consecutive Monomers. = ’ J 3P s
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Figure 8.9
In a random walk on a square lattice
the chain can cross itself.

Aol e 1 0 s e Syl adh 3
s 8 O SK

Represent three bonds in the actual
molecule [Baschnagel et al. 1991]. In
this model each monomer is
positioned at the center within the
lattice and five different distances are
possible for the monomer-monomer
bond lengths.

Lattices can be used to study a wide
variety of polymeric systems, from
single polymer chains to dense
mixtures. The simplest type  of
simulation in a ‘random walk’, in
which to chain is randomly grown in
the lattice until it contains the desired
number of bonds (Figure 8.9), In this
model the chain is free to cross itself
(i.,e. excluded volume effects
ignored). Various proprieties can be
calculated from such simulations, by
averaging the results over a large

are

[Baschnagel
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number of trials. For example measure
of the size of a polymer in the mean
square end-to-end distance, (R?) is
related to the number of bonds (n) and
the length of each bond (1) by:

o e ddane o )RE(C ORI U ORI e Bl

Pt o () e IS Jby ) ol

(R3)=nl*

The radius of gyration is another
commonly calculated property; this is
the root mean square distance of each
atom (or monomer) from the center of
mass. For the random walk model the
radius of gyration (s7) is given in the
asymptotic limit by:
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: M e (asymptotic limit)

(s%)= (R,)/6

The ability of the chain to cross itself in
the random walk may seem to be a
serious limitation, but it is found to be
valid under some circumstances. When
excluded volume effects are not important
(also known as ‘theta’ conditions) then a
subscribe ‘0" is often added to proprieties
such as the mean square end-to-end
distance, ((R2)g).Excluded volume effects
can be taken into account by generating a
‘self-avoiding walk’” of the chain in the
lattice (Figure 8.10). In this model only
one monomer can occupy each lattice site.
Self-avoiding walks have been used to
exhaustively all possible
conformations for a chain of a given
length one the lattice. If all states are
known then the partition function can be

enumerate

determined and thermodynamic
quantities calculated. The ‘energy” of each
calculated using

model.

state
appropriate

may be an

interaction For

example, the energy may be proportional

Spla 358 3y gl
3 05 Sy o el 2l 8 e
o] 05 Lis L2y k)l as
S Lal Oyl e cefiialdl
'0" o2 13 ((‘theta’ conditionsy'!
Blad oy m e e aflad) ) Olay L UG
BT ) (Ro2 k)l Al Sl
Wy oab oo Jlee¥ 3 bE SGaslis
JSadly aSadl Al el el 2
Lib umly egse i Va3 (810
sl L S aBae IS 3 BYLSK
S o dhala Wl sl gl
e 3] L aSal) e J b e a3 sl
by wad S8 ey W ma O
et B A Sl ey il

£ Al 5

T

[87]



to the number of adjacent pairs of _ _.LJ el 73 S pldsal W Jﬁ PPIRY
occupied lattice sites. A variation on this is ) Gl oS5 e
to use polymers e g Aplize ) O I e e
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walk, with (RZ) being proportional to

n*% in the asymptotic limit.

Having grown a polymer onto the
lattice, we now have to consider the
generation of alternative
configurations. Motion of the entire
large-scale

changes is

polymer  chain  or

conformational often
difficult, especially for densely packed
polymers. In variants of the verdier-
Stockmayer algorithm [Verdier and
Stockmayer 1962] new configurations
are generated using combinations of

’

‘crankshaft’; ‘kink jump’ and ‘end
rotation” moves (figure 8.11). Another
Widely used algorithm in Monte Carlo
simulation of polymers (not just in
lattice models) is the ‘slithering snake’
model. Motion of the entire polymer
chain is very difficult, especially for
densely packed polymers, and one
way in which the polymer can move is
by wriggling around
process known as reputation. To
implement a  slithering
algorithm, one end of the polymer
chain is randomly chosen as the “head’
and an attempt is made to grow a new
bead at one of the available adjacent
lattice positions. Each of the remaining

obstacles, a

snake

beads is then advanced to that of its
predecessor in the chain illustrated in
tigure 8.12. The procedure is then
repeated. Even if it is impossible to
the ‘head”  the
configuration must still be included

move chosen

when ensemble

calculated.

averages are

Figure 8.11
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rotation' moves used in Monte Carlo - ; s 352 3 dedsndl WS sl s "

S pd sl S

simulations of polymers

Figure 8.12
The 'slithering snake' algorithm
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462 ‘Continuous’ Polymer Models/ yo-d ! T3 "l el ”

The simplest of the continuous
polymer models consists of a string of
connected beads (Figure 8.13). The
beads are freely jointed and interact
with the other beads via a spherically
symmetric potential such as the
Lennard-Jones potential. The beads
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should not be thought of as being
identical to the monomers in the
polymer; though they are often
referred to as such (‘effective
monomers’ is a more appropriate
term). Similarly, the links between the
beads should not be thought of as
bonds. The links may be modeled as
rods of a fixed and invariant length or
may be permitted to vary using a
harmonic potential function.

In Monte Carlo studies with this freely
jointed chain model the beads can
sample from a continuum of positions.
The pivot algorithm is one way that
new configurations can be generated.
Here, a segment of the polymer is
randomly selected and rotated by a
random amount, as illustrated in
tigure 8.13. For isolated polymer
chains the pivot algorithm can give a
good sampling of the
configuration/conformational  space.
However, for polymers in solution or
in the melt, the proportion of accepted
moves is often very small due to high-
energy steric interactions.

Figure 8.13

The bead model for polymer
simulations. The beads may be
connected by stiff rods or by harmonic
springs
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The most unrealistic feature of the s ;\;J;. il dedid) 73 gad Gadly xS PR
freely jointed chain model is the . P
assumption that bond angles can vary < s Gl 0T (S8 Ll W 55 0L 1Y
continuously. In the freely rotating [z, Loy )l Uly; Jinss :gj;-, 9 QSJ‘ ads C'zj.c'
chain model the bond angles are held Lt e ol \ :
tixed but free rotation is possible about Lot g Jm A O o Ny
the bonds, such that any torsion angle 0% & sV & o J aed &1 0,5 Ozl Sl
value between 0° and 360° is equally .. , ' . o
likely. Fixing the bond angles in this S SF AR eds Ly Ly s 360
way obviously affects the proprieties ¢ slal Koy alay 2l 2l iy 2l aslas
of the chain when compared to the
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freely jointed chain; one way quantify G L) jafla e Tl By A3y b
this is via the characteristic ratio C,, calb O n
which is defined as:
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indicates how extended the chain is. i N o o
For the freely rotating chain the P Nl L;’ul’ ng Aledd) g5 A

characteristic ratio is given by:
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5. Computer simulation methods /3 g2aSl) 3laca (4 )k

5.1 Introduction/ dosa//

Computer simulation methods enable us to
study some and predict their
properties through the use of techniques that
consider small replications of the macroscopic
system with manageable numbers of atoms or
generates
representative configuration of these small
replications in such a way that accurate values
of structural and thermodynamics properties

systems
simulation

molecules. A

can be obtained with a feasible amount of

computation. Simulation techniques also
enable the time-dependent behaviour of
atomic and molecular systems to be

determined, providing a detailed picture of
the way in which a system changes from one
conformation or configuration to another.
Simulation techniques are also widely used in
some experimental procedures, such as the
determination of protein structures from X-ray
crystallography.

In this chapter we shall discuss some of the
general principles involved in the two most
techniques
molecular modelling: the molecular dynamics
and the Monte Carlo methods.

common simulation used in
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5.1.1 Time average, ensemble Average and Some Historical Background:/ Jﬂﬂf-“ ‘ﬁé}“ J‘“f-“

iy U 304 g Ao ganal)

Suppose wish to determine the
experimentally the values of a property of a
system such as the pressure or the heat
capacity. In general, such properties will

depend upon the positions and momenta of
[93]
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the N particles that comprise the system. The
instantaneous value of the property A can thus
be written as A (pN (t), N (t)), where pN (t) and
rN (t) represent the N momenta and the
positions respectively at the time t (i.e. A(p™N(t),
™N (1) = A(pwy Py, Plz, P2v... X1, V1, Z1,X2,..., t)
where pix is the momentum of particle 1 in the
x direction and xi is its coordinate). Over time,
the instantaneous value of the property A
fluctuates as a result of interactions between
the particles. The value that we measure
experimentally is an average of A over the
time of the measurement is made increases to
infinity, so the value of the following integral
approaches the ‘true’ average of the property:
(6.1)

Ave=limy .= [ A" (0,77 (8)) dt

To calculate average of the properties of the
system, it would therefore appear to be
necessary to stimulate the dynamic behaviour
of the system (ie. to determine value of
A(pN(t), N(t)), based upon model of the intra-
and the intermolecular interactions present). In
principles, this is relatively straightforward to
do. For any arrangement of the atoms in the
system, the force acting on each atom due to
interactions with other atoms can be calculated
by differentiating the energy function. From
the force on each atom it is possible to
determine its acceleration via Newton’s second
law. Integration of the equations of motion
should then yield a trajectory that describes
how the positions, velocities and accelerations
of the particles vary with the time, and from
which the average values of properties can be
determined using the numerical equivalent of
Equation (6.1). The difficulty is that for
‘macroscopic’ numbers of atoms or molecules
(of the order of 10%) it is not even feasible to
determine an initial configuration of the
system, let alone integrate the equations of
motion and calculate a trajectory. Recognizing
this problem, Boltezman and Gibbs developed

[94]
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statistical mechanics, in which a single system
evolving in time is replaced by a large number
of replications of the that
considered simultaneously. The time average
is then replaced by an ensemble average: (6.2)

= A == J( dpl"-'- d,rl"-'- A[pﬁ.'-’,rﬁ.'-]p[,rﬂ'—’rﬂr]

system are

The angle brackets <> indicate an ensemble
average, or expectation wvalue; that is, the
average value of the property A over all
replications of the ensemble generated by the
simulation. Equation (6.2) is written as a
double integral for convenience but in fact
there should be 6N integral signs on the
integral for the 6N positions and momenta of
all the particles. p(r",r") is the probability
density of the ensemble; that is, the probability
of binding of finding a configuration with
momenta pN and positions rN. the ensemble
average of the property A is then determined
by integrating over all possible configurations
of the system. In accordance with the ergodic
hypothesis, which is one of the fundamental
axioms of statistical mechanics, the ensemble
average is equal to the time average. Under
conditions of constant number of particles,
volume and temperature,
density is the familiar Boltzman distribution:
(6.3)

p(p™r") =exp (—E(»",7")/ksT/Q

In equation (6.3), E(p",r") is the energy, Q is
the partition function, ks is Boltezmann's
constant and is the temperature. The partition
function is more generally written in term of
the Hamiltonian, H; for a system of N identical

the probability

particles the partition function for the
canonical ensemble is as follows:
(6.4)

Qnvr = Lh% [T ap™ dr™ exp[ - H (p¥,v")/ks T]

N
The canonical ensemble is the name given to

an ensemble for constant temperature, number
for constant temperature, number of particles
and volume. For our purposes H can be
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considered the same as the total energy, E(pY,
rN), which equals the sum of the kinetic energy
(k(pN)) of the system, which depends upon the
momenta of the particles, and the potential
energy (V (rV)) which depends upon the
positions. The factor N! arises from the in
distinguish ability of the particles and the
factor 1/h3N is required to ensure that the
partition function is equal to the quantum
mechanical result for a particle in a box. A
short discussion of some of the key results of
provided in
appendix 6.1 and further details can be found

statistical mechanics is an
in standard textbooks.

The first computer simulations of fluids were
performed in 1952 by Metropolis, Rosenbluth,
Rosenbluth, Teller and Teller, who develop a
scheme for sampling from the Boltzmann
distribution to give ensemble averages. This
gave rise to the Monte Carlo simulation
method. Not long afterwards (in 1957) Alder
recognised that it was, in fact, possible to
integrate the equations of motion for a
relatively small number of particles, and to
mimic the behaviour of a real system using
periodic boundary conditions. This led to the
molecular simulations of

first dynamics

molecular systems.
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5.1.2 A Brief Description of the Molecular Dynamics Method /

Aty ) 4y gal) 48y Jlall G ga sy

dynamics the
dynamics of the system, from which time
averages of properties can be calculated. Sets
of atomic positions are derived in sequence by
applying Newton’s equations
Molecular dynamics is a deterministic method,
by which we mean that the state of the system
at any time can be predicted from its current
state. The first molecular dynamics simulations
were performed using very simple potential
such as the The
behaviour of the particles in this potential is
similar to that of billiard or snooker balls: the
particles move in straight lines at constant
velocity between collisions. The collisions are
perfectly elastic and occur when the separation
between a pair of spheres equals the sum of

Molecular calculates ‘real’

of motion.

hard-sphere potential.

their radii. After a collision, the new velocities
of the colliding spheres are calculated using
the principle of
momentum. The

conservation of linear
hard-sphere model has
provided many useful results but is obviously
not ideal for simulating atomic or molecular
systems. In potential such as the Lennard-
Jones potential the force between two atoms or
molecules changes continuously with their
separation. By contrast, in the hard-sphere
model there is no force between particles until
they collide. The continuous nature of the
more realistic potential requires the equations
of motion to be integrated by breaking the
calculation into a series of very short time
steps (typically between 1 femto-second and 10

[97]

i) Olaly )l Slalydll &g o ol
Clal s e S gl el
Ole szt datedy 3l OVdae 2flax
Ger e Jeded @ R0 1
ig i olabll i sl i Vsl
Sl o b Fy dabdl Olll
Al ) Al e o3y of @ plad) Al W3
pldszaly Slalyal) 45 5> 352 ol ol
—aabn P Ju e daey SUSG)
2 SULY ods 3 olu Al Sl aul
S Y OO | ICH S N WL ICS VU B TH V-
A8 o (3 Aol Dol 3 25 Sle )

ol Gy anl
Jlasl e &ud s L & s & o lesliad)
gt ol iy S sl Yl e ey
R RV YN S I
plszaly deslatl) aluar U suadl ole )
z35 el L b sl e bl
o Ny By She s alall—ples )
A 2 A ST Wes d o il
S o)l s e w3 iy

Jree RO CA N S I\ R PR v



femtosecond; 10%s to 10's). At each step, the
forces on the atoms are computed and
combined with the current positions and
velocities to generate new positions and
velocities a short time ahead. The force acting
in each atom is assumed to be constant during
the time interval. The atoms are then moved to
the new positions; an updated set of forces is
computed, and so on. In this way a molecular
dynamics simulation generates a trajectory
that describes how the dynamic variable
change with
simulations are typically run for tens or
hundreds of picoseconds (a 100ps simulation
using a 1fs time step requires 100000 steps).
Thermodynamics average are obtained from
molecular dynamics as time averages using
numerical integration of equation (6.2):

M
<A >== i Z A[p""-, r"‘r]
M
i=1

M is the number of time steps. Molecular
dynamics is
investigate the conformational properties of
flexible molecules as will be discussed in
chapters 7 and 9.

time. Molecular dynamics

also extensively wused to
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5.1.3 The Basic Element of the Monte Carlo Method/ $/ LS (i ga sl (bal) uainl)

In a molecular dynamics simulation the
successive configuration of the system are
connected in time. This is not the case in a
Monte Carlo simulation, each
configuration depends only wupon its
predecessor and not upon any other of the
configurations previously visited. The
Monte Carlo method generates
configurations randomly and uses a special

where

set of criteria to decide whether or not to
accept each new These
criteria ensure that the probability of
obtaining a given configuration is equal to
its Boltzmann factor, exp{-V(rN)/ksT}, where
V(rN) is calculated using the potential
energy function. States with a low energy
are thus generate with a higher probability
than configuration with a higher energy.
For each configuration that is accepted the
of the desired properties
calculated and at the end of the calculation

configuration.

values are
of the average of these properties is
obtained by simply averaging over the
number of values calculated, M: (6.6).
<A>=1/MEM", A+

Most Monte Carlo simulation of molecular
systems is more properly referred to as
Metropolis Monte Carlo calculations after
and his colleagues,
reported the first such calculation. The
distinction can be important because there
are other ways in which an ensemble of
configuration can be generated. As we shall
see in chapter 7, the Metropolis scheme is
only one of a number of possibilities,
though it is by far the most popular.

In a Monte Carlo

Metropolis who

simulation each new
configuration of the
generated by randomly moving a single

system may be
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atom or molecule. In some cases new
configurations may also be obtained by
moving several atoms or molecules or by
rotating about one or more bonds. The
energy of the new configuration is then
the energy

If the energy of the new

calculated using potential
function.
configuration is lower than the energy of its
predecessor then the new configuration is
accepted. If the energy of the new
configuration is higher than the energy of
its predecessor then the Boltzmann factor of
the energy difference is calculated: expl[-
(Vinew(rN)- Void(rN)/ksT]. a random number is
then generated between 0 and 1 and
compared with this Boltzmann factor. If the
random number is higher the Boltzmann
factor then the move is rejected and the
original configuration is retained for the
next iteration; if the random number is
lower than the move is accepted and the
new configuration becomes the next state.
This procedure has the effect of permitting
moves to state of higher energy. The smaller
the uphill move (i.e. the smaller the values
of View(rN)- Voua(rN)) the greater is the
probability that the move will be accepted.
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5.1.4 Differences between the Molecular Dynamics and Monte Carlo Methods /
SIS (A g uallad 9 A5 Sad) lalipal) (g ABMERY)

The molecular dynamics and Monte
Carlo simulation methods differ in a
variety of ways. The most obvious
difference is that molecular dynamics
provides information about the time
dependence of the properties of the
system whereas there is no temporal

relationship between successive Monte
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carlo configurations. In a Monte Carlo
simulation the outcome of each trial move
depends
predecessor,
dynamics it is possible to predict the
configuration of the system at any time in

only upon its immediate

whereas in molecular

the future or indeed at any time in the
past. Molecular dynamics has kinetic
energy contribution to the total energy
whereas in a Monte Carlo simulation the
total energy is determined directly from
the potential energy function. The tow
simulation methods also sample from
different ensembles. Molecular dynamics
is  traditionally
conditions of constant number of particles
(N), volume (V) and energy (E) (the
microcanonical ~or  constant NVE
ensemble) whereas a traditional Monte
Carlo the
canonical ensemble (constant N, V and
temperature, T). both the molecular
dynamics and Monte Carlo techniques
can be modified to sample from other
ensembles; example,
dynamics can be adapted to stimulate

performed under

simulation samples from

for molecular
from the canonical ensemble. Two other
ensemble are common:

Isothermal-isobaric: fixed N, T, P

(pressure).

Grand canonical; fixed p (chemical
potential), V, T.

In the canonical, microcanonical and
isothermal-isobaric ensembles the
number of particles is constant but in a
grand  canonical = simulation  the

composition can change (i.e. the number
of particles can increase or decrease). The
of these
ensembles are characterized as follows:

equilibrium states of each

Canonical ensemble: minimum
Helmbholtz free energy (A)
Microcanonical ensemble: maximum
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entropy (S)

Isothermal-isobaric ensemble: minimum
Gibbs function (G)

Grand canonical ensemble:
pressure x volume (PV)

maximum

S)
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5.2 Calculation of Simple Thermodynamic Properties /

s G | prilasll Gl

A wide variety of thermodynamic properties
can be calculated from computer simulations;
a comparison of experimental and calculated
values for such properties is an important
way in which the accuracy of the simulation
and the underlying energy model can be
quantified. Simulation method also enable
prediction to made of the thermodynamic
properties of system for which experimental
data, or for which experimental data is
difficult or impossible to obtain. Simulation
can also provide structural information about
the conformational changes in molecules and
the distributions of molecules in a system the
emphasis in our discussion will be on those
properties that are routinely calculated in
computer simulation and on the way in
which they are obtained. It is important to
recognize that the result we derive are for the
canonical the
equivalent expression in other ensemble are
provided. The result obtained from one
ensemble may also be transformed to another
ensemble, though this is strictly only possible
in the limit of an infinitely large system. The
expressions follow from standard statistical
mechanical relationships, which are given in
standard texts and summarized in Appendix
6.1.

ensemble. Sometimes

[102]
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5.2.1 Energy/ 4aual)

The internal energy is easily obtained
from a simulation as the ensemble

6.1 sl 3 aasdll

SKL;\ o %‘J\J\ REU&.S\ QSL“ mﬁ-«-«.} J)“z;-\ ('.:g'

average of the energies of the states that D amdi Bl SV Bl s pos) L a8

are examined during the course of the
simulation:
(6.7): U=<E>=1/M XL, E

52.2 Heat Capacity / 4l ad) dad)

At a phase transition the heat capacity will often
show a
temperature  (a
characterized by an infinite heat capacity at the
transition but in a second-order phase transition the
heat capacity changes discontinuously).

characteristic dependence upon the

first-order transition is

Monitoring the heat capacity as a function of
temperature may therefore enable phase transition
to be detected. Calculation of the heat capacity can
also be compared with experimental result and so
be used to check the energy model or the
simulation protocol.
The heat capacity is formally defined as the partial
derivative of the internal energy with respect to
temperature:
(6.8): Cv=(0U/0T)v
The heat capacity can therefore be calculated by
performing a series of simulation at different
temperatures, and then differentiating the energy
with respect to the temperature. The differentiation
can be done numerically or by fitting a polynomial
to the data and then analytically differentiating the
titted function. The heat capacity may also be
calculated from a single simulation by considering
the instantaneous fluctuation in the energy as
follows:
(6.9): Cv = {<E>> - <E>?}/ks T?
An alternative way to write this expression uses the
relationship:
(6.10): <(E-<E>)>> = <E> - <E>2
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Giving: (6.11): Cv = <(E-<E>)>>/ks T?

A derivation of this result is provided in Appendix
6.2.

The heat capacity can therefore be obtained by
keeping a running count of E? and E during the
simulation, from which their expectation values
<E*> and <E> can be calculated at the end of the
calculation. Alternatively, If the energies are stored
during the simulation then the values of <(E-<E>)>
can be calculated once the simulation has finished.
This second approach may be more accurate due to
round-off errors; <E*> and <E>? are usually both
large numbers and so there may be a large
uncertainty in their difference.

5.2.3 Pressure /-k”"-ﬂ'dM
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theorem of clausius. The viral is defined
as the expectation value of the sum of the
products of the coordinates of the
particles and the forces acting on them.
This is usually written W = ) x,p where
x; si a coordinate (e.g.
coordinate of an atom) and p,,

the x or y
. is the first
derivative of the momentum along that
coordinate (p; is the force, by Newton’s
second law). The virial theorem states
that the virial is equal to -3NkgT.

In an ideal gas, the only forces are those
due to interactions between the gas and
the container and it can be shown that
the virial in this case equals — PV. This
result can also be obtained directly from
PV = Nk,T.

Forces between the particles in a real gas
or liquid affect the virial, and thence the
pressure. The total virial for a real
systems equals the sum of an ideal gas
part (-3PV) and a contribution due to
interactions between the particles. The
result obtained is:
(6.12):

W= —3PV+ ¥ ¥

rilrl}_
= =i#1 T L5 N

The real gas is derived in Appendix 6.3. if

7
T‘-‘—} is written as
?"l-

between atoms i and j, then we have the
following expression for the pressure:

1 1oy N
(6.13): P == [NkgT — - 1 Zmaen T
The forces are calculated as part of a
molecular dynamics simulation and so

little additional effort is required to

fi;, the force acting

calculated the wvirial and thus the
pressure. The forces are not routinely
calculated during a Monte Carlo

simulation, and so additional effort is
required to determine the pressure by
this route. When calculating the pressure
it is also important to check that the
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components of the pressure in all three - ; s ST M S50 iy s o)
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5.2.4 Temperature:/ 8 ad)

In a canonical ensemble the total & Alayl 5y A s @kl de el 3

temperature is  constant. In  the _
microcanonical ensemble, however, the OB ¢ G S s e el ey b
temperature is directly related to the (.ug_;b iS A Wl 5 ale bag o, A i s
kinetic energy of the system as follows:

lpil* _ kgT :g;L:J\ s Je

(6.14): 3¢ = XLy - =%(3N—ch i
) 3= x, 20— kT 3y N )6.14):

Fig. 6.1: Radial distribution functions use psnd el a il plge 6.1 5,2
a spherical shell of thickness dr.

In this equation, p; is the total j i .-l i A ) E R sh P sl oda (3
momentum of particle i and m; is its L . B '
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the number of constraints on the system.

In a molecular dynamics simulation the 35 & -(‘w‘ < ’J‘»ﬁ‘ oA A (6-14)

total linear momentum of the system is 2 fw‘ s i J S ¢ e ik Slalys
often constrained to a value of zero, . .
which has the effect of removing three W ALY 28 W ¢ ho Slur Ol e S
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constraint are also possible as we shall Lol (2 55l o 2 g5 3 ssles O

discuss in section 7.5. 7.5 (,“5)\ &3 el
5.2.5 Radial distribution Functions /(sS-&d) a3 gil) dills g

Radial distribution functions area useful . ;. PURRWIR- A PRA| & S asls i
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way to describe the structure of a system,
particularly of
spherical shell of thickness or at a
distance r from a chosen atom (figure
6.1). the volume of the shell is given by:
(6.15)

4 4
V= EH(T +6r)% — gm,a

liquids. Consider a

=4wri&r + 4wrdr? + S?n’j'ra % Amridr.

If the number of particles per unit
volume is p, then the total number in the
shell is 4mpdri8r and so the number of
atoms in the volume element varies as

-
=

.

The pair distribution function, g(r), gives
the probability of finding an atom (or
molecule, if simulating a molecular fluid)
a distance r from another atom (or
molecule) the ideal
distribution. g(r) is thus dimensionless.
Higher radial distribution functions (e.g.
the triplet radial distribution function)
can also be defined but are rarely

compared to

calculated and so references to the ‘radial
distribution function” are usually taken
to mean the pair wise version. In a
crystal, the radial distribution function
has an infinite number of sharp peaks
and heights
characteristic of the lattice structure.
The distribution function of a liquid is
intermediate between the solid and the
gas, with a small number of peaks as
short distances,

whose separations are

superimposed on a
steady decay to a constant value at
longer distances. The radial distribution
calculated from a molecular dynamics
simulation of liquid argon (shown in
Figure 6.2) is typical. For short distance
(less than the atomic diameter) g(r) is
zero. This is due to the strong repulsive
forces. The first (and largest) peak occurs

By S 6 adll guad L Bl e L Y ¢ plad)
L2 5,5 e sy o Bles L) OF &Sl
D e e Bl e (BT JSC2ly
6.15)
V=%?r(r+5r"]3—%?rr3
= 4?81 +4wrdr? + Zndr® X dmrisr.
13 P S gy ol 3y S ol ) sae OIS 1Y)
OB by mpdriard s 5,edl eyl sall)
LS Gl emd) e 3ol sue
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(et Pl o BSOS I3 s o)
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ole do 55" el wadl AT e ol LYl 1
W ¢l Bzl e ab b e W s
G L adll e SLEY sua) slelddl a5 )
A ) §50 A a ol Y1y oYL
Gy il By dae s sa L w55 iy
& bl dpad SBlasy el e LB sus a
Jsbl @bl (3wl ded ezldl JDwesYl
ik A Slaludd) 312 e g olaid) 5
a3 s s LS) Pl O Y1
Sl e B Spad Bl L 3 s (6.2
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at r¥ 3.7A, with g(r) having a value of

about 3. This means that it is three times
more likely that two molecules would
have this separation than in the ideal gas.
The redial distribution function then falls
and passes through a minimum value
around r% 5.4 A. The chances of finding
two atoms with this separation are less
than for the ideal gas. At long distances,
g(r) tends to the ideal gas value,
indicating that there is no long-range
order.

To distribution
function the
neighbors around each atom or molecule
are ‘bins’,
histograms. The number of neighbors
around in each bin is then average over
the entire simulation. For example, a
count is made of the number of
neighbors between (say) 2.5A and 2.754,
2.75A and 3.0A and so on for every atom
or molecule in the simulation. This count
can be performed during the simulation
itself or by analyzing the configurations
that are generated.

Radial distribution functions can be
measured experimentally using X-ray
diffraction. The regular arrangement of
crystal gives the
characteristic X-ray diffraction pattern
with bright, sharp spots. For liquids, the
diffraction pattern has regions of high
and low intensity but no sharp spots.
The X-ray diffraction pattern can be
analysed to calculate an expermintal

the
from a

calculate pair

simulation,
into distance

sorted or

the atoms in a

distribution function, which can then be
compared with that obtained from the
simulation.

can be

Thermodynamics properties
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calculated using the radial distribution
function, if pair wise additivity of the
forces is assumed. These properties are
usually given as an ideal gas part plus a
real gas part. For example, to calculate
the energy of a real gas, we consider the
spherical shell of volume 4mr°pg(r)
particles. If the pair potential at a
distance r has a value v(r) then the
the
particles in the shell and the central
particle is 4mr’pg(r)V(r)ér. The total
potential energy of the real gas is
obtained by integrating this between 0
and @ and multiplying the result by N/2
(the factor Y4 ensures that we only count
each interaction once). The total energy
is then given by:

(6.16):

E=3 Nk T+ Ei'n"'l.-’p_I"[;'C'r"2 v(r)g(r)dr

energy of interaction between

In a similar way the following expression
for the pressure can be derived:
(6.17):

_ InNg roe o dulr)
PV =Nk,T— kg fu rer— g(r)dr

It is usually more accurate to calculate
such properties directly, partly because
the radial distribution function is not
obtained as a continuous function but is
derived by dividing the space into small
but discrete bins.

For molecules, the orientation must be
taken into account if the true nature of
the distribution is to be determined. The
radial distribution function for molecules
is usually measured between two fixed
points, such as between the centers of
mass. This may then be supplemented by
an orientation distribution function. For
linear the
distribution function may be calculated
as the angle between the axes of the
molecule, with values ranging from -180°

molecules, orientation
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to +180°. For more complex molecules it
is usual to calculate a number of site-site
distribution functions. For example, for a
three-site model of water, three functions
can be defined (g(O-O), g(O-H) and g(H-
H)). An advantage of the site-site models
is that they can be directly related to
information obtained from the X-ray
scattering experiments. The O-O, O-H
and H-H radial distribution functions
have been particularly useful for refining

S 38 U e e pise mBas m)

oz iy W L Sy el e &3l
z3Ldl e S5 g(H-H) 4g(0-O), g(O-H)
e JlaW) Se ol Gl e s
W) s ) e Ll Jsedtl bl
5 O-0, O-H sladdl mj sl il X
i Gl Sd sl IS5 ake & H-H

the wvarious potential models for

simulating liquid water. LI W BT dles
5.3 Phase Space / acli db 50

An important concept in computer ol i oA wseldl S g ola o sgie

simulation is that of the phase space. For a
system containing N atoms, 6N values are
required to define the state of the system
(three coordinates per atom and three
components of the momentum). Each
combination of 3N positions and 3N
momenta (usually denoted by I'y) defines a
point in the 6N-dimensional phase space;
an ensemble can thus be considered to be a
collection of points in phase space. The
way in which the system moves through
phase space is governed by Hamiltonian’s
equations:
dry _ 8H

(6.18): — = a5
(6.19): St =—2%
Where i varies from 1 to N. molecular
dynamics generates a sequence of points in
phase space that are connected in time.
These points correspond to the successive
configurations of the system generated by
the simulation. A molecular dynamics
simulation the
microcanonical (constant NVE) ensemble
will sample phase space along a contour of
constant energy. There is no momentum

performed in
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component in a Monte Carlo simulation
and such simulations sample from the 3N-
dimensional space corresponding to the
positions of the atoms. It might seem odd
that thermodynamic properties can be
obtained from Monte Carlo simulations,
given that
contribution and so 3N degrees of freedom
are not explored. In fact, all of the
deviations from ideal gas behaviour are a
con-sequence of interactions between the
encapsulated in the
V(rN), which only
depends upon the positions of atoms. A
Monte Carlo simulation does sample from
the positional degrees of freedom and so
can be used to provide the deviations of
thermodynamic properties from ideal gas
behaviour, which is what we want to
calculate. We shall return to this point in
chapter 8.
If it were possible to visit all the points in
phase space then the partition function
could be calculated by summing the values
of exp(- E/ksT). The phase-space trajectory
in such a case would be termed ergodic and
the results would be independent of the
initial configuration. For the systems that
typical of studied using
simulation methods the phase space is
immense, and an ergodic trajectory is not
achievable (indeed, even for relatively
small systems with only a few tens of
atoms the time that would be required to
cycle round all of the points in phase space
is longer than the age of the universe). A
simulation can thus only ever provide an
estimate of the ‘true’ energies and other
thermodynamic properties
sequence of simulations using different
starting conditions would be expected to
give similar, but different, results.
The thermodynamic properties that we

there is no momentum

atoms and are

potential function,

are those

and so a
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have considered so far, such as the internal
energy, the pressure and the heat capacity
are collectively known as the mechanical
properties and can be routinely obtained
from a Mont Carlo or molecular dynamics
simulation. Other

properties difficult
accurately without resorting to special
techniques. These are the so-called entropic
or thermal properties: the free energy, the
chemical potential and the entropy itself.

thermodynamic

are to determine

The difference between the mechanical and
thermal properties is that the mechanical
properties are related to the derivative of
the partition function whereas the thermal
properties are directly related to the
partition function itself. To illustrate the
difference between these two classes of
properties, let us consider the internal
energy, U, and the Helmholtz free energy,
A. These are related to the partition
function by:

B ey Bl by (el sl ST
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(620) U=k
) Q 8T
(621)  A=keTInQ

Q is given by Equation (6.4) for a system
of identical particles. We shall ignore any
normalization constants in our treatment
here to enable us to concentrate on the
basics, and so it does not matter whether
the system of
distinguishable particles. We also replace
the Hamiltonian by the energy, E. The
internal energy is obtained via Equation
(6.20):

consists identical or

Slegmd) 2l (6.4) dslall 5 b e slans Q
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(6.22)

21 N N E( N,‘I‘N:I
U= kgT Ef _rdp"dr"#exp[:

Now consider the probability of the state

with energyE (p”, r"):
(6.24)

The crucial point about Equation (6.24) is
that high values of E(p”,r") have a very
low probability and make an insignificant
contribution to the integral. The Mont
Carlo and molecular dynamics methods
preferentially generate states of low
energy, which are the states that make a
significant contribution to the integral in
Equation (6.24). These methods sample
from phase space in a way that is
representative of the equilibrium state
and are able to generate accurate
estimates of properties such as the
internal energy, heat capacity, and so on.
Let us now consider the problem of
calculating the Helmholtz free energy of
molecular liquid. Our aim is to express
the free energy in the same functional
form as the internal energy that is as an
integral ~ which the
probability of a given state. First, we
substitute for the partition function in
Equation (6.21):

incorporates

(6.25)

A =k;TInQ = k;TIn(
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Next we recognize that the following 1S o S 0 s 2 a5 sy
integral is equal to 1:

(6.26)

1 o E@NT\  E@Y)
1= —— || dp¥dr¥ exp( - 222 Jexp (2
(B 2V)" H poar EXP( r )P )

Inserting this into the expression for the . S ald o A sl e 3 el 715
free energy and ignoring the constants )

(which act to change the zero point from Wt oo G o e BB il Joss )
which the free energy is calculated) gives: LSJQ’U 5 (54 Bl Ol
(6.27)

E(pN N E(pN N
1T dpmdrm exp(—%)exp (%}

A= kETIn( Ir dedrN exp(—E(FN{-'"N}r’kB T} )

We can now substitute for the probability @ p@", ™) ¢ JlaY) wls” s oY) ey
density, p[p""', r""'jin this equation, leading . _

to the final result (in which we have again et ) Bl Bl J op bl s
ignored the normalization factors): L ( C’u‘ Lol se s J,,-.T 5,0 Llald

E(V )

A= kgTIn ([] dp"dr¥exp (kT)P(PN:T”))

The important feature of this result is that ;3. - Sl S O pa gzl odd ZalAI 5500
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