AECENAR
 Association for Economical and Technological Cooperation in the Euro-Asian and North-African Region

تدريات في جال النمذجة الجزيئية MEGBI Training Course Molecular Modelling

Samar Bakoben \& Ahlam Houda

مبيز على:
Molecular Modelling (Principles and Applications)
$2^{\text {nd }}$ Edition
Andrew R.Leach

$$
\begin{aligned}
& \text { إصدار غير كامل 2011/04/25 آخر تعديل }
\end{aligned}
$$

Institute for Genetic Engineering, Ecology and Health (IGEEH)

Karlsruhe, Germany
http://www.aecenar.com/institutes/igeeh
Postal Address: Verein für Gentechnik, Ökologie und Gesundheit (VGÖG) e.V., Haid-und-Neu-Str.7, 76131 Karlsruhe, Germany

مر كز أبكاث الشرق الأوسط للجينات والتقنية البيولوجية
رأسنحاش - قضاء البترون- لبنان
Middle East Genetics and Biotechnology
Institute (MEGBI)
Main Road, Ras-Nhache, Batroun, Lebanon
www.aecenar.com/institues/megbi
Email: info@aecenar.com
Contents
1 Useful Concepts in Molecular Modelling /الفاهيم المفيده في النمذجة الجزيئية:/ 5
1.1 Introduction/ المدمة 5
1.2 Coordinate Systems/نظم التنسيق 7
1.3 Potential Energy Surfaces/أسطح الطاقة الكامنة 10
1.4 Molecular Graphics/رسومات الجزيئة 11
1.5 Surfaces/مساحات السطح 14
1.6 Computer Hardware and Software/ أجهزة وبرمجيات الككبيوتر 15
1.7 Units of Length and Energy/ وحدات الطول والطاقة. 16
1.8 Mathematical Concepts/ المفاهيم الرياضية 16
1.9 References / المراجع 18
2 Computational Quantum Mechanics معلوماتية ميكانيكيا الكم/, 19
2.1 Introduction / مقدم. 19
2.1.1 Operators / المشغّان 21
2.1.2 Atomic Units / وحدات الذرّة 23
2.2 One-electron Atoms 23
2.3 Polyelectronic Atoms and Molecules/إلكترون متعدد الذرّات والززيئيات, 26
2.3.1 The Born-Oppenheimer Approximation/ مقارنة بورن-أوبنهاءر. 27
2.3.2 General Polyelectronic Systems and Slater Determinants / أنظمة الإلكترون المتعدد العامة و 28غددات ساتر
2.4 Molecular Orbital Calculations / حسابات المدار الجزيئي 30
2.4.1 The Energy of a General Polyelectronic System/الطاقة للنظام الإلكتروني المتعدد العام 30
2.4.2 Calculating the Energy from the Wavefunction: The Hydrogen Molecule / احتسا
الطاقة من الدالة الموجية: :حُريّء الهيدروجين 33
2.4.3 The energy of a Closed-shell System/ طاقة نظام الطبةة المغقة 37
2.5 The Hartree-Fock Equations/ معادلات هارتري-فوك مر 38
2.5.1 Hartree-Fock calculations for Atoms and Slater's Rules/ احتساب المارتري-فوك للذرّات وقواعد
39
2.5.2 Linear Combination of Atomic Orbitals (LCAO) in Hartree-Fock Theory/ التو /
الخطي لمدارات الذرّة مِ نظرية هارتري-فوك 41
2.5.3 Closed-shell Systems and the Roothaan-Hall Equations/ نظام الطبقة المغلةة ومعادلات روثن-هال 42
2.5.4 Solving the Roothaan-Hall Equations /حل معادلات روثان-هول 43
2.5.5 A Simple Illustration of the Roothaan-Hall Approach/ توضيح بسيط لمنج روثان-هول. 44
2.6 Basis Sets / أسس الجموعات 48
2.6.1 Creating a Basis Set / إنشاء أسس بعموعة. 49
3 Monte Carlo Simulation Methods:/أساليب محاكاة مونتي كارلو 50
3.1 Introduction:/ألمقفمة 50
3.2 Calculating Properties by Integration:/ خصائص الحساب بالتكامل 52
3.3 Some Theoretical Background to the Metropolis Method: / بعض الخففية النظرية لطريقة متروبوليس. 53
3.4 Implementation of the Metropolis Monte Carlo Method: 57
3.4.1 Random Number Generators: 60
3.5 Monte Carlo Simulation of molecules: 63
3.5.1 Rigid Molecules 63
3.5.2 Monte Carlo Simulations of Flexible Molecules: /. 66
3.6 Models Used in Monte Carlo Simulation of Polymers/. 67
3.6.1 Lattice Models of Polymers 69
3.6.2 Continuous' Polymer Models/ 73
Dictionary. 76
A. 77
B. 77
C. 77
D. 78
E. 78
F. 78
G. 79
I. 79
K 79
M. 79
N. 79
O. 80
P. 80
Q. 80
R. 80
S. 81
T. 81
V. 81
W. 81

1 Useful Concepts in Molecular Modelling

المفاهيم المفيده في النمذجة الجزيئية:|

1.1 Introduction /القدمة

What is molecular modelling?

"Molecular" clearly implies some connection with molecules. The oxford English Dictionary defines "model" as 'a simplified or idealized description of a system or process, often in mathematical terms, devised to facilitate calculations and predictions'. Molecular modelling would therefore appear to be concerned with ways to mimic the behavior of molecules and molecular systems. Today, molecular modelling is invariably associated with computer modelling, but it is quite feasible to perform some simple molecular modelling studies using mechanical models or pencil, paper and hand calculator. Nevertheless, computational techniques have revolutionized molecular modelling to the extent that most calculations could not be performed without the use of a computer. This is not to imply that a more sophisticated model is necessarily any better than a simple one, but computers have certainly extended the range of models that can be considered and the systems to which they can be applied.

Fig2: Example of Molecular
Modelling(Source: http://www1.imperial.ac .uk/medicine/people/r.di ckinson/)

The 'models' that most chemists first encounter are molecular models such as the 'stick' models devised by Dreiding or the 'space filling' models of Corey, Pauling and Koltun (commonly referred to as CPK models). These models enable three-dimensional representations of the structures of molecules to be constructed. An important advantage of these models is that they are interactive, enabling the user to pose 'what if ...' or 'is it possible to ...' questions. These structural models continue to play an important role both in teaching, and in research, but molecular modelling is also concerned with some more abstract models, many of which have a distinguished history. An obvious example is quantum mechanics, the foundations of which were laid many years before the first computers were constructed.
There is a lot of confusion over the meaning of the terms 'theoretical chemistry', 'computational chemistry' and 'molecular modelling'. Indeed, many practitioners use all three labels to describe aspects of their research, as the occasion demands!

Fig3: space filling model of formic acid نموذج'space-filling' لامض النور ميك (Source:

Fig4: Stick model
(Created with Ball View) 'Stick'

Fig5: 'Ball and Stick' model of proline molecule (Source:
http://commons. wikimedia.org/ wiki/File:L-proline-zwitterion-from-xtal-3D-balls-B.png)

صادف غالبية الكيميــائيين في البدايـــة
 " اليت اخترعها Dreiding أو غماذج "space filling " g ، Pauling ، Corey (تُعـرف عـــادةً بنمـــاذنج CPK ثلاثي الأبعاد لتر كيبة الجزيئيــات الـــيتّ تُبنى. ومن المز ايا المهمة لمذه النماذج هي أهنا تفاعلية ، مما يتيح للمستخدم فرصة
 الممكن...' .. هذه النماذج الهيكلية لا تزال تلعب دورا هاما سواء في التدريس ، أو في البحـــوث. ولکــن النمذجـــــة الجز يئية تُعن أيضاً بنماذج نظرية أكثر، بيث أن العديد منها لديه تاريخ بارز. مثال واضح هو ميكانيكا الكم ، بحيث أن الأسس اليت وضعت قبل ســـنوات عديدة شيدت أجهزة الكمبيوتر الأولى. يوجد كثير من الإرباك حــول معـــن المصطلحات التالية: الكيمياء النظريـــة ،"theoretical chemistry"

"computational chemistry"
و النمذجـــــة الجزيئيـــة molecular
. modeling"
البعص المصطلحات الثلالــــة لوصـــن
جو انب أبحاثهم بحسب ما تدعو الحاجة.
'Theoretical chemistry' is often considered synonymous with quantum mechanics, whereas computational chemistry encompasses not only quantum mechanics but also molecular mechanics, minimization, simulations, conformational analysis and other computer-based methods for understanding and predicting the behavior of molecular systems. Most molecular modelling studies involve three stages. In the first stage a model is selected to describe the intra- and intermolecular interactions in the system. The two most common models that are used in molecular modelling are quantum mechanics and molecular mechanics. These models enable the energy of any arrangement of the atoms and molecules in the system to be calculated, and allow the modeler to determine how the energy of the system varies as the positions of the atoms and molecules change. The second stage of a molecular modelling study is the calculation itself, such as an energy minimization, a molecular dynamics or Monte Carlo simulation, or a conformational search. Finally, the calculation must be analyzed, not only to calculate properties but also to check that it has been performed properly.

1.2 Coordinate Systems/نظم التنسيق

It is obviously important to be able to specify the positions of the atoms and/or molecules in the system to a modeling program. There are two common ways in which this can be done. The most straightforward approach is to specify the Cartesian (x, y, z) coordinates of all the atoms present. The alternative is to use internal coordinates, in which the position of each atom is described relative to other atoms
 حين لا تشمل المعلوماتية الكيميائية ميكانيكا الكم فحسب ،
 متعلق بتكوين جزئي وغيرها من الأساليب القائمــــة علـــى الحاسوب لفهم وتوقع سلوك النظم الجزيئية. معظم دراسات النمذجة الجزيئية تشمل ثلاث مراحـــلـ في

 ووالميكانيكا الجزيئية هما النموذجين الأكثـــر الســتخداماماً في النمذجة الجزيئية. هذه النماذج تمكن عملية حساب الطاقـــة لأي بجموعة ذرات وجزيئات في النظام ، وتسمح للمنمذ ج بتحديد كيفية اختلاف طاقة النظام نسبةً إلى the modeler تغيّر الذرات والجزيئات المرحلة الثانية من دراسة النمذجـــة الجزيئية هو الحساب نفسه ، مثل التقليــل مــن الطاقــة ،
 متعلق بتكوين جزئي. وأخيرا ، لا بد من تحليل الحسابات ،

 مواقع الذرات و / أو الجزيئات الموجودة في النظام، في برنامج النمذجة. هناك طر يقتين مشتر كتين للقيام بذلك. النهج الأكثــــر
 (x,y,z) (coordinates internal (البديل هو اســتخحدام الإحـــداثيات الدانحليــــة
in the system. Internal coordinates are usually written as a Z-matrix. The Z-matrix contains one line for each atom in the system.
(coordinates) ، اليت تصف موقف كــل ذرة نــسبةً إلى الذرات الأخرى في النظام. تكتب الإحداثيات الداخلية عـــادةً على شكل مصفوفة زي (Z-matrix). تحتوي المـــصفوفة (Z Z على سطر واحد عن كل ذرة في النظام.

A sample Z-matrix for the staggered conformation of ethane (see Fig6) is as follows:

1	C						
2	C	1.54	1				
3	H	1.0	1	109.5	2		
4	H	1.0	2	109.5	1	180.0	3
5	H	1.0	1	109.5	2	60.0	4
6	H	1.0	2	109.5	1	-60.0	5
7	H	1.0	1	109.5	2	180.0	6
8	H	1.0	2	109.5	1	60.0	7

مثال (Z-matrix) لتشكل متداخل
من الإيثان (Ethane)(انظر Fig6) كما يلي :

1 C
2 C 1.541
$\begin{array}{llllll}3 & \mathrm{H} & 1.0 & 1 & 109.5 & 2\end{array}$
$\begin{array}{lllllll}4 & \mathrm{H} & 1.0 & 2 & 109.5 & 1 & 180.0\end{array}$
3
$\begin{array}{lllllll}5 & \mathrm{H} & 1.0 & 1 & 109.5 & 2 & 60.0\end{array}$
4
$\begin{array}{lllllll}6 & \text { H } & 1.0 & 2 & 109.5 & 1 & -60.0\end{array}$
5
$\begin{array}{lllllll}7 & \mathrm{H} & 1.0 & 1 & 109.5 & 2 & 180.0\end{array}$ 6
8 H $1.0 \quad 2 \quad 109.5 \quad 1 \quad 60.0$ 7

In the first line of the Z-matrix we define atom1, which is a carbon atom. Atom number2 is also a carbon atom that is a distance of $1.54 \mathrm{~A}^{\circ}$ from 1 (columns 3 and 4). Atom 3 is a hydrogen atom that is bonded to atom 1 with a bond length of $1.0 \mathrm{~A}^{\circ}$. The angle formed by atoms $2-1-3$ is 109.5°, and the torsion angle (defined in fig7) for atoms 4-2-13 is 180°. Thus for all except the first three atoms, each atom has three internal coordinates: the distance of the atom from one of the atoms previously defined, the angle formed by the atom and two of the previous atoms, and the torsion angle defined by the atom and three of the previous atoms. Fewer

في السطر الأول من المصفوفة زي(Z-matrix) نحدد الـــنرة1

 و 4). الذرّة 3 (Atom3) هي ذرة هيدروجين متصلة بذرة1
 درجة ، والزاوية الملتوية (المعرّف في الشكل Fig7) للـــنـرات 3-1-2-4 تساوي 180 درجة. وهكذا بلميـــع الـــنـرات باستثناء الثلاثة الأولى ، كل ذرة لديها ثلاثة إحداثيات داخلية (المسافة من الـــنـرة إلى إحــــى : internal coordinates) الذرات المددة سابقاً ، الزاوية اليّ شكلتها الذرة مع اثنين من
internal coordinates are required for the first three atoms because the first atom can be placed anywhere in space (and so it has no internal coordinates); for the second atom it is only necessary to specify its distance from the first atom and then for the third atom only a distance and an angle are required.

It is always possible to convert internal to Cartesian coordinates and vice versa. However, one coordinate system is usually preferred for a given application. Internal coordinates can usefully describe the relationship between the atoms in a single molecule, but Cartesian coordinates may be more appropriate when describing a collection of discrete molecules.

Internal coordinates are commonly used as input to quantum mechanics programs, whereas calculations using molecular mechanics are usually done in Cartesian coordinates. The total number of coordinates that must be specified in the internal coordinate system is six fewer than the number of Cartesian coordinates for a nonlinear molecule. This is because we are at liberty to arbitrarily translate and rotate the system within Cartesian space without changing the relative positions of the atoms.

$$
\begin{aligned}
& \text { الذرات السابقة ، وزاوية الالتواء التي تحددها الذرة مع ثلاثـــة } \\
& \text { من الذرات السابقة. تطلب الإحداثيات الداخلية الأقل من أجل } \\
& \text { الذرات الثلاث الأولى لأن الذرة الاولى ممكن أن تكون في أي } \\
& \text { مكان في الفضاء (ولذا فإنه لا يو جد لـــديها أي إحـــداثيات } \\
& \text { داخلية) ، و بالنسبة للذرة الثانية فمن الضروري، فقط تحديـــد } \\
& \text { المسافة التي تبعدها عن ذرة الأولى، ومن ثم تطلـــب المـــسافة } \\
& \text { والزاوية فقط للذرة الثالثة. }
\end{aligned}
$$

من الممكن دائما تحويل من إحداثيات داخلية (internal) إلى إحداثيات ديكارتية (Cartesian) و العكس بالعكس. وهـــعـع ذلك ، يفضل عادةً تنسيق واحد فقط لتطبيق نظام معين. يمكن و إِن
 مغيد يز جزيء (molecule) واحد ، ولكن الإحـــداثيات الديكارتية (Cartesian coordinates) قد تكون الأنـــسب
عند وصف بحموعة من جز يئات منفصلة.

يشاع استخدام الإحداثيات الداخلية كمدخل لبرامج ميكانيكا الكم (quantum mechanics) ، في حين أن العمليات الخسابية باستخدام الميكانيكا الجزيئية تتم عادة في الإحداثيات الديكارتية. إجمالي عدد الإحداثيات الي يجــبـ أن تــــــد في النظام الداخلي هي ستة أقل مــن عــــددها في الإحــــداثيات الديكارتية لجزيء غير خطي (non-linear). لأنه بإمكاننا تدوير النظام بحرية داخل الفـــضاء الــــيكارتي دون تغـــير الأوضاع النسبية للذرات.

What is a Torsion angle?

A torsion angle A-B-C-D is defined as the angle between the planes A, B, C and B, C, D. A torsion angle can vary though 360° although the range -180° to $+180^{\circ}$ is most commonly used.

Fig7
 الز او ية الواقعة بـــين CBCD , ABC.

180 درجة مئوية و +180 در جة.

1.3 Potential Energy Surfaces/اسطح الطاقة /اككامة

In molecular modeling the BornOppenheimer approximation is invariably assumed to operate. This enables the electronic and nuclear motions to be separated; the much smaller mass of the electrons means that they can rapidly adjust to any change in the nuclear positions. Consequently, the energy of a molecule in its ground electronic state can be considered a function of the nuclear coordinates only. If some or all of the nuclei move then the energy will usually change. The new nuclear positions could be the result of a simple process such as a single bond rotation or it could arise from the concerted movement of a large number of atoms. The magnitude of the accompanying rise of fall in the energy will depend upon the type of change involved. For example, about $3 \mathrm{kcal} / \mathrm{mol}$ is required to change the covalent carbon-carbon bond length in ethane by $0.1 \mathrm{~A}^{\circ}$ away from its equilibrium value, but only about $0.1 \mathrm{kcal} / \mathrm{mol}$ is required to increase the non-covalent separation between two argon atoms by $1 \mathrm{~A}^{o}$ from their minimum energy separation. For small isolated molecules, rotation about single bonds usually involves the smallest changes
(Born- في النمذجة الجزيئية ، يفترض دائما استخدام طريقة Oppenheimer approximation) التقريي. مما يسمح بفصل الحر كات الالكترونيـــة والنوويـــة ; كتلة الإلكترو نات الأصغر , تعني أن هذه الكتلة قــــادرة علـــى التكيف بسرعة مع أي تغيير في المواقف النوويـــة. وبالتـــالي ، يمكن اعتبار طاقة الجزيء في حالتــهـا الالكترونيـــة، وظيفــــة للإحداثيات النووية فقط. إذا انتقلت بعض أو كل النواة فإن
 نتيجة لعملية بسيطة مثل دوران الر ابط المفرد (single bond (أو يمكن أن تنشأ نتيجة حر كة متضافرة من عـــدد (rotation كبير من الذرات. تعتمد حجم الزيادة المــصاحبة للـــهبوط في الطاقة على نوع التغيٌّ المعين. على سبيل المثال ، يُطلب حو الي 3 كيلو كالوري / مول (3 kcal/mol) لتغيير طــول الـ بـــن الكربـــون-كربـــون في الإيثــــان covalent bond (إلى نو A 0.1 (ethane) ولكن يُطلب فقط حوالي 0.1 كيلو كالوري / مــون (0.1 بين ذرتين من الأرجون Argon بنحو A 1 A 1 درجة من تباعد الطاقـــة
in energy. For example, if we rotate the carbon-carbon bond in ethane, keeping all of the bond lengths and angles fixed in value, then the energy varies in an approximately sinusoidal. The energy in this case can be considered a function of a single coordinate only (i.e. the torsion angle of the carboncarbon bond), and as such can be displayed graphically, with energy along one axis and the value of the coordinate along the other.
Changes in the energy of a system can be considered as movements on a multidimensional 'surface' called the energy surface.

الأدنى. بالنسبة للجزيئات الـــصغيرة المعزولــــة ، فـــإن دوران الروابط المفردة (single bonds) عادة ما ينطوي على أصغر التغيرات في الطاقة. على سبيل المثال ، إذا قمنا بتدوير روابـــط الكربون_الكربون في غاز الإيثان ، مع حفظ قيمة طول جميع
 تقريبا. يمكن اعتبار الطاقة في هذه الحالة وظيفة فقط (مثل زاو ية الالتو اء في الرابط بين
الكربون_كربون) ، ويمكن عرض هذه بيانياً ، بوضع الطاقـــة على طول حور الأول وقيمة الإحداثيات (coordinate) على طول الحور الآخر . ويمكن اعتبار التغييرات في طاقـــة النظـــام كتحر كات على "السطح" متعددة الأبعاد تسمى طاقة السطح.

1.4 Molecular Graphics/رسومات /لجزيئية

Molecular graphics (MG) is the discipline and philosophy of studying molecules and their properties through graphical representation. IUPAC limits the definition to representations on a "graphical display device".

Computer graphics has had a dramatic impact upon molecular modelling.
It is the interaction between molecular graphics and the underlying theoretical methods that has enhanced the accessibility of molecular modelling methods and assisted the analysis and interpretation of such calculations.

Over the years, two different types of molecular graphics display have been used in molecular modelling. First to be developed were vector devices, which construct pictures using an electron gun to draw lines (or dots) on the screen, in a manner similar to an oscilloscope. Vector devices were the mainstay of molecular modelling for almost two decades but have now
كان لرسومات الحاسوب أثر كبير على النمذجة الجزيئيــة.
إن التفاعل بين الرسومات والأساليب الجزيئية الكامنة وراء
النظرية ، عززت إمكانية الوصول إلى أســـاليب النمذجــــة
الجز يئية و ساعدت في تحليل وتفسير مثل هذه الحسابات.

$$
\begin{aligned}
& \text { رسومات الجزيئية (MG) هي الانضباط وفلسفة دراســـة } \\
& \text { الجز يئات وخصائصهم من خلال الرسم. اقتــصر تعريـــ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { الرسومات" }
\end{aligned}
$$

been largely superseded by raster devices. These divide the screen into a large number of small "dots", called pixels. Each pixel can be set to any of a large number of colors, and so by setting each pixel to the appropriate color it is possible to generate the desired image.
Molecules are most commonly represented on a computer graphics using stick' or 'space filling' representations. Sophisticated variations on these two basic types have been developed, such as the ability to color molecules by atomic number and the inclusion of shading and lighting effects, which give 'solid' models a more realistic appearance.
Computer-generated models do have some advantages when compared with their mechanical counterparts. Of particular importance is the fact that a computer model can be very easily interrogated to provide quantitative information, from simple geometrical measures such as the distance between two atoms to more complex quantities such as the energy or surface area. Quantitative information such as this can be very difficult if not impossible to obtain from a mechanical model. Nevertheless, mechanical models may still be preferred in certain types of situation due to the ease with which they can be manipulated and viewed in three dimensions.
A computer screen is inherently twodimensional, whereas molecules are threedimensional objects. Nevertheless, some impression of the three-dimensional nature of an object can be represented on a computer screen using techniques such as depth cueing (in which those parts of the object that are further away from the viewer are made less bright) and through the use of perspective. Specialized hardware enables more realistic threedimensional stereo images to be viewed. In the future 'virtual reality' systems may enable a scientist to interact with a computer-generated molecular model in much the same way that a
 (raster devices على لون معين من الألوان الكثيرة، وذلك من خلالد وضع كل بكسل على اللون المناسب لتوليد الصورة المطلوبة.
 باستخدام stick' أو space filling' • وقد تم إضــافة بعض التطويرات على هنين النوعين الأساسين، مثل القدرة
 وتأتيرات الإضاءة، اليت تعطي النماذج الصلبة مظهر أكثـــر و اقعية. إن المقارنة بين النماذج اليت يو جدها الحاسوب مع نظرائهم الميكانيكية لما بعض المز ايا. منها خاصـــةُ، أولاً حقيقـــــة أن نوذج يمكن أن يقدّم الكمبيوتر بكل سهولة مكا معلومات كميّة عن القياسات المندسية البسيطة مثل بعد المسافة بين اثـــين من الذرات إلى كميات أكثر تعقيدا مثل بــــال الطاقــــة أو السطع. ولكن الحصول على معلومــات كميّـــة كــالتي ذُكرت، قد يكون صعب جدا إن لم يكــن مـنـ مـستحيلاً ، الحصول عليها من النماذج الميكانيكية. . ومع ذلـــك ، لا لا يز ال استعمال النماذج الميكانيكية مغضالً في بعض الأوضاع بسبب سهولة التلاعب هما وعرضها الثالاثي الأبعاد. ثانياً إن شاشة الكمبيوتر بطبيعتها ثنائية الأبعاد ، في حين أن
 لبعض الأفكار ذات طبيعة ثلاثية الأبعاد للكائن أن تُمثّــــل
 cueing (أجزاء الجسم الأكثر بعداً تكون أقل بريقاً) ومن
 عرض بسم أكثر واقعية بصور ثلاثية الأبعاد. إن أنظمـــة "الواقع الإنتراضي" قد تُكّن العــا ملم (مفــرد علمــاء) في
mechanical model can be manipulated.

Even the most basic computer graphics program provides some standard facilities for the manipulation of models, including the ability to translate, rotate and 'zoom' the model towards and away from the viewer. More sophisticated packages can provide the scientist with quantitative feedback on the effect of altering the structure. For example, as a bond is rotated then the energy of each structure could be calculated and displayed interactively.

For large molecular systems it may not always be desirable to include every single atom in the computer image; the sheer number of atoms can result in a very confusing and cluttered picture. A clearer picture may be achieved by omitting certain atoms (e.g. hydrogen atoms) or by representing groups of atoms as single 'pseudoatoms'. The techniques that have been developed for displaying protein structures nicely illustrate the range of computer graphics representation possible. Proteins are polymers constructed from amino acids, and even a small protein may contain several thousand atoms. One way to produce a clearer picture is to dispense with the explicit representation of any atoms and to represent the protein using a 'ribbon'. Proteins are also commonly represented using the cartoon drawings developed by J Richardson.

المستقبل، من التفاعل مع النماذج الجزيئية الـــيت يوجـــــــها الحاسوب، بنغس الطريقة الي يمكن التفاعل فيها مع النماذج الميكانيكية.

في الأنظمة الجزيئية الكبيرة قد لا يكون مرغوب دائمـــــا أن تشمل صورة الكمبيوتر كل الذرّات. إذ أن العدد الهائل من

التوصل إلى صورة أوضح عن طريق حــــف ذرات معينـــة
(مثل ذرات الهيدروجين) أو من خلال تثثيل بحموعات من
الذرات في شبه ذرة واحدة (ذرة زائفة). تَعرض التقنيات ،
اليت تح تطويرها لعرض بنية البروتين، بمموعة مـــن تثثيــل
رسومات الحاسوب المـكنة. البروتينات هـــي بــــليمرات
مر كّبة من الأحماض الأمينية، وحتى البروتين الــصغير قـــد
يكتوي على عدة آلاف من الذرات. الطريقة الو حيدة لإنتاج
صورة واضحة هو الاستغناء عن تثثيل مفصّل لكل الذرات
وتثثيل البروتين باستخدام 'الشريط'. الطريقة الوحيدة لإنتاج
صورة واضحة هو الاستغناء عن تثثيل شامل لككل الـــنـرات
و القيام بتمثيل البروتين باستخدام 'شر يط'. تُثل البروتينـــات
أيضا باســتخخدام رســـومات الكرتـــون الـــيت وضـــعها
ج.ريتشاردسون (J Richardson).

$$
\begin{aligned}
& \text { في عا لم النمذجة البزيئية الحاسوبية ، بخد أن حــت أبـسط } \\
& \text { برامج رسومات الحاسوب يوفر بعض التسهيلات الأساسية } \\
& \text { للتلاعب في النماذج ، ،ما في ذلك القدرة علـــى التربهــــة ، } \\
& \text { وتدوير و'تتريب' النموذ نج نو وبعيدا عـــن المـــشاهد. إن }
\end{aligned}
$$

$$
\begin{aligned}
& \text { في حال تدوير الرابط ، تُحتسب طاقة كل بنية ويتم عرضها } \\
& \text { تلقائياً. }
\end{aligned}
$$

1.5 Surfaces/مساحات السطح

Many of the problems that are studied using molecular modelling involve the noncovalent interaction between two or more molecules. The study of such interaction is often facilitated by examining the van der waals, molecular or accessible surfaces of the molecule. The van der waals surface is simply constructed from the overlapping van der waals spheres of the atoms, Fig 8. It corresponds to a CPK or space-filling model. Let us now consider the approach of a small 'probe' molecule, represented as a single van der waals sphere, up to the van der waals surface of a larger molecule.
The finite size of the probe sphere means that there will be regions of 'dead space', crevices that are not accessible to the probe as it rolls about on the larger molecule.

van der Waals surface
Fig 8: The van der Waals surface is shown in red. The accessible surface is drawn with dashed lines and is created by tracing the center of the probe sphere (in blue) as it rolls along the van der Waals surface.(Source: http://en.wikipedia.org/wiki/Accessibl e surface)

Molecular surface

Fig9 : (Source:
http://www.ccp4.ac.uk/.../newsletter38/03 surfarea.html(

إن العديد من المشاكل التي درســــت باستخلدام النمذجة الجز يئية ، تنطـــوي على التآثر غير التساهمي بين اثـــنين أو أكثر من ابلزيئات. كثيراً ما تــسهـل van der) دراسة فـــان ديــر فنــال (للجزي والأسطح (Waals المتاحة، مثل هذا التفاعل. يتألف سطح (van der waals) فان ديـــر فــــال van (ببساطة من تداخل فان دير فال (كما (der waals
 space- نــــوذ أو نمــوذ filling
 فان دير فال كروي واحل ، إلى سطح جزيء فان دير فال أكبر . الحجم المدود للجسم الكروي المتوقّع يعين أنه ستكون هناك مناطق 'مساحة
 إلى الشقوق لأهنا تلتف حول جــــزيّء أكبر.

This is illustrated in fig 1.4. The amount of dead space increases with the size of the probe; conversely, a probe of zero size would be able to access all of the crevices. The molecule surface contains two different types of surface element. The contact surface corresponds to those regions where the probe is actually in contact with the van der

يز داد عدد المساحات الميتة مع تز ايد عدد الآجــسام المتوقّســة.
 الوصول إلى كل الشقوق. يكتوي سطح الجزيء علـــى نــــوعين غتتلفين من عنصر السطح . يشير السطح الغتــكـ، إلى تلـــك المناطق حيث أن الجسم المتوقّع على احتكاكُ مع سطح فان دير
waals surface of the 'target'. The re-entrant surface regions occur where there are crevices that are too narrow for the probe molecule to penetrate. The molecular surface is usually defined using a water molecule as the probe, represented as a sphere of radius $1.4 \mathrm{~A}^{\circ}$.

The accessible surface is also widely used. As originally defined by Lee and Richards this is the surface that is traced by the center of the probe molecule as it rolls on the van der waals surface of the molecule (Fig.1.4). The center of the probe molecule can thus be placed at any point on the accessible surface and not penetrate the van der waals spheres of the atoms in the molecule.

 كجسم متوقّع مُمثّل فِّ جسم كروي ، ييلغ شعاءه 1.4 ألف درجة.
 (بسبب تعريف Lee و Richards الأصلي) السطح الممتد من

 أي نقطة في الــ accessible surface دون أن يدخل الجسم
الكروي للذرّات إلى داخل الجزيّء.

1.6 Computer Hardware and Software/ جهزة وبرمجيات الكمبيوتر

The workstations that are commonplace in many laboratories now offer a real alternative to centrally maintained 'supercomputers' for molecular modelling calculations, especially as a workstation or even a personal computer can be dedicated to a single task, whereas the supercomputer has to be shared with many other users. Nevertheless, in the immediate future there will always be some calculations that require the power that only a supercomputer can offer. The speed of any computer system is ultimately constrained by the speed at which electrical signals can be transmitted. This means that there will come a time when no further enhancements can be made using machines with 'traditional' single-processor serial architectures, and parallel computers will play an ever more important role.

تقدم أماكن العمل الموجودة في العديد من المختــبرات بـــيلا للحواسيب المر كزية العملاقـــة 'supercomputers' الـــــيّ تقوم بالعمليات الحسابية للنمذجة الجزيئية ، بكيث يكرّس مكان العمل أو حتى جهاز كمبيوتر شخصي لمهمة واحدة، في حين أن

 الحاسوب العملاق فقط. إن سرعة أي نظام حاسوب مقيــيـة الـا بالسرعة التي تنتقل فيها الإشارات الكهر بائية. وهذا يعين أنـــهـ

 والحواسيب المتوازية سوف تلعب دورا أكثر أهمية من أي وقت

To perform molecular modelling calculations one also requires appropriate programs (the software). The software used by molecular modelers ranges from simple programs that perform just a single task to highly complex packages that integrate many different methods. There is three items of software have been so widely used: the Gaussian series of programs for performing ab intio quantum mechanics, the MOPAC/AMPAC programs for semi-empirical quantum mechanics and the MM2 program for molecular mechanics.
 مناسبة (البر نامج). تتراوح البربيات الــــستخدمة في النمذجـــــة

 نطاق واسع جدا : سلسلة برامت غاوسي Gaussian لتنغيذ ab
 MM2 لميكانيكا الكم شبه التجر ييية وبرنـــامج AMPAC للميكانيكيا البزيئية.

1.7 Units of Length and Energy/ وحدات الطول والطاقة

Z-matrix is defined using the angstrom as the unit of length ($1 \mathrm{~A}^{\circ} \equiv 10^{-10} \mathrm{~m} \equiv 100 \mathrm{pm}$). The angstrom is a non-SI (International System of units) unit but is a very convenient one to use, as most bond lengths are of the order of $1-2 \mathrm{~A}^{\circ}$. One other very commonly non-SI unit found in molecular modelling literature is the kilocalorie ($1 \mathrm{kcal}=4.1840 \mathrm{~kJ}$). Other systems of units are employed in other types of calculation, such as the atomic units used in quantum mechanics.

 تابعة للنظام الدولي للوحدات ، ولكنها ملائمة جدا للاستخدام، و

 الجزيئية،وهي غير تابعة للنظام الدولي للوحدات : السعرات الحرارية kilocalorie
 الحسابات، مثل الوحدة الذرّيّة اليت تستخدم في ميكانيكا الكم.

1.8 Mathematical Concepts/ /المغاهيم/الرياضية

A full appreciation of all the techniques of يجب القيام بالمعابلجة الرياضية، من أجل تقدير جميــع تقنيــات molecular modelling would require a النمذجة الجزيئية. لذلك ، يمب معرفة بعض المفاهيم الرياضــية mathematical treatment. However, a proper

[^0] knowledge of mathematical concepts such as vectors, matrices, differential equations, complex numbers, series expansions and lagrangian multipliers and some very elementary statistical concepts.
 complex numbers لاغرانج وبعض المفاهيم الإحصائية الأولية.

1.9 References / (/لمر/جع

1. http://www.giantmolecule.com/shop/scripts/prodView.asp?idproduct=6
2. http://www1.imperial.ac.uk/medicine/people/r.dickinson/
3. http://www.answers.com/topic/molecular-graphics
4. http://commons.wikimedia.org/wiki/File:L-proline-zwitterion-from-xtal-3D-balls-B.png)
5. http://en.wikipedia.org/wiki/Accessible surface
6. http://www.ccp4.ac.uk/.../newsletter38/03 surfarea.html

2 Computational
 Quantum
 Mechanics

معلوماتية ميكانيكيا الكم/

2.1 Introduction / مقدم

There are number of quantum theories for هناك عدد من نظريات الكم لمعالجة الأنظمـــة الجز يئيــة. treating molecular systems. The one which has been widely used is molecular orbital theory. However, alternative approaches have been developed, some of which we shall also describe, albeit briefly. We will be primarily concerned with the ab initio and semi-empirical approaches to quantum mechanics but will also mention techniques such as Huckel theory, valence bond theory and Density functional.

وتعتبر نظرية المدار الجزيئي ، النظرية الأكثر استعمالاً. كما
 initio نذكر أيضاً بعض التقنيات مشل نظرية Huckel ، نظريـــة تكافؤ السندات valence bond و نظرية الكثافة الوظيفية .Density functional

The starting point for any discussion of quantum mechanics is the Schrödinger equation. The full, time-dependent form of this equation is:

إن معادلة شرودنغر Schrödinger هي نقطة الإنطـــالاق لأية مناقشة في ميكانيكا الكم. النموذج الكامل للمعادلــــة المتعلقة بالزمن هو
eq.2,1

$$
\left(-\frac{\hbar^{2}}{2 m}\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}\right)+V\right) \Psi(\mathbf{r}, t)=i \hbar \frac{\partial}{\partial t} \Psi(\mathbf{r}, t)
$$

Eq. $(2,1)$ refers to a single particle (egg. an electron) of mass m which is moving through space (given by a position vector $\boldsymbol{r}=x \boldsymbol{i}+y \boldsymbol{j}+z \boldsymbol{k}$) and time (t) under the influence of an external field V (which might be the electrostatic potential due to the nuclei of a molecule). h is Planck's constant divided by 2π and i is the square root of $-1 . \Psi$ is the wavefunction which characterizes the particle's motion; it is from the wavefunction

يشير
 والوقت (t) تحت تأثير الحقل الخارجي V (التي قد يكون إمكانية الكهرباء المرتبطة بنوى الجزيء). h هو قيمـــة Planck الثابتــــة
 الموجية الذي يميز حر كة البِسيمات. الذي هو بالتالي من الدالــــة الموجيّة اليت تمكننا من استنتاج الخصائص المختلفة للجـــسيمات.
that we can derive various properties of the particle. When the external potential V is independent of time then the wavefunction can be written as the product of a spatial part and time part: $\Psi(r, t)=\psi(r) T(t)$. We shall only consider situations where the potential is independent of time, which enables the timedependent Schrödinger equation to be written in the more familiar, time-independent form:

عندما تكون الكتلة الخارجية V غير مرتبطة بالوقت، يُمكن كتابة
 . $\Psi(r, t)=\psi(r) T(t)$ عندما تكون الكتلة غير مرتبطة بالوقت، مــــا يــسمح لمعادلــــة شرودنغر المرتبطة بالوقت، بأن تكتب على هذا النحو الغير مرتبط

$$
E \psi(r)=-\frac{\hbar^{2}}{2 m} \nabla^{2} \psi(r)+V(r) \psi(r)
$$

E is the energy of the particle and we have used the abbreviation ∇^{2} (pronounced 'del squared'):

$$
\begin{aligned}
& \text { ه } \\
& \text { ('del squared' (المسمّى (}{ }^{(1)}
\end{aligned}
$$

eq.2,3

$$
\nabla^{2}=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}
$$

 $(1,1)$ to $\hat{\mathrm{H}} \Psi$, where $\hat{\mathrm{H}}$ is the Hamiltonian Ψ operator:
eq.2,4

$$
\hat{H}=-\frac{\hbar^{2}}{2 m} \nabla^{2}+V
$$

This reduces the Schrödinger equation to $\hat{H} \Psi=E \Psi$. To solve the Schrödinger equation it is necessary to find values of E and functions Ψ. The Schrödinger equation falls into the category of equations known as partial differential eigenvalue equations in which an operator acts on a function (the eigenfunction) and returns the function multiplied by a scalar (the eigenvalue). A

ما يختصر معادلة شرودنغر إلى

 حيث يقوم الُمحدد بالتأثير على وظيفة (eigenfunction)ويرُدرها
 القيمة الذاتية simple example of an eigenvalue equation is:

Eq.2,5

$$
\frac{d}{d x}(y)=r y
$$

The operator here is $d / d x$. One eigenfunction of this equation is $y=e^{a x}$ with the eigenvalue r being equal to a. Eq. 1,5 is a first-order differential equation. The Schrödinger equation is a second-order differential equation as it involves the second derivative

المشغّل هنا هو Eigen $d / d x$. . وظيفة الــه المعادلة هـــــ
 إلى الترتيب التفاضلي الأول. وتنتمي معادلة شرودنغر إلى الترتيب
 of Ψ. A simple example of an equation of this type is

Eq.2,6

$$
\frac{d^{2} y}{d x^{2}}=r y
$$

 form $y=A \cos k x+B \sin k x$, where A, B and k are constants. In the Schrödinger equation Ψ is the eigenfunction and E the eigenvalue.
 الــ Eigen والـــ E هي قيمتها.

2.1.1 Operators / المشتّلون

The most commonly used operator is that for the energy, which is the Hamiltonian operator itself, \hat{H}. The energy can be determined by

إن مشغل هاميلتون للطاقة هو المشغل الأكثر شيوعاً. يمكن احتساب الطاقة من خلال احتساب هذا التكامل: calculating the following integral:

Eq.2,7

$$
E=\frac{\int_{-\infty}^{+\infty} \Psi * \hat{H} \Psi d T}{\int_{-\infty}^{+\infty} \Psi * \Psi d T} \Rightarrow \int \Psi * \hat{\mathrm{H}} \Psi d T=\int \Psi * E \Psi d T
$$

$\left(\Psi^{*}\right)$: the wavefunction may be a complex number.
E: scalar and so can be taken outside the يمكن أن تخرج من التكامل. إذا كانت الدالـــة الموجيــة E integral.

طبيعية فإن المخرج في المعادلة 2,7.eq يساوي 1.
If the wavefunction is normalized then the denominator in eq. 2,7 will equal 1.

يتألف مشغل هاميلتون من جزئين،كيث تعكس إسهامات : The Hamiltonian operator is composed of two parts that reflect the contributions of: kinetic and potential energies to the total energy. The kinetic الطاقة الحر كية و طاقة الوضع على إجمالي الطاقـــة. مــشغّل energy operator is:

الطاقة الحر كية هو:

Eq.2,8

$$
-\frac{\hbar^{n}}{2 m} \nabla^{2}
$$

And the operator for the potential energy simply involves multiplication by the appropriate expression for the potential energy. For an electron in an isolated atom or molecule the potential energy operator comprises the electrostatic interactions

ويشمل مشغّل طاقة الوضع ضرب العبـــارة الجبريـــة المناســـبة لإمكانات الطاقة. بالنسبة لإلكترون في ذرّه أو جزيّء معــزورل، يشمل مشغّل طاقة الوضع التفاعلات الكهروســـتاتيكية بـــين الإلكترون و النواة و التآثرات بين الإلكتـــرون والإلكترو نـــاتـات
 البروتونات، فإن مشغل الطاقة الختملة هو على النحو التالي : between the electron and nucleus and the interactions between the electron and the other electrons. For a single electron and a single nucleus with Z protons the potential energy operator is thus:

Eq.2,9

$$
V=-\frac{Z e^{2}}{4 \pi \varepsilon r}
$$

Operator for linear momentum along the x مشغل زخم الحر كة الخطي أو كمية الحر كة الخطية في مـــوازاة direction :

Eq.2,10

$$
\frac{h}{i} \frac{\partial}{\partial x}
$$

The expectation value of this quantity can ويكن الخصول على قيمة التوقع هذه الكمية من خلال تقيــيم thus be obtained by evaluating the following integral:

Eq.2,11

$$
p x=\frac{\int \Psi * \frac{h}{i} \frac{\partial}{\partial x} \Psi d T}{\int \Psi: \Psi d T}
$$

2.1.2 Atomic Units / وحدات الذرّة

The atomic units of length, mass and energy are as follow:

- 1 unit of charge equals the absolute charge on an electron, $|e|=1.60219 \times 10^{-19} \mathrm{C}$
- 1 mass unit equals the mass of the electron, $m_{s}=9.10593 \times 10^{-31} \mathrm{~kg}$
- 1 unit of length (1Bohr) is given by $a_{0}=h^{2} / 4 \pi^{2} m_{\theta} e^{2}=5.29177 \times 10^{-11} m$.

It is the radius of the first orbit in Bohr's treatment of the hydrogen atom. It also turns out to be the most probable distance of 1 s electron from the nucleus in the hydrogen atom.

- 1 unit of energy (1 Hartree) is given by

$$
E_{a}=e^{2} / 4 \pi s_{0} a_{0}=4.35981 \times 10^{-18} J
$$

$$
\begin{aligned}
& \text { إنه شعاع المدار الأول في نوذذ بور لذرّة الهيدروجين. } \\
& \text { ويتحول أيضاً إلى أن يكون المسافة الأكثر ترجيحاً من } \\
& \text { s }
\end{aligned}
$$

$$
\begin{aligned}
& \text { كما إنه يتو افق مع التآثر بين شحنتين إلكترونيتن يفصلهما }
\end{aligned}
$$

$$
\begin{aligned}
& \text { ذرّة الهيدرو جين -0.5 هارتري. }
\end{aligned}
$$

2.2 One-electron Atoms

In an atom that contains a single electron, the potential energy depends upon the distance between the electron and the nucleus as given by the Coulomb equation.

في الذرة اليت تحتوي على إلكترون واحد، ترتكز الطاقة الكامنة على المسافة بين الإلكترون والنو اة بحسب معادلة

It is more convenient to transform the Schrodinger equation to polar coordinates r, θ and ϕ, (wavefunction) where:

ومن الأكثر ملاءمة، تحويل معادلة شرودنبر للإحداثيات
r : the distance from the nucleus
القطبية O،r و ϕ (دالة موجيّة) حيث :
θ : the angle to the z axis
ϕ : the angle from the x axis in the $x y$ plane
r : المسافة من نواة z z
xy في الطائرة x x :
Eq.2,12

$$
\Psi_{n i m}=R_{m}(r) Y_{l m}(\theta, \phi)
$$

$Y(\theta, \phi)$: angular function called a spherical

$$
\text { Y(} \theta, \phi): \text { وظيفة زاويّة تسمى تناسق كروي }
$$

harmonic
$R(r)$: radial function
n عدد الكم الرئيسي: 2,1,0,....
n : principal quantum number: $0,1,2, \ldots$
1: عدد الكم السمتي: n-1,1),1,1)
1 : azimuthal quantum number : $0,1, \ldots,(n-1)$
m : magnetic quantum number : $-1,-(\mathrm{l}-1), \ldots 0 \ldots(1-$

1), 1

Eq.2,13

$$
R_{n l}(n)=-\left[\left(\frac{2 z}{n a_{0}}\right)^{3} \frac{(n-l-1)!}{2 n[(n+l)!]^{3}}\right]^{1 / 2} \exp \left(-\frac{\rho}{2}\right) \rho^{l} L_{n+1}^{2 l+1}(\rho)
$$

$\rho=2 Z r / n a_{0}$, where $n a_{0}$ is the Bohr radius. $L_{M+1}^{22+1}(\rho)$ is a special type of function called a
Laguerre Polynomial

$$
\text { no } n \alpha_{0} \text { هي شعاع بوهر. }
$$

Laguerre هي نوع ميز من الوظائف تــسمى $L_{n+1}^{2 l+1}(\rho)$
Polynomial
Eq.2,14

$$
Y_{l m}(\theta, \phi)=\varrho_{l m}(\theta) \Phi_{m}(\phi)
$$

With:

$$
\begin{gathered}
\Phi_{m}(\phi)=\frac{1}{\sqrt{2 \pi}} \exp (i m \phi) \\
\vartheta_{I m}(\theta)=\left[\frac{(2 l+1)}{2} \frac{(l-|m|)!}{(l+|m|)!}\right]^{1 / 2} P_{l}^{|m|}(\cos \theta)
\end{gathered}
$$

$\Phi_{m}(\phi)$: The solutions to the Schrödinger \quad. equation for a particle on a ring. $P_{l}^{|m|}(\cos \theta):$ Series of function called the the associated $)$ ($\cos \theta$) associated Legendre polynomials.
(Legendre polynomials.

Fig 2.1:

The common graphical representations of s, p and d orbitals/
التمثيل الر سومي المشترك لمدار s,p,d

Src: http://butane.chem.uiuc.edu/pshapley/GenChem2/Intro/orbit.gif

The energy of each solution is a function of the principal quantum number only; thus orbitals with the same value of n but different 1 and m are degenerate. The orbitals are often represented as shown in fig 2.1. These graphical representations are not necessarily the same as the solutions given above. For example, the 'correct' solutions for the 2 p orbitals comprise one real and two complex functions:

$$
\begin{gathered}
2 p(+1)=\sqrt{3 / 4 \pi} R(r) \sin \theta e^{i \phi} \\
2 p(0)=\sqrt{3 / 4 \pi} R(r) \cos \theta \\
2 p(-1)=\sqrt{3 / 4 \pi} R(r) \sin \theta e^{-i \phi}
\end{gathered}
$$

$R(r)$: The radial part of wavefunction
$\sqrt{3 / 4 \pi}$: A normalization factor for the angular part.
$2 p(0)$: function corresponds to the $2 p_{z}$ orbital that is pictured in Fig 2.1.

إن طاقة كل حل هي وظيفة العدد الكــــم الرئيــسي فقــط، ط،
 ختلفة. وغالبا ما تتمثّل المدارات كما هو مبين في الشكل رقم 2،1. هذه الأشكال البيانية ليس بالضرورة لها نفس الحلـــول المذكورة أعلاه. على سبيل المثال ، الحلول 'الصحيحة لمدارات 2p تتكون من واحد حقيقي وظيفتين معقدتين :

The linear combinations below are the $2 p x$ and 2py orbitals shown in Fig 2.1.
\square التوافقيات الخطّية أدنــــاه الموجودين في Fig 2.1.

$$
\begin{gathered}
2 p_{x}=1 / 2[2 p(+1)+2 p(-1)]=\sqrt{3 / 4 \pi} R(r) \sin \theta \cos \phi \\
2 p_{y}=-1 / 2[2 p(+1)-2 p(-1)]=\sqrt{3 / 4 \pi} R(r) \sin \theta \sin \phi
\end{gathered}
$$

These linear combinations still have the same هذه التو افقيات الخطّية ما زال لديها نفس طاقة الدالة المو جية energy as the original complex wavefunctions.

المر كّبة الأصلية.

2.3 Polyelectronic Atoms and Molecules/إلكترون متعدد الذرّات والجزيئيات

Solving the Schrödinger equation for atoms with more than one electron is complicated by a number of factors. The first complication is that the Schrödinger equation for such systems cannot be solved exactly (solutions can only be approximations to the real true solutions).
A second complication with multi-electron species is that we must account for electron spin.
Spin is characterized by the quantum number s, which for an electron can only take the value $1 / 2$. The spin angular momentum is quantized such that its projection on the z axis is either $+\hbar$ or $-\hbar$. These two states are characterized by the quantum number m_{s}, which can have values of $+1 / 2$ or $-1 / 2$, and are often referred to as 'up spin' and 'down spin' respectively. The spin part defines the electron spin and is labeled α or β. These spin functions have value of 0 or 1 depending on the quantum number m_{s} of the electron. Each spatial orbital can accommodate two electrons, with paired spins. In order to predict the electronic structure of a Polyelectronic atom or a molecule, the Aufbau principle is employed, in which electrons are assigned to the orbitals, two electrons per orbital. For most of the situations that we shall be interested in the number of electrons, N ,

إن عملية حل معادلة شرودبخر لذرات ذات أكثر من إلكترون واحـــد، هي عملية معقدة وذلك بسبب عدد من العوامـــل. المشكلة الأولى هي أنه لا يمكن إيجاد حل دقيق لمعادلة شرودبخر
 الحقيقية الصحيحة). المشكلة الثانية مــع الأنـــواع المتعـــــد
الإلكترون هو أنه يبب علينا حساب غزل الإلكترون.

يتميز الغزل أو السبين بعدد الكم s ، التي يمكن للإلكتـــرون أن
يأخذ قيمة تساوي 1/2.

يُعد غزل الزخمم الزاوي مثل إسقاطه على عور Z هو أيضاً شـ
 يأخذ قيمة 1/2 أو 1/2-.._وغالبا ما يشار إليها باسم "مــعـع عقارب الساعة" أو "عكس عقارب الساعة" يكدد جزء السبين (الجزء الغزلي) إلكترون الغزل (الـــسبين) ويــسمى α أو β. تساوي وظائف السبين هذه قيمة صغر أو واحد بحسب عـــد
 كل مدار يمكن أن يستوعب إلكتــرونين، مــع غـــزلين (2) غزل/سبين). من أجل توقع البنية الالكترونية للذرة أو الجزئ المتعدد الإلكترونات، يتم عمل على أساس قاعدة اوف بـــاو، التي ترتكز على نسب الإلكترونات إلى المـــدارات. و بالنـــسبة
will be an even number that occupy the $\mathrm{N} / 2$ lowest-energy orbitals.

لمعظم الحالات التي هنتم من خلالها بعـــدد الالكترونـــات، N،

Electrons are indistinguishable. If we exchange any pair of electrons, then the distribution of electron density remains the same. According to the Born interpretation, the electron density is equal to the square of the wavefunction. It therefore follows that the wavefunction must either remain unchanged when two electrons are exchanged, or else it must change sign. In fact, for electrons the wavefunction is required to change sign: this is the antisymmetry principle.

Eq.2,15

$$
\propto\left(\frac{1}{2}\right)=1, \propto\left(-\frac{1}{2}\right)=0, \beta\left(+\frac{1}{2}\right)=0, \beta\left(-\frac{1}{2}\right)=1
$$

2.3.1 The Born-Oppenheimer Approximation/ مقارنة بورن-أوبنهايمر

The electronic wavefunction depends only on the positions of the nuclei and not on their momenta. Under the Born-Oppenheimer approximation the total wavefunction for the molecule can be written in the following form:

تعتمد الدالة الموجية الالكترونية فقط على مواقع النوى وليس على عزمها. و.موجب تقريب بورن- أوبنهايمر، يمكن كتابـــــة الدالة الموجية الإجمالية للجزيء على الشكل التالي :

Eq.2,16

$$
\Psi_{\text {tot }}(\text { nuclei, electrons })=\Psi(\text { electrons }) \Psi(\text { nuclei })
$$

The total energy equals to the sum of the nuclear energy and the electronic energy. The electronic energy comprises the kinetic and potential energy of the electrons moving in the electrostatic field of the nuclei, together with electron-electron repulsion:

يساوي إجمالي الطاقة بممـــو ع الطاقـــة النوويـــة والطاقـــة الالكترونية. تضم الطاقة الالكترونية، الطاقة الحر كية والطاقة الغتملة من الإلكترونات المتحر كة في الحقل الكهر بائي للنوى،
جنبا إلى جنب مع تباعد الإلكترون- الإلكترون.

Eq.2,17

$$
E_{\text {zot }}=E(\text { electrons })+E(\text { nuclei })
$$

2.3.2 General Polyelectronic Systems and Slater Determinants / أنظمة الإلكترون المتعدد العامة و محددات

 سلاترA determinant is the most convenient way to write down the permitted functional forms of a Polyelectronic wavefunction that satisfies the antisymmetry principle. In general, if we have N electrons in spin orbitals $X_{1}, X_{2}, \ldots, X_{N}$ then an acceptable form of the wavefunction is:

إن المُحدّد هو الطريقة الأكثر ملائمة لكتابة الأشكال الوظيفيــة المتاحة للدالة الموجية المتعددة الإلكترونات التي تُطبق مبدأ عدم التناظر. بشكل عام، إذا كان لدينا N إلكترونات في المـــدارات الغزلية X,

Eq.2,18

$$
\Psi=\frac{1}{W N}\left|\begin{array}{cccc}
X 1(1) & X 2(1) & \ldots & X N(1) \\
X 1(2) & X 2(2) & \ldots & X N(2) \\
\vdots & \vdots & & \vdots \\
X 1(N) & X 2(N) & \ldots & X N(N)
\end{array}\right|
$$

$\mathrm{X} 1(1)$: indicates a function that depends on the space and spin coordinates of the electron labeled ' 1 '.
$\frac{1}{\sqrt{N!}}$: ensures that the wavefunction is normalized.
This functional form of the wavefunction is called a Slater Determinant and is the simplest form of an orbital wavefunction that satisfies the antisymmetric principle.
(If any two rows of determinant is identical, then the determinant vanishes)
When the Slater determinant is expanded, a total of N ! terms results. This is because N ! different permutations of N electrons.
For example, for the three-electron system the determinant is

X1(1): تدل على وظيفة متعلقة بالفضاء وإحداثيات الغــزل
(إذا كان هناك تطابق بين صفين من المحدد ، يؤدي ذلـــك إلى
اختفاء الحمدد)
ينتج عن توسّع مُحدد السلاتر، بجموعة من N! مــصطلح .
وذلك بسبب الـــN ت تبديل ختلف N إلكترون.مثـــال:
إن الُُحدد لنظام ذو ثلاثة إلكترونات هوُ:

$$
\begin{aligned}
& \text { للإلكترون "1". } \\
& \text {.يضمن إن الدالة المو جيةمنسبّبة آحادياً. } \frac{1}{\sqrt{N!}} \\
& \text { هذا الشكل الوظيفي للدالة الموجية يسمى مُحدد ساتر وهو } \\
& \text { الشكل الأبسط لمدار الدالة المو جية اليتي يُنفّذ شروط مبدأ عدم } \\
& \text { التناظر . }
\end{aligned}
$$

$$
\Psi=\frac{1}{\sqrt{12}}\left|\begin{array}{lll}
X 1(1) & X 2(1) & X 3(1) \\
X 1(2) & X 2(2) & X 3(2) \\
X 1(3) & X 2(3) & X 3(3)
\end{array}\right|
$$

Expansion of the determinant gives the following expression:

ينتج عن امتداد الُمحدد، العبارة الجبرية التالية:

$$
\begin{gathered}
X 1(1) X 2(2) X 3(3)-X 1(1) X 3(2) X 2(3)+X 2(1) X 3(2) X 1(3) \\
-X 2(1) X 1(2) X 3(3)+X 3(1) X 1(2) X 2(3)-X 3(1) X 2(2) X 1(3)
\end{gathered}
$$

This expansion contains six terms ($\equiv \mathbf{3}$). The six possible permutations of three electrons are: $123,132,213,231,312,321$. Some of these permutations involve single exchanges of electrons; others involve the exchange of two electrons. For example, the permutation 132 can be generated from the initial permutation by exchanging electrons 2 and 3 (If we do so we will obtain the wavefunction with a changed sign $-\Psi$).By contrast, the permutation 312 requires that electrons 1 and 3 are exchanged and then electrons 1 and 2 are exchanged. (This gives rise to an unchanged wavefunction).
In general an odd permutation involves an odd number of electron exchanges and leads to a wavefunction with a changed sign; an even permutation involves an even number of electron exchanges and returns the wavefunction

 هي:123,132,213,231,312,321.تنطوي بعض هنه التباديل على تبادلات مفردة من الإلكترونات، في حين ينطوي البعض الآخر على تبادل اثنين من الإلكترونات. مثلاً، يمكن أن نحصل

 الإلكترونات 1 و2 (هذا ما يسبب دالة موجية غير متغيرة).
 الإلكترونات ما يؤدي إلى تغيير علامة الدالة الموجية; ، تنطوي
 ويعيد الدالة الموجية دون تغير.

The Slater determinant can be reduced to a shorthand notation. In one system of the various notation systems, the terms along the diagonal of the matrix are written as a singlerow determinant

Eq.2,19

$$
\left|\begin{array}{lll}
x 1(1) & x 2(1) & x 3(1) \\
x 1(2) & x 2(2) & x 3(2) \\
x 1(3) & x 2(3) & x 3(3)
\end{array}\right| \equiv\left|\begin{array}{lll}
x 1 & x 2 & x 3
\end{array}\right|
$$

The normalization factor is assumed. It is often convenient to indicate the spin of each electron in the determinant; this is done by writing a bar when the spin part is β (spin down); a function without a bar indicates an

spin (spin up). Thus, the following are all commonly used ways to write the Slater determinantal wave function for the Be atom (which has the electronic configuration $1 \mathrm{~s}^{2}$ $2 s^{2}$)

$$
\begin{aligned}
& \text { (غزل إلى الأسفل)؛ أما عندما يكون الجزء الغزلي } \alpha \text { (غــــزل إلى } \\
& \text { الأعلى) فإن الوظيفة تكون بدون شريط أفتي فوقها. فيما يـــــي } \\
& \text { جميع الطرق المستخدمة لكتابة عحدد سالتر للدالة الموجية لـــــرّة }
\end{aligned}
$$

Eq.2,20

$$
\begin{gathered}
\Psi=\frac{1}{\sqrt{24}}\left|\begin{array}{llll}
\phi_{1 s}(1) & \emptyset_{1 s}(1) & \phi_{2 s}(1) & \emptyset_{2 s}(1) \\
\phi_{1 s}(2) & \emptyset_{1 s}(2) & \phi_{2 s}(2) & \emptyset_{2 s}(2) \\
\phi_{1 s}(3) & \emptyset_{1 s}(3) & \phi_{2 s}(3) & \oint_{2 s}(3) \\
\phi_{1 s}(4) & \emptyset_{1 s}(4) & \phi_{2 s}(4) & \emptyset_{2 s}(4)
\end{array}\right| \\
\equiv\left|\phi_{1 s} \emptyset_{1 s} \phi_{2 s} \emptyset_{2 s}\right| \\
\equiv|1 s-1 s-2 s-2 s|
\end{gathered}
$$

An important property of determinants is that a multiple of any column can be added to another column without altering the value of the determinant. This means that the spin orbitals are not unique; other linear combinations give the same energy.

إحدى الصفات المهمة للمُحتدّدات هي أن مُر كّب أي عـــامود

 الأخرى أن تعطي الطاقة ذاهةا.

2.4 Molecular Orbital Calculations / حسابات المدار الجزيئي

2.4.1 The Energy of a General Polyelectronic System/الطاقة للنظام الإلكتروني المعدد العام

For N n-electron system, the Hamiltonian takes \mid من أجل نظامN N م إلكترون ، تتخذ الماميلتون هذا الــشكل the following general form:

$$
\hat{\mathrm{H}}=\left(-\frac{1}{2} \sum_{i=1}^{N} \nabla_{i}^{2}-\frac{1}{r_{1 A}}-\frac{1}{r_{1 B}} \ldots+\frac{1}{r_{12}}+\frac{1}{r_{13}}+\cdots\right)
$$

A, B, C, etc: indicates the nuclei.
$1,2,3, \ldots$: indicates the electrons.
The Slater determinant for a system of N
......1, 2, 3, B, C

Each term in the determinant can thus be written $\operatorname{Xi}(1) \mathrm{Xj}(2) \mathrm{Xk}(3) \ldots \mathrm{X} u(\mathrm{~N}-1) \mathrm{Xv}(\mathrm{N})$ where i, j, k, \ldots, u, v is a series of N integers.
As usual, the energy can be calculated from
(1)Xj(2)Xk(3) ...Xu(N- يككن كتابة كل حدّ في الخدد كـي 1)Xv(N) حيث 1 (كالعادة، يمكن احتساب الطاقة من:

$$
\begin{gathered}
E=\frac{\int \Psi \hat{\mathrm{H}} \Psi}{\int \Psi \Psi} \\
\int \Psi \hat{\mathrm{H}} \Psi=\int \ldots \int d_{T 1} d_{T 2} \ldots d_{T N}\left\{\left[X_{i}(1) X_{j}(2) X_{k}(3) \ldots\right]\right. \\
\times\left(-\frac{1}{2} \sum_{i} \nabla_{i}^{2}-\left(1 / r_{1 A}\right)-\left(1 / r_{1 B}\right) \ldots+\left(1 / r_{12}\right)+\left(1 / r_{1 B}\right)+\ldots\right) \\
\left.\times\left[X_{i}(1) X_{j}(2) X_{k}(3) \ldots\right]\right\} \\
\int \Psi \Psi=\int \ldots \int d_{T 1} d_{T 2} \ldots d_{T N}\left\{\left[X_{i}(1) X_{j}(2) X_{k}(3) \ldots\right]\left[X_{i}(1) X_{j}(2) X_{k}(3) \ldots\right]\right\}
\end{gathered}
$$

If the spin orbitals form an orthonormal set then only products of identical terms from the determinant will be non-zero when integrated over all the space. (If the spin orbitals are normalized, integral will equal 1) (If the term involves different electrons, it will equal zero, due to the orthogonality of spin orbitals). The numerator in the energy expression can be broken down into a series of one-electron and two-electron integrals. Each of these individual integrals has the general form:	في حال إتخذت الــــدارات الغزليـــة شــكل بحموعـــة متعامــــــة ومستنظمة، فإن الحدود (جمع حدّ term) المماثلة النابةة فقط من لغدد لا تساوي صفر عندما تتكامل. (3يْ حال إحتواء الحدّ على إلكترونات غتتلفة، فإنه يساوي صفري، تعامد مدارات الغزل). مككن تقسيم البسط في العبارة البجرية إلى سلسلة مــن تكـــامالات منفرد من هذه التكاملات تأخذ هذا الشكل العام:

$$
\int \ldots \int d_{T 1} d_{T 2} \ldots[\text { term1] operator }[\text { term } 2]
$$

[term1] and [term2] each represent one of the N ! terms in the Slater determinant. To simplify this integral, we first recognize that all spin orbitals involving an electron that does not appear in the operator can be taken outside the integral. For example, if the operator is $1 / r_{1}$, than all spin orbitals other than those that depend on the coordinates of electron 1 can be separated from the integral. The orthogonality of the spin orbitals means that the integral will be zero unless all indices involving these other electrons are the same in [term1] and [term2].

For integrals that involve two-electron operators (i.e. $\left.1 / r_{i j}\right)$, only those terms that do not involve the coordinates of the two electrons can be taken outside the integral.

 الإلكترون 1، يمكن فصلهم من التكامل.إن تعامدية المــــدارات
 المؤشر ات تتضمن هذه الإلكترونات الأخرى هـــي نفـــسها في
[term2] و [term1]
في حالة التكاملات التي تتضمن مشغّل اثنين من الإلكترونــاتـات

 التكامل .

It is more convenient to write the energy expression in a concise form that recognizes the three types of interaction that contribute to the total electronic energy of the system.

First, there is the kinetic and potential energy of each electron moving in the field of the nuclei. The energy associated with the contribution for the molecular orbital Xi_{i} is often written H_{i} core and M nuclei. For N electrons in N molecular orbitals this contribution to the total energy is (the actual electron may not be 'electron 1 '):

من الأفضل كتابة عبارة الطاقة الجبرية بشكل موجز يتــضمن أنواع التآثر الثلاثة اليت تسهم في إبمالي الطاقـــة الإلكترونيــة للنظام

أولاً، يوجد هناك الطاقة الحر كية والطاقة الوضع لكل إلكترون يتحرك دانحل النوى.غالباً ما تُكتب الطاقة المرتبطة بإسهام مدار

 (الإلكترون الفعلي ليس بالضرورة 'electron 1') ':

$$
E_{\text {total }}^{\text {core }}=\sum_{i=1}^{N} \int d_{T 1} X_{i}(1)\left(-\frac{1}{2} \nabla_{i}^{2}-\sum_{A=1}^{M} \frac{Z_{A}}{r_{i A}}\right) X_{i}(1)=\sum_{i=1}^{N} H_{i i}^{\text {cors }}
$$

of electrons. This interaction depends on the electron-electron distance (J_{ij}).The total Coulomb contribution to the electronic energy of the system is obtained as a double summation over all electrons, taking care to count each interaction just once:

$$
\begin{gather*}
E_{i}^{\text {Coulomb }}=\sum_{j \neq i}^{N} d_{T 1} d_{T 2} X_{i}(1) X_{j}(2) \frac{1}{r_{12}} X_{j}(2) X_{i}(1) \tag{1}\\
=\sum_{j \neq i}^{N} d_{T 1} d_{T 2} X_{i}(1) X_{i}(1) \frac{1}{r_{12}} X_{j}(2) X_{j}(2) \tag{2}
\end{gather*}
$$

The third contribution to the energy is the exchange 'interaction'.
If two electrons occupied the same region of space and had parallel spins then they could be considered to have the same set of quantum number. Electrons with the same spin thus tend to 'avoid' each other, and they experience a lower Coulombic repulsion, giving a lower energy. The total exchange energy is calculated by the following equation:
|الإسهام الثالث للطاقة هو التبادل "التآثر". إذا احتل اثثين من الإلكترونات نفس المنطقة في الفضاء و كان
 الإلكترونات ذات السبين (الغزل) المتطابـــــة إلى "تخّنـــب"
 يعطي طاقة أدنـ. يُحتسب إجمالي الطاقة من خلال المعادلــــة التالية:

$$
E_{\text {total }}^{\text {exchangs }}=\sum_{i=1}^{N} \sum_{j=i+1}^{N} \iint d_{T 1} d_{T 2} X_{i}(1) X_{j}(2)\left(\frac{1}{r_{12}}\right) X_{i}(2) X_{j}(1)=\sum_{j=1}^{N} \sum_{j=i+1}^{N} K_{i j}
$$

$K_{i j}$: Energy due to the exchange.
The prime on the counter j^{\prime} indicates that the summation is only over electrons with the same spin as electron i.
| $K_{i j}$

2.4.2 Calculating the Energy from the Wavefunction: The Hydrogen Molecule / احتساب الطاقة من الدالة المرجية: جُزيَء الميدروجين

In the most popular kind of quantum mechanical calculations performed on molecules each molecular spin orbital is

expressed as a linear combination of atomic orbitals (the LCAO approach) ${ }^{2}$. Thus each molecular orbital can be written as a summation of the following form:	والمدارات الجز يئية). وهكذا يُمكن أن يُكتب كل مدار الـار جزئــــي

Eq.2,21

$$
\psi_{i}=\sum_{\mu=1}^{k} c_{\mu i} \phi_{\mu}
$$

where ψ_{i} is a molecular orbital represented as the sum of k atomic orbitals ϕ_{μ}, each multiplied by a corresponding coefficient $c_{\mu i}$,
and μ represents which atomic orbital is
combined in the term. ${ }^{3}$ There are two electrons with opposite spins in the lowest energy spatial orbital (labeled $1 \sigma_{\mathrm{g}}$), which is formed from a linear combination of two hydrogen-atom 1s orbitals:

حيث الذرية حيث يتم الجمع مع المدار الذري في المدى. هناك نوعــــان مـــن الإلكترونات مع سبينات مضادةأو معكوسة في الطاقــــة الأدنى
 لاثنين من مدارات s1 لذرة الميدرو جين :

Eq.2,22

$$
1 \sigma_{g}=A\left(1 s_{A}+1 s_{E}\right)
$$

To calculate the energy of the ground state of the hydrogen molecule for a fixed internuclear distance we first write the wavefunction as a 2×2 determinant:

من أجل احتساب طاقة الحالة القاعيـــة لـــــزيء الميــدروجهين للمسافة الدانحلية الثابتة للنوى. علينــــا أن نكتـــب أولاً الدالــــة الموجية كمحدد $2 \times 2 \times$

Eq.2,23

$$
\Psi=\left|\begin{array}{ll}
X 1(1) & X 2(1) \\
X 1(2) & X 2(2)
\end{array}\right|=X 1(1) X 2(2)-X 1(2) X 2(1)
$$

(See paragraph 2.1.1 operators) In atomic units the Hamiltonian is thus:
(رابع المقطع 2.1.1 المشغل). الهاملتون في الوحـــدات الذريـــة

[^1]Eq.2,24a

$$
\mathrm{H}=-\frac{1}{2} \nabla_{1}^{2}-\frac{1}{2} \nabla_{2}^{2}-\frac{Z_{A}}{r_{1 A}}-\frac{Z_{B}}{r_{1 R}}-\frac{Z_{A}}{r_{2 A}}-\frac{Z_{B}}{r_{2 R}}+\frac{1}{r_{12}}
$$

Eq. $2,24 b$

$$
=\hat{\mathrm{H}}_{1}+\hat{\mathrm{H}}_{2}+\left(1 / r_{12}\right)
$$

1 and 2: indicate the electrons.
: A, B
1,2: يدل على الإلكترونات.
Z_{A} and Z_{B} : nuclear charges $=1$.
The energy of this hydrogen molecule:

Eq.2,25

$$
E=\frac{\int_{-\infty}^{+\infty} \Psi * \hat{H} \Psi d T}{\int_{-\infty}^{+\infty} \Psi * \Psi d T}
$$

The normalization constant for the wavefunction of the two electrons hydrogen molecule is $1 / \sqrt{ } 2$ and so the denominator in Eq.2, 25 is equal to 2.
Substitution of hydrogen molecule wavefunction into Eq.2, 25

التنسيب الآحادي الثنابت للدالـــة الموجيــة لإلكتـــروون الهيدرو جين هو 1/V2 و المقام في المعادلة 2, 25 تساوي 2 . 2 . تبديل الدالة الموجية لجزيّء الهيدروجين في المعادلة 25 25.

Eq.2,26

$$
\begin{array}{r}
E=\frac{1}{2} \iint d_{T 1} d_{T 2}\left\{[X 1 (1) X 2 (2) - X 2 (1) X 1 (2)] \left[\hat{H}_{1}+\hat{H}_{2}\right.\right. \\
\left.\left.+\left(1 / r_{12}\right)\right][X 1(1) X 2(2)-X 2(1) X 1(2)]\right)
\end{array}
$$

Eq.2,27

$$
\begin{aligned}
& E=\iint d T 1 d T 2 X 1(1) X 2(2)\left(\hat{H}_{1}\right) X 1(1) X 2(2) \\
& -\iint d T 1 d T 2 X 1(1) X 2(2)\left(\hat{H}_{1}\right) X 2(1) X 1(2)+\cdots \\
& +\iint d T 1 d T 2 X 1(1) X 2(2)\left(\hat{H}_{2}\right) X 1(1) X 2(2) \\
& -\iint d T 1 d T 2 X 1(1) X 2(2)\left(\hat{H}_{2}\right) X 2(1) X 1(2)+\cdots \\
& \quad+\iint d T 1 d T 2 X 1(1) X 2(2)\left(\frac{1}{r_{i}}\right) X 2(1) X 1(2)
\end{aligned}
$$

$$
-\iint d T 1 d T 2 X 1(1) X 2(2)\left(\frac{1}{r_{1}}\right) X 2(1) X 1(2)+\cdots
$$

Each of these individual terms can be simplified if we recognize that terms dependent upon electrons other than those in the operator can be separated out. For example, the first term in the expansion, Eq.2,25,is:

يمكن اختز ال كل حـــدّ منفـــرد، إذا لاحظنــــا أن الـــــدود((terms الموجودة في الُمحدّد والتي يمكن تقسيمها. مثال على ذلـــــكا

الحدّ الأول من المعادلة 2,25. Eq :

Eq.2,28

$$
\iint d T 1 d T 2 X 1(1) X 2(2)\left(\hat{H}_{1}\right) \times 1(1) X 2(2)
$$

The operator \hat{H} is a function of the coordinates of electron 1 only, so terms involving electron 2 can be separated as follows:

إن المشغّل
يمكننا فصل المصطلحات المتعلقة بالإلكترون 2 كالتالي:

Eq.2,29

$$
\begin{aligned}
& \iint d T 1 d T 2 X 1(1) X 2(2)\left(\hat{H}_{1}\right) X 1(1) X 2(2) \\
& \quad=\int d T 2 X 2(2) X 2(2) \int d T 1 X 1(1)\left(-\frac{1}{2} \nabla_{1}^{2}-\frac{1}{r_{1 A}}-\frac{1}{r_{1 R}}\right) X 1(1)
\end{aligned}
$$

 integral $\int d T 2 X 2(2) X 2(2)=1 . \quad$. 1 يساوي $\int d T 2 X 2(2) X 2(2)$

Eq.2,30

$$
\begin{aligned}
& \int d_{T 1} X_{1(1)}\left(-\frac{1}{2} \nabla_{1}^{2}-\frac{1}{r_{1 A}}-\frac{1}{r_{1 B}}\right) X_{1(1)} \\
&=\int d_{v} 1 \sigma_{g}(1)\left(-\frac{1}{2} \nabla_{1}^{2}-\frac{1}{r_{1 A}}-\frac{1}{r_{1 R}}\right) 1 \sigma_{g}(1) \int d \sigma_{1} \alpha(1) \alpha(1)
\end{aligned}
$$

Eq.2,31

$$
\begin{aligned}
& \int d_{v} 1 \sigma_{g}(1)\left(-\frac{1}{2} \nabla_{1}^{2}-\frac{1}{r_{1 A}}-\frac{1}{r_{1 B}}\right) 1 \sigma_{g}(1) \\
&=A^{2} \int d v_{1}\left\{1 s_{A}(1)+1 s_{B}(1)\right\}\left(-\frac{1}{2} \nabla_{1}^{2}-\frac{1}{r_{1 A}}-\frac{1}{r_{1 R}}\right)\left\{1 s_{A}(1)+1 s_{B}(1)\right\}
\end{aligned}
$$

The integral in Eq.2,31 can in turn be factorized to give a sum of integrals, each of which involves a pair of atomic orbitals:	يُمكن بجزيء التكامل Eq.2,3 إلى بحموعة تكاملات، يتضمن كل واحد منها زوج من المدارات الذرية:

Eq.2,32

$$
\begin{aligned}
\int d v_{1}\left\{1 s_{A}(1)\right. & \left.+1 s_{E}(1)\right\}\left(-\frac{1}{2} \nabla^{2}-\frac{1}{r_{1 A}}-\frac{1}{r_{1 B}}\right)\left\{1 s_{A}(1)+1 s_{B}(1)\right\} \\
& =\int d v_{1} 1 s_{A}(1)\left(-\frac{1}{2} \nabla^{2}{ }_{1}-\frac{1}{r_{1 A}}-\frac{1}{r_{1 B}}\right) 1 s_{A}(1) \\
& +\int d v_{1} 1 s_{A}(1)\left(-\frac{1}{2} \nabla^{2}{ }_{1}-\frac{1}{r_{1 A}}-\frac{1}{r_{1 B}}\right) 1 s_{B}(1)+\cdots
\end{aligned}
$$

If we apply the same procedure to the second \mid إذا قمنا بتطبيق نفس الإجـــراءات علـــى الحـــدّ في المعادلـــة term in Eq. 2,27 :
:Eq.2,27

Eq.2,33

$$
\iint d T 1 d T 2 X 1(1) \times 2(2)\left(\hat{H}_{1}\right) X 2(1) X 1(2)=\int d T 1 X 1(1)(\hat{\mathrm{H}}) \times 2(1) \int d T 2 X 2(2) X 1(2)
$$

Eq.2,34

$$
\int d T 2 X 2(2) X 1(2)=0
$$

Eq.2,34 equals zero because the molecular	تساوي المعادلة Eq.2,34 صفر لأن مدارات الجزيء متعامدة.

2.4.3 The energy of a Closed-shell System/ طاقة نظام الطبقة المغلقة

In a closed-shell system containing N electrons in N/2 orbitals, there are two spin orbitals associated with each spatial orbital $\psi_{\mathrm{i}}: \psi_{\mathrm{i}} \alpha$ and	في نظام طبقة مغلقة يمتوي N إلكترون في N/2 مدار، يو 2 هناك اثنين من مدارات الغزل مرتبطة بكل واحد من المدارات المكانية

$\psi_{i} \beta$. The electronic energy of such a system can
be calculated in a manner analogous to that for the hydrogen molecule. First, there is the energy of each electron moving in the field of the bare nuclei. For an electron in a molecular orbital X_{i}, this contributes energy $H_{i i}^{\text {core. }}$. If there are two electrons in the orbital then the energy is $2 H_{i i}^{\text {core }}$ and for $\mathrm{N} / 2$ orbitals. The total contribution to the energy will be:

$$
\begin{aligned}
& \text { بطريقة مماثلة لاحتساب طاقة جزيء الهيدروجين. أولاً، هناك } \\
& \text { طاقة كل إلكترون يتحرك في بحال النواة البرددة. مـــن أجــــل }
\end{aligned}
$$

$$
\begin{aligned}
& \text { هناك اثنين من الإلكترونات في المدار، تكون الطاقة }
\end{aligned}
$$

$$
\sum_{i=1}^{N / 2} 2 H_{i i}^{\text {cores }}
$$

The Coulomb interaction between each pair of electrons in the same orbital must be included; there is no exchange interaction because the electrons have paired spins. The total energy is thus given as:

$$
\begin{gathered}
I_{i i}=K_{i i} \\
E=2 \sum_{i=1}^{N / 2} 2 H_{i i}^{c o r e}+\sum_{i=1}^{N / 2} \sum_{j=1}^{N / 2}\left(2 J_{i j}-K_{i j}\right)
\end{gathered}
$$

2.5 The Hartree-Fock Equations/ معادلات هارتري-فوك

In most electronic structure calculations we are usually trying to calculate the molecular orbitals. But for many-body problems there is no 'correct' solution; so the variation theorem provides us with a mechanism to decide whether one proposed wavefunction is 'better' than another. (The best wavefunction is the one with the lowest energy). The Hartree-Fock equations are obtained by imposing this condition on the expression for the energy.

في معظم حسابات البنية الإلِكترونية، ناول عادةً احتــساب مدارات الجزيء. ولكن بالنسبة للعديد من مسائل الأجسام، لا يوجد هناك أي حل "صحيح"، لذا تقدّم لنا نظرية التغيير آليـــة
 "أفضل" من الأخرى. (إن الدالة المو جية الأفضل هي الدالة اليت تتنلك الطاقة الأدن). يُمكن الخصول على معادلات الهارتري-

The Fock operator $\left(f_{i}\right)$ takes the form:
فوك من خلال إدخال هذا الشرط في العبارة الجبرية للطاقة. يأخذ مُحدد فوك (
$f_{i}(1)=H^{\text {ores }}(1)+\sum_{j=1}^{N}\left\{J_{j}(1)-K_{j}(1)\right\}$
The Fock operator for a closed-shell system, has the following form:
$f_{i}(1)=H^{\text {core }}(1)+\sum_{j=1}^{N / 2}\left\{2 J_{j}(1)-K_{j}(1)\right]$

$\begin{array}{l}\text { The Hartree-Fock equations then take on the } \\ \text { تأخلذ معادلات هارتري-فوك بشكل القيمة الذاتية الأساسية. } \\ \text { standard eigenvalue form: }\end{array}$

$f_{i} X_{i}=\varepsilon_{i} X_{i}$

2.5.1 Hartree-Fock calculations for Atoms and Slater’s Rules/ احتساب المارتري-فوك للذرّات وقواعد سلاتر

The Hartree-Fock equations are usually solved in different ways for atoms and molecules. For atoms, the equations can be solved numerically if it is assumed that the electron distribution is spherically symmetrical. However, these numerical solutions are not particularly useful. Fortunately, analytical approximations to these solutions can be used with considerable success. These approximate analytical functions thus have the form:

تُحل معادلات هارتري-فوك عادةً للذرّات بطرق غختلفة عن الجز يئات. بالنسبة للذرّات، يمكن حل المعــــادلات رقات رقميــاً في
 هذه الحلول الرقمية ليست دائماً مفيدة. لحسن الحظ، يُمكـــــنـ استخحام التقريب التحليلي هذه الحلول بشكل ناجحع. هـــــه الوظائف التقر يبية التحليلية تأخذ الشكل التالي:

$$
\psi=R_{m l}(r) Y_{l m}(\theta, \phi)
$$

Y is a spherical harmonic and R is a radial function. Slater suggested a simpler analytical form for the radial functions:

$$
\begin{aligned}
& \text { Y } \\
& \text { شكل تحليلي أبسط للوظائف الشعاعية: }
\end{aligned}
$$

$$
R_{n!}(\gamma)=(2 \zeta)^{n+1 / 2}[(2 n)!]^{-1 / 2} q^{n-1} \varepsilon^{-q \gamma}
$$

These functions are universally known as Slater type orbitals (STOs). The first three Slater functions are as follows:

تُعرف هذه الوظائف عالمياً كنو ع مدارات ســـالتر (STOs). تتخخذ أول ثلاث وظائف سلاتر الشكل التالي:

$$
\begin{aligned}
& R_{1 s}(r)=2 \varsigma^{3 / 2} e^{-\xi r} \\
& R_{2 g}(r)=R_{2 p}(r)=\left(\frac{4 \varsigma^{5}}{3}\right)^{1 / 2} r e^{-\xi r} \\
& R_{3 g}(r)=R_{3 p}(r)=R_{3 d}(r)=\left(\frac{8 \varsigma^{7}}{45}\right)^{1 / 2} r^{2} e^{-\xi r}
\end{aligned}
$$

To obtain the whole orbital we must multiply $R(r)$ by the appropriate angular part. Slater provided a series of empirical rules for

يجب ضرب R(r) بالجزء الزاوي المناسب، من أجل الخصول
 التجرييية لاختيار الأس ، الذي يُمكن الحصول عليه من:
choosing the orbital exponents ς, which are
given by:
$\varsigma=\frac{Z-\sigma}{n^{*}}$

Z is the atomic number and σ is a shielding constant. n^{*} is an effective principal quantum number, which takes the same value as the true principal quantum number for $\mathrm{n}=1,2,3$, but for $n=4,5,6$ has the values $3.7,4.0,4.2$, respectively. The shielding constant is obtained as follows: First, divide the orbitals into the following groups:

$(1 s) ;(2 s 2 p) ;(3 s, 3 p) ;(3 d) ;(4 s, 4 p) ;(4 d) ;(4 f) ;(5 s, 5 p) ;(5 d)$

For a given orbital, σ is obtained by adding together the following contributions:
a) Zero from an orbital further from the nucleus than those in the group;
b) 0.35 from each other electron in the same group, but if the other orbital is the 1 s then the contribution is 0.3 ;
c) 1.0 for each electron in a group with the

في حالة مدار محدد،يُمكن الحصول على O من خــــلال جهــع الإسهامات التالية:
صفر من المدار الأبعد عن النوى من هؤلاء الموجودين (a
في البمموعة.
0.35 (b

حالة، إذا كان المدار الآخر s1 يكون الإسهام 0.3.
quantum number 1 fewer than the current orbital.;
d) For each electron with a principal quantum number 1 fewer than the current orbital: 1.0 if the current orbital is d or $\mathrm{f} ; 0.85$ if the current orbital is s or p.

The shielding constant for the valence electrons of silicon is obtained using Slater's rules as follows. The electronic configuration of Si is :
1.0 (C أقل من المدار الحالي. (d المدار الحالي: 1.0 في حالة أن المـــدار الحـــالي d أو f 0.85 إذا كان المدار الحالي s أو p.

يُمكن الخصول على عدد shielding الثابت للإلكترو نـــات المتكافئة للسيليكون باستخدام قواعد السلاتر على النحو التالي. التوزيع الإلكتروني للسيليكون Si هو :

```
(1s}\mp@subsup{s}{}{2})(2\mp@subsup{s}{}{2}2\mp@subsup{p}{}{6})(3\mp@subsup{s}{}{2}3\mp@subsup{p}{}{2}
```

We therefore count 3×0.35 under rule (b), 2.0 under rule (c) and 8×0.85 under rule (d), giving a total of 9.85 . When subtracted from the atomic number (14) this gives 4.15 for the value of Z- σ.

بناءً على ذلك غصي 0.35×3 بكسب القاعدة b، 2.0 بـــسب
 يساوي 9.85. في حال حسم هذا البمموع مــن 14 ، يــتم الحصول على 4.15 كقيمة للـــ- Z-

2.5.2 Linear Combination of Atomic Orbitals (LCAO) in Hartree-Fock Theory/ التو افق الخطي لمدارات

 الذرّة في نظرية هارتري-فوكThe most popular strategy, to find solution of the Hartree-Fock for the molecules, is to write each spin orbital as a linear combination of single electron orbitals:

الإستراتيجية الأكثر شعبية، لإيماد حل لمعادلة هارتري-فـــوك
 لمدارات الإلكترون المفرد.
$\psi_{i}=\sum_{v=1}^{k} C_{v i} \phi_{v}$
The one-electron orbitals ϕ_{v} are commonly called basis functions and often correspond to the atomic orbitals.
K : number of basis functions.
At the Hartree-Fock limit the energy of the system can be reduced no further by the addition of any more basis functions; however,

تُعرف مدارات الإلكترون الواحد هو بالوظائف الأساســية
وغالباً ما تدل على المدارات الذرّية.

عند حدّ الهارتري-فوك، يُمكن تُغيض طاقة النظام من خلال
it may be possible to lower the energy below the Hartree-Fock limit by using a functional form of the wavefunction that is more extensive than the single Slater determinant.
For a given basis set and a given functional form of the wavefunction (ie. a Slater determinant) the best set of coefficients $c_{v i}$ is that for which the energy is minimum, at which point

إضافة أي وظيفة من الوظائف الأساسية، يمكن تخفيض الطاقة تحت حدّ المارتر -فوك باستخدام الشكل الــــوظيفيفي للدالـــة الموجية اليت تعتبر أكثر شمولاً من مُحدّد سار سلاتر المفرد. إن أفضل بمموعة معامل
 تكون الطاقة بحدها الأدن في هذه النقطة

$$
\frac{\partial E}{\partial C_{v i}}=0
$$

for the coefficients $C_{w i}$. The objective is thus to determine the set of coefficients that gives the lowest energy for the system.

2.5.3 Closed-shell Systems and the Roothaan-Hall Equations/ نظام الطبقة المغلقة ومعادلات روثن-هال

We shall initially consider a closed-shell system with N electrons in $\mathrm{N} / 2$ orbitals. The derivation of the Hartree-Fock equations for such a system was first proposed by Roothaan [Roothaan 1951] and (independently) by Hall [Hall 1951].Unlike the integro-differential form of the HartreeFork equations, Roothaan and Hall recast the equations in matrix form, which can be solved using standard techniques and can be applied to systems of any geometry. The standard form for the expression for the Fock matrix in the Roothaan-Hall equations:

سوف نعتبر ،بشكل أولي، نظام الطبقة المغلقة مع N إلكترون في N/2 مدار. تم إقتراح إستنتاج معادلات المارتري-فوك لمثل هذا

 باستخدام تقنيات أساسية يُمكن اســتخدامهـا علــى أي نظـــام جيومتري. الشكل الأساسي للعبارة الجبرية لـــصغوفة فـــوك في معـــــادلات روثن-هول:

$$
F_{\mu v}=H_{\mu v}^{c o r \theta}+\sum_{\lambda=1}^{K} \sum_{\sigma=1}^{B} P_{\lambda \sigma}\left[(\mu v \mid \lambda \sigma)-\frac{1}{2}(\mu \lambda \mid v \sigma)\right]
$$

2.5.4 Solving the Roothaan-Hall Equations حل معادلات روثان-هول

The Fork matrix is a $K \times K$ square matrix is \quad مربع مصفوفة متناظرة، في حال K×K تكون مصفوفة فوك symmetric if real basis functions are used.
The Roothaan-Hall equations can be conveniently written as a matrix equation:

كانت الوظائف الأساسية مستعملة.
يمكن كتابة معادلات روثان-هول على نو ملائم كمعادلــــة مصفوفة:

FC=SCE

$C=\left(\begin{array}{cccc}c_{1,1} & C_{1,2} & \ldots & C_{1, h} \\ C_{2,1} & C_{2,2} & \ldots & c_{2, K} \\ \vdots & \vdots & & \vdots \\ C_{K, 1} & C_{K, 2} & \ldots & c_{K, K}\end{array}\right)$

$\begin{array}{l}\text { E is a diagonal matrix whose elements are the } \\ \text { orbital energies: }\end{array}$
E E : B : مصر مصفوفة بيث أن عناصرها هي طاقات المدار

$E=\left(\begin{array}{cccc}s_{1} & 0 & \ldots & 0 \\ 0 & \varepsilon_{2} & \ldots & 0 \\ 0 & 0 & & \vdots \\ & & \ldots & \varepsilon_{K}\end{array}\right)$
A common scheme for solving the Roothaan-Hall equations is as follows:

1. Calculate the integrals to form the Fork matrix, F.
2. Calculate the overlap matrix, S.
3. Diagonalise S .
4. Form $\mathrm{S}^{-1 / 2}$.
5. Guess, or otherwise calculate, an initial density matrix, P.
6. Form the Fork matrix using the integrals and the density matrix P .
7. Form $\mathrm{F}^{\prime}=\mathrm{S}^{-1 / 2}$. $\mathrm{F}^{-1 / 2}$.
8. Solve the secular equation $\left|F^{\prime}-E I\right|=0$ to give the eigenvalue E and the

eigenvectors C^{\prime} by diagonalising F^{\prime}.
9. Calculate the molecular orbital coefficients, C from $\mathrm{C}=\mathrm{S}^{-1 / 2} . \mathrm{C}^{\prime}$.
10. Calculate a new density matrix, P, from the matrix C .
11. Check for convergence. If the calculation has converged, stop. Otherwise repeat from step 6 using the new density matrix, P .
This procedure requires an initial guess of the density matrix, P .
The result of a Hartree-Fock calculation is a set of K molecular orbital, where K is the number of basis functions in the calculation. The N electrons are then fed into these orbitals in accordance with the Aufbau principle, two electrons per orbital, starting with the lowest energy orbitals. The remaining orbitals do not contain any electrons; these are known as the virtual orbitals.
12. حل المعادلة F'-EI | 1 المن أجل الخصول على القيمـــة الذاتيةE و المتجهات الذاتية C' عبر تشخيص الم الما

13. احتساب كثافة جديدة للمصفوفة، P, من المصفوفة C C C

من الخطوة 6 مع استخدام الكثافة المديدة للمصفوفة P. يتطلب هذا الإجر اء تخمين أولي لكثافة المصفوفة P.
 جزئي، بيث k هو عدد الوظائف الأساسية في العملية الحسابية.
 من الإلكترونات بالمدار الواحد، ابتداءاً من المدارات ذوات الطارات الطاقة الأدند.
تُعرف المدارات المتبقية والي لا تحتوي على أي إلكترون بالمدارات الإفتراضية.

2.5.5 A Simple Illustration of the Roothaan-Hall Approach/ توضيح بسيط النهج روثان-هول

Example: $\mathrm{HeH}+$.

Objective: how the Roothaan-Hall method can be used to derive the wavefunction, for a fixed internuclear distance of $1 \mathrm{~A}^{\circ}$.
There are two basis functions, 1 sA (centered on the helium atom) and 1 sв (on the hydrogen).
Each wavefunction is expressed as a linear combination of the two 1s atomic orbitals centered on the nuclei A and B :

$$
\begin{aligned}
& \begin{array}{l}
\psi_{1}=c_{1 A} 1 s_{A}+c_{1 E} 1 s_{B} \\
\not \psi_{2}=c_{2 A} 1 s_{A}+c_{2 E} 1 s_{E}
\end{array}
\end{aligned}
$$

electron integrals) to form the Fork matrix, F, and calculate the overlap matrix, S:
The diagonal elements of the overlap matrix, S, are equal to 1.0 as each basis function is normalised; if the off-diagonal elements have smaller, but non-zero, values that are equal to the overlap between $1 \mathrm{~s}_{\mathrm{A}}$ and $1 \mathrm{Sb}_{\mathrm{b}}$ for the internuclear distance chosen. The matrix S is:

Fاثنين من معامل الإلكترون) من أجل تشكيل مصفوفة فوك واحتساب المصفوفة المتشابكة S: إن قطر عناصر المصفوفة المتشابكة S ، يساوي واحد ،ككل
 القطر تملك قيمة غير لاغية أصغر بييث تساوي التشابك بين
sb gsA

$$
S=\left(\begin{array}{cc}
1.0 & 0.392 \\
0.392 & 1.0
\end{array}\right)
$$

$$
\begin{aligned}
& T_{\mu v}=\int d v_{1} \phi_{\mu}(1)\left(-\frac{1}{2} \nabla^{2}\right) \phi_{v}(1) \\
& V_{A, z v}=\int d v_{1} \phi_{\mu}(1)\left(-\frac{Z_{A}}{r_{1 A}}\right) \phi_{v}(1) \\
& V_{B, \mu v}=\int d v_{1} \phi_{\mu}(1)\left(--\frac{Z_{B}}{r_{i \pi}}\right) \phi_{v}(1)
\end{aligned}
$$

The matrices are:

$$
T=\left(\begin{array}{ll}
1.412 & 0.081 \\
0.081 & 0.760
\end{array}\right) \quad V_{A}=\left(\begin{array}{ll}
-3.344 & -0.758 \\
-0.758 & -1.026
\end{array}\right) V_{B}=\left(\begin{array}{ll}
-0.525 & -0.308 \\
-0.308 & -1.227
\end{array}\right)
$$

H core is the sum of these three: H core

$$
H^{\text {cords }}=\left(\begin{array}{ll}
-2.457 & -0.985 \\
-0.985 & -1.493
\end{array}\right)
$$

As far as the two-electron integrals are concerned, with two basis functions there are a total of 16 possible two-electron integrals. There are however only six unique two-electron integrals, as the indices can be permuted as
. ما أن تكاملات الإلكترونين مأخوذة بالاعتبار، مع اثنين مــنـ المعادلات الأساسية،فإن هناك بجموع 16 احتمال التكامــــــ للإلكترونين. ولكن هناك فقط ستة معامل فريدة للإلكترونين،

```
(i) \(\left(1 s_{A} 1 s_{A} \mid 1 s_{A} 1 s_{A}\right)=1.056\)
(ii) \(\left(1 s_{A} 1 s_{A} \mid 1 s_{A} 1 s_{B}\right)=\left(1 s_{A} 1 s_{A} \mid 1 s_{B} 1 s_{A}\right)=\left(1 s_{A} 1 s_{B} \mid 1 s_{A} 1 s_{A}\right)=\left(1 s_{B} 1 s_{A} \mid 1 s_{A} 1 s_{A}\right)=0,303\)
(iii) \(\left(1 s_{A} 1 s_{B} \mid 1 s_{A} 1 s_{B}\right)=\left(1 s_{A} 1 s_{B} \mid 1 s_{B} 1 s_{A}\right)=\left(1 s_{B} 1 s_{A} \mid 1 s_{A} 1 s_{B}\right)=\left(1 s_{B} 1 s_{A} \mid 1 s_{B} 1 s_{A}\right)=0.112\)
(iv) \(\left(1 s_{A} 1 s_{A} \mid 1 s_{B} 1 s_{B}\right)=\left(1 s_{B} 1 s_{B} \mid 1 s_{A} 1 s_{A}\right)=0.496\)
(v) \(\left(1 s_{A} 1 s_{B} \mid 1 s_{B} 1 s_{B}\right)=\left(1 s_{B} 1 s_{A} \mid 1 s_{B} 1 s_{B}\right)=\left(1 s_{B} 1 s_{B} \mid 1 s_{A} 1 s_{B}\right)=\left(1 s_{B} 1 s_{B} \mid 1 s_{B} 1 s_{A}\right)=0.244\)
(vi) \(\left(1 s_{E} 1 s_{E} \mid 1 s_{E} 1 s_{B}\right)=0.775\)
```

To reiterate, these integrals are calculated as follows:

للتأكيد، تحسب التكاملات على الشكل التالي:
$(\mu v \mid \lambda \sigma)=\iint d v_{1} d v_{2} \emptyset_{\mu}(1) \emptyset_{v}(1) \frac{1}{r_{12}} \emptyset_{\lambda}(2) \emptyset_{\sigma}(2)$

Having calculated the integrals, we are now ready to start the SCF calculation. To formulate the Fock matrix it is necessary to have an initial guess of the density matrix, P. The simplest approach is to use the null matrix in which all elements are zero. In this initial step the Fock matrix F is therefore equal to H core.

The Fock matrix must be transformed to F^{\prime} by pre- and post- multiplying by $\mathrm{S}^{-1 / 2}$:

بعد حساب التكامل ، نخن الآن علـــى اســتعداد للبـــده في حساب الـــSCF. من أجل صياغة مصفوفة فوك إنـــه مـــن الضروري أن يكون هناك تخمين الأولي لكثافة المصفوفة P. إن أبسط فج هو استخدام المصفوفة الفارغة بكيث تساوي جميع عناصرها صفر. في هذه الخطوة الأولية تساوي مصفوفة فوك . $\mathrm{H}^{\text {core } ~ 6 ~ F ~}$

$$
S^{-1 / 2}=\left(\begin{array}{cc}
-1.065 & -0.217 \\
-0.217 & 1.065
\end{array}\right)
$$

F^{\prime} for the first iteration is thus:

$$
F^{\prime}=\left(\begin{array}{ll}
-2.401 & -0.249 \\
-0.249 & -1.353
\end{array}\right)
$$

Diagonalisation of F^{\prime} gives its eigenvalues and eigenvectors, which are:

$$
E=\left(\begin{array}{cc}
-2.458 & 0.0 \\
0.0 & -1.292
\end{array}\right) C^{\prime}=\left(\begin{array}{cc}
0.975 & -0.220 \\
0.220 & 0.975
\end{array}\right)
$$

The coefficients C are obtained from $C=S^{-1 / 2} C^{\prime}$ and are thus:
يمكن الخصول على المعامل C من خلال C=S-1/2 C :
$C=\left(\begin{array}{cc}0.991 & -0.446 \\ 0.022 & 1.087\end{array}\right)$
To formulate P the density matrix P we need to identify the occupied orbital(s). With a twoelectron system both electrons occupy the orbital with the lowest energy. At this stage the lowest-energy orbital is:

من أجل تشكيل P، نزن بحاجة لتحديد المدارات المـــشغولة. مع نظام الاثنين-إلكترون، تحتل كلتا الإلكترونين المدار مـــع الطاقة الأدنى. في هذه المرحلة الطاقة الأدن للمدار هي:

$$
\psi=0.9911 s_{A}+0.0221 s_{B}
$$

The orbital is composed of the s orbital on the helium nucleus; in the absence of any electronelectron repulsion the electrons tend to congregate near the nucleus with the larger charge. The density matrix corresponding to this initial wavefunction is:

يتألف المدار في نواة الهيليوم من S مدار، في حال غياب تنافر الإلكترون-إلكترون، تيل الإلكترونات إلى التجمع بـــالقرب من النواة مع أكبر شحنة. إن كثافة المصفوفة المتعلقة بالدالـــــة الموجية الأولية هي:

```
P=( ll
```

The new Fock matrix is formed using P \quad تتألف مصفوفة فوك ابلحديدة باستخدام P and the two-electron integrals together with $\mathrm{H}^{\text {core }}$.
The complete Fock matrix is:

$$
\begin{aligned}
& \text { تتألف مصفوفة فوك البحديدة باستخدام P وتكامل الاثنين-إلكترون } \\
& \text { مع }{ }^{\text {مع }} \\
& \text { إن مصفوفة فوك الکاملة هي: }
\end{aligned}
$$

$$
F=\left(\begin{array}{ll}
-1.406 & -0.690 \\
-0.690 & -0.618
\end{array}\right)
$$

The energy that corresponds to this Fock matrix is - 3.870 Hartree. In the next iteration, the various matrices are as follows:	تساوي الطاقة التي تتعلق .مصفوفة فوك 3.870- هـــارتري. في التكرار التالي، المصفوفات المنوعة هي على الشكل التالي:

$$
\begin{aligned}
& F^{\prime}=\left(\begin{array}{ll}
-1.305 & -0.347 \\
-0.347 & -0.448
\end{array}\right) E=\left(\begin{array}{cc}
-1.427 & 0.0 \\
0.0 & -3.25
\end{array}\right) \\
& C^{\prime}=\left(\begin{array}{cc}
0.943 & -0.334 \\
0.334 & 0.943
\end{array}\right) C=\left(\begin{array}{cc}
.931 & -0.560 \\
0.150 & 1.076
\end{array}\right) \\
& P=\left(\begin{array}{ll}
1.735 & 0.280 \\
0.280 & 0.045
\end{array}\right) F=\left(\begin{array}{cc}
-1.436 & -0.738 \\
-0.738 & -0.644
\end{array}\right)
\end{aligned}
$$

The calculation proceeds as illustrated in the table below, which shows the variation in the coefficients of the atomic orbitals in the lowestenergy wavefunction and the energy for the first four SCF iterations. The energy is converged to six decimal places after six iterations and the charge density matrix after nine iterations.
The final wavefunction still contains a large proportion of the 1 s orbital on the helium atom, but less than was obtained without the twoelectron integrals.

Iteration	$\mathrm{C}\left(1 \mathrm{sA}_{\mathrm{A}}\right.$	$\mathrm{C}\left(1 \mathrm{SB}_{\mathrm{B}}\right.$	Energy
1	0.991	0.022	-3.870
2	0.931	0.150	-3.909
3	0.915	0.181	-3.911
4	0.912	0.187	-3.911

Table: variation in basis set coefficients and
electronic energy for the $\mathrm{HeH}+$ molecule.

2.6 Basis Sets / أسس الجموعات

A basis set in chemistry is a set of functions used to create the molecular orbitals, which are expanded as a linear combination of such functions with the weights or coefficients to be determined. Usually these functions are
atomic orbitals Type equation here., in that
they are centered on atoms. Otherwise, the functions are centered on bonds or lone pairs. Pairs of functions centered in the two lobes of a p orbital have also been used.

2.6.1 Creating a Basis Set / إنشاء أسس مجموعة

3 Monte Carlo Simulation Methods:/ أساليب محاكاة مونتي كارلو

3.1 Introduction:/// $/$ /atanal

The Monte Carlo simulation method occupies a special place in the history of molecular modeling, as it was the technique used to perform the first computer simulation of a molecular system. A Monte Carlo simulation generates configurations of a system by making random changes to the positions of the species present, together with their orientations and conformations where appropriate. Many computer algorithms are said to use a 'Monte Carlo' method, meaning that some kind of random sampling is employed. In molecular simulations 'Monte Carlo' is almost always used to refer to methods that use a technique called importance sampling. Importance sampling methods are able to generate states of low energy, as this enables properties to be calculated accurately. We can calculate the potential energy of each configuration of the system, together with the values of other properties, from the positions of the atoms. The Monte Carlo method thus samples from 3 N -dimensional space of the positions of the particles. There is no momentum contribution in a Monte Carlo simulation, in contrast to a molecular dynamics simulation. How then can Monte Carlo simulation be used to calculate thermodynamic quantities, given that phase space is

6 N -dimensional?
To resolve this difficulty, let identical
particles of mass m can be written:

لحل هذه الصعوبة ،يككن كتابة الجزيئات المتطابقة بوزن m بالشكل الآتي:

$$
Q_{N V T}=\frac{1}{N!} \frac{1}{h^{3 N}} \iint d p^{N} d r^{N} \exp \left[-\frac{\hat{\mathrm{H}}\left(P^{N}, r^{N}\right)}{k_{B T}}\right]
$$

The factor N ! Disappears when the particles are no longer indistinguishable. $\hat{H}\left(P^{N}, r^{N}\right)$ Is the Hamiltonian that corresponds to the energy of the system? The value of the Hamiltonian depends upon the 3 N positions and 3 N momenta of the particles in the system	تَختفي جزيئاتُ العامل N! عندما تَمْ تَعُدْ متعغر 3 N النظام

The canonical function of an ideal gas:	

$Q_{N V I}=\frac{V^{N}}{N!}\left(\frac{2 \pi k_{B} T m}{h^{2}}\right)^{3 N / 2}$

This is often written in terms of the de Broglie thermal wavelength, \wedge :	de هكذا يُكتب في كثير من الأحيان .مصطلح الـ :Broglie thermal wavelength

$Q_{N / T}=\frac{V^{N}}{N!\Lambda^{B N}}$	
	Where $\Lambda=\sqrt{h^{2} / 2 \pi k_{E} T m}$

Any deviations from ideal gas behavior are due to interactions within the system as a consequence of these interactions. So we have this partition function :	بيد أي اخراف في سلوك الغاز المثالي إلى لثاعلات داخل النظام كتتيجة لمذه التفاعلات. لكك لدينا هذه الوظيفة التقسيمية :

$$
\text { Where } Q_{N T}^{P E n T}=\frac{1}{W^{W}} \int d r^{N} \exp \left[-\frac{V\left(T^{N}\right)}{k_{\mathrm{B}} T}\right]
$$

3.2 Calculating Properties by Integration:/ خصائص الحساب بالتكامل

To calculate the partition function for a system of N atoms using this simple Monte Carlo integration method would involve the following steps:

1. Obtain a configuration of the system by randomly generating 3N Cartesian coordinates, which are assigned to the particles.
2. Calculate the potential energy of the configuration, $\mathrm{V}\left(\mathrm{r}^{N}\right)$.
3. From the potential energy, calculate the Boltzmann factor, $\exp \left(-\mathrm{V}\left(\mathrm{r}^{\mathrm{N}}\right) \mathrm{K}_{B} \mathrm{~T}\right)$.
4. Add the Boltzmann factor to the accumulated sum of Boltzmann factors and the potential energy contribution to its accumulated sum and return to step1.
5. After a number, N trial of iterations, the mean value of the potential energy would be calculating using:

$\left\langle\left(V^{N}\right)\right\rangle=\frac{\sum_{i=1}^{N_{\text {trial }}} V_{i}\left(r^{N}\right) \exp \left[-V_{i}\left(r^{N}\right) / k_{\mathrm{E}} T\right]}{\sum_{i=1}^{N_{\text {trial }}} \exp \left[-V_{i}\left(r^{N}\right) / k_{\mathrm{B}} T\right]}$

Unfortunately, this is not a feasible approach for calculating thermodynamic properties due to the large number of configurations that have extremely small Boltzmann factors caused by high-energy overlaps between the particles.	هذا هذا ليس هـا عمليا لهساب لحرارية بسبب وجود عدد كبير من ليت تعتبر من العوامل الصغيرة للغاية

3.3 Some Theoretical Background to the Metropolis Method: / بـضض الخفية النظرية لطريتة متروبوليسي_

The Metropolis algorithm generates a Markov chain of states. A Markov chain satisfies the following two conditions: 1. The outcome of each trial depends only upon the preceding trial and not upon any previous trials. 2. Each trial belongs to a finite set of possible outcomes.	يولد خوارزمية متروبوليس سلسلة مار كوف للحالات. تستوفي_ سلسلة مار كوف الشرطين التاليين: 1. تَعتمدُ نتيجةُ كُلْ بَربة فقط على التجر بة السَابقةٍ ولَيستْ على أيّ جِّر بة سابقة. 2. كل جر بة تنتمي إلى بجموعة عدودة من النتائج الغتملة.

Condition (1) provides a clear distinction between the molecular dynamics and Monte Carlo methods, for in a molecular dynamics simulation all of the states are connected in time. Suppose the system is in state m. we denote the probability of moving to state n as $\Pi_{m, n}$ the various can be considered to constitute an $\mathrm{N} \times \mathrm{N}$ matrix Π (the transition matrix), where N is the number of possible states. Each row of the transition matrix sums to 1 (i.e. the sum of the probabilities $\Pi_{m m n}$ for a given m equals 1).The probability that the system is in a particular state is represented by a probability vector \mathbf{p} : $\mathbf{P}=\left(p_{1}, p_{2}, \ldots \ldots, p_{m}, p_{n}, \ldots, p_{N}\right)$ Thus p_{1} is the probability that the system is in state 1 and p_{m} the probability that the system is in state m. If $p(1)$ represents the initial (randomly chosen) configuration, then	ييين ألشرط الأول ألفرق ألواضح بين الديناميات الجزيئية وأساليب مونيّ كارلو, الديناميات الجزيئية جميع ألمالات ترتبط في الوقت \|المناسب. لنغترض أن النظام في الحالة m من المن ندل على احتمال انتقاله الى الحالة N حيث يمكن اعتبارها مثل ח П (الصضوفة الانتقالية) ، حيث N هو عدد ميكن من الحالات. جمع كل صف من المصفوفة الانتقالية חيساوي 1 (أي بجموع الاحتمالات لمعطى m يساوي 1). احتمال أن يكون النظام في حالة معينة يمثله احتمال المتجه p p $\left.p_{1}, p_{2}, \ldots \ldots, p_{m}, p_{n}, \ldots, p_{N}\right) \mathbf{P}=($ وبالتالي p_1 هو احتمال أن يكون النظام يُ الحلالة1 و p_m احتمال أن يكون النظام في

the probability of the second state is given by: $P(2)=p(1) \Pi$	الحالة m. إذا p(1 يمثل التوزيع الإلكتروني الأولي (اختيار عشوائي) ، الاً الاختيار الثاين يعطى بالشكل التالي: $P(2)=p(1) \Pi$
The probability of the third state is: $p_{(3)}=p_{(2)} \pi=\mathrm{p}(1) \pi \pi$ The equilibrium distribution of the system can be determinate by considering the result of applying the transition matrix an infinite number of times. This limiting distribution of the Markov chain is given by $p_{(\text {limit })}=\lim _{n \rightarrow \infty} p_{(1)} \pi^{N}$ One feature of the limiting distribution is that it is independent of the initial guess $p(1)$.The limiting or equilibrium distribution for a molecular or atomic system is one in which the probabilities of each state are proportional to the Boltzmann factor. We can illustrate the use of the probability distribution and the transition matrix by considering a two level system in which the energy levels are such that the ratio of the Boltzmann factors is $2: 1$. The expected limiting distribution matrix enables the limiting distribution to be achieved: $\Pi=\left(\begin{array}{cc} 0.5 & 0.5 \\ 1 & 0 \end{array}\right)$ We can illustrate the use of this transition matrix as follows. Suppose the initial probability vector is $(1,0)$ and so the system starts with a 100% probability of being in state 1 and no probability of being in state 2.Then the second state is given by:	احتمال الحالة الثالثة هو: $p_{(3)}=p_{(2)} \pi=\mathrm{p}(1) \pi \pi$ و.يאكن ان ندد توزيع التوازن في النظام باعتبار ان نتيجة تطبيق الصفوفة الانتقالية لعدد لا حصر له له من المرات. و المعادلة التالية تقدم التوزيع الحدود من سلسلة ماركوف : $p_{(\text {limit })}=\lim _{n \rightarrow \infty} p_{(1)} \pi^{N}$ واحدة من ميزات التوزيع الحدود هو أنه مستقل عن التخمين الأولي (1 (1 P . التوزيع المدود أو المتوازن لنظام الجزيئية أو الذرية هي اليت تكون فيها الاحتمالات لكل حالة متناسبة مع عامل بولتزمان. يمكننا توضيح استخدام التوزيع للاحتمالية و للمصغوفة الانتقالية من خلال اعتبار النظام من مستويين حيث مستويات الطاقة لنسبة عوامل بولتزمان هي 2:1. ان توقع التوزيع الخدود للمصفوفة يُمكِّن من ابخاز التوزيع الخدود الآيت: $\Pi=\left(\begin{array}{cc} 0.5 & 0.5 \\ 1 & 0 \end{array}\right)$ يكمننا توضيح استخدام المصفوفة الالتقالية على النحو التالي. لنغترض أن ناقل الاحتمال الأولي هو (1،0) واذا بدء تشغيل النظام مع احتمال 100 ٪ بوجوده في

$$
P(2)=\left(\begin{array}{ll}
1 & 0
\end{array}\right)\left(\begin{array}{cc}
0.5 & 0.5 \\
1 & 0
\end{array}\right)=\left(\begin{array}{ll}
0.5 & 0.5
\end{array}\right)
$$

The third state is $p(3)=(0.75$
$0.75)$.Successive applications of the transition matrix give the limiting distribution (2/3,1/3).
When the limiting distribution is reached then applications of the transition matrix must return the same distribution back:

$$
p_{\text {timitit }}=p_{\text {timit }} \pi
$$

Thus, if an ensemble can be prepared that is at equilibrium, then one Metropolis Monte Carlo step should return an ensemble that is still at equilibrium. A consequence of this is that the elements of the probability vector for the limiting distribution must satisfy:

$$
\Sigma_{m} p_{m} \pi_{m n}=p_{n}
$$

This can be seen to hold for our simple two-level example:

$$
\left(\begin{array}{ll}
2 / 3 & 1 / 3
\end{array}\right)\left(\begin{array}{cc}
1 / 2 & 1 / 2 \\
1 & 0
\end{array}\right)=\left(\begin{array}{ll}
2 / 3 & 1 / 3
\end{array}\right)
$$

We will henceforth use the symbol (p) to refer to the limiting distribution.
Closely related to the transition matrix is the stochastic matrix, Whose elements are labeled $\alpha_{m m}$. This matrix gives the probability of choosing the two states m and n between which the move is to be made. It is often known as the underlying matrix of the Markov chain. If the probability of accepting a trial move from m to n is $p_{m, n}$ then the probability of making a transition from m to $\mathrm{n}\left(\pi_{m m}\right)$ is given by multiplying the probability of choosing states m and $\mathrm{n}\left(\alpha_{m n}\right)$ by the probability of accepting the trial move ($p_{m, n}$):

$$
\pi_{m n}=\alpha_{m n} p_{m n}
$$

It is often assumed that the stochastic matrix α is symmetrical (i.e. the probability of choosing the states m and n is the same whether the move is made from m to n or from n to m). If the

$$
\begin{aligned}
& \text { حالة (1) ولايوجد أي احتمال لوجوده في الحالة) } \\
& \text { 2).بعد ذلك, وتعطى الحالة الثانية عن طريق : } \\
& P(2)=(10)\left(\begin{array}{cc}
0.5 & 0.5 \\
1 & 0
\end{array}\right)=\left(\begin{array}{ll}
0.5 & 0.5
\end{array}\right) \\
& \text { الحالة الثاثلثة هي } \\
& \text { التطبيقات المتعاقبة للمصفوفة الانتقالية التوزيع الحدود } \\
& \text {. } 2 / 3,1 / 3 \text {) }
\end{aligned}
$$

عند الوصول إلى الحد من التوزيع الخدود , يـب إعادة
نفس توزيع طلبات المصفوفة الانتقالية مرة أخرى:

$p_{l i m i t}=p_{l i m i t} \pi$

كذلك ، إذا كان من المككن تُضير البمموعة الي هي يُ التوازن ، ثم خطوة متروبوليس مونتي كارلوا اليت ينبغي أن تعيد بجموعة هي أيضاً في حالة توازن. ونتيجة لذلك هو أن عناصر ناقل الاحتمال للتوزيع الحدو ديبب أن تلبي :

$$
\sum_{m} p_{m} \pi_{m n}=p_{n}
$$

ويككن ملاحظة ذلك على سبيل المثال على مستويين بسيطين:
$(2 / 311 / 3)\left(\begin{array}{cc}1 / 2 & 1 / 2 \\ 1 & 0\end{array}\right)=\left(\begin{array}{ll}2 / 3 & 1 / 3\end{array}\right)$
من الآن و صاعداً سنستعمل الرمز p لنشير الى التوزيع الحمدود.

ترتبط المصفوفة الانتقالية ارتباطا وثيقا بالمصفوفة العشوائية ، حيث عناصره تسمى Qmn. هذه

المصفوفة تعطي احتمال اختيار حالتين m أوn حيث
بينها يبب ان تكون الحر كة موجودة.

ومن المعروف في كثير من الأحيان على أها المصفوفة
الكامنة من سلسلة مار كوف.
إذا كانت احتمالية قبول نقل التجربة منm الى n
n إلى اذا احتمال الانتقال من mn
probability of sate n is greater than that of state m in the limiting distribution (i.e. if the Boltzmann factor of n is greater than that of m because the energy of n is lower than the energy of m) then in the Metropolis recipe, the transition matrix element $\pi_{m n}$ for progressing from m to n equals the probability of selecting the two states in the first place (i.e. $\pi_{m n}$ $=\alpha_{m n}\left(p_{n} \geq p_{m}\right)$. If the Boltzmann weight of the state n is less than that of state m , then probability of permitting the transition is given by multiplying the stochastic matrix element $\alpha_{m m}$ by the ratio of the probabilities of the state n to the previous state m.
This can be written:

$$
\begin{gathered}
\pi_{m n}=\alpha_{m n} \quad\left(p_{n} \geq p_{m}\right) \\
\pi_{m n}=\alpha_{m n} \quad\left(p_{n} / p_{m}\right) \quad\left(p_{n}<p_{m}\right)
\end{gathered}
$$

These two conditions apply if the initial and final states m and n are different. If m and n are the same state, then the transition matrix element is calculated from the fact that the rows of the stochastic matrix sum to 1 :

$$
\pi_{m n}=1-\sum_{m=n} \pi_{m n}
$$

Let us now try to reconcile the metropolis algorithm as outlined in section with the more formal approach that we have just developed. We recall that in the Metropolis method a new configuration n is accepted if its energy is lower than the original state m.
If the energy is higher, however, then we would like to choose the move with a probability according to Equation (8.24). This is achieved by comparing the Boltzmann factor

$$
\begin{aligned}
& \exp \left(-\Delta \xi\left(r^{N}\right) / k_{B} T\right)\left(\Delta \xi\left(r^{N}\right)=\left[\xi\left(r^{N}\right)_{n}-\right.\right. \\
& \left.\left.\xi\left(r^{N}\right)_{m}\right]\right)
\end{aligned}
$$

To a random number between 0 and 1. If the Boltzmann factor is greater than the random number then the new state is
accepted. If it is smaller than the new state (m) then the new state is rejected. Thus if the energy of the new state (n) is very close to 1 , and so the move is likely to be accepted. If the energy deference will be very close to 1 , and so the move is likely to be accepted. If the energy difference is very large, however, then the Boltzmann factor will be close to zero and the move is unlikely to be accepted.
The metropolis method is derived by imposing the condition of microscopic reversibility: at equilibrium the transition between two states occurs at the same rate. The rate of transition from a state m to state n equals the product of the population $\left(p_{m}\right)$ and the appropriate element of the transition matrix ($\pi_{m m}$). Thus, at equilibrium we can write:

$$
\pi_{m n} p_{m}=\pi_{m m} p_{n}
$$

The Ratio of the transition matrix elements thus equals the ratio of the Boltzmann factors of the two states:

$$
\frac{\pi_{\mathrm{mn}}}{\pi_{\mathrm{mn}}} \exp \left[-\left(\xi\left(\mathrm{r}^{\mathrm{N}}\right)_{\mathrm{n}}-\xi\left(\mathrm{r}^{\mathrm{N}}\right)_{\mathrm{m}}\right) / \mathrm{k}_{\mathrm{B}} \mathrm{~T}\right]
$$

3.4 Implementation of the Metropolis Monte Carlo Method:

A Monte Carlo Program to simulation an atomic fluid is quite simple to construct. At each iteration of the simulation a new configuration is generated. This is usually done by making a random change to the Cartesian coordinates of a single randomly chosen particle using a random number generator. If the random number generator produces numbers (ξ) in the range 0 to1, moves in both positive and negative directions are possible if the coordinates are changed as follows:

$$
\begin{aligned}
& X_{\text {mw }}=X_{\text {oud }}+(2 \xi-1) \delta r_{\text {max }} \\
& y_{\text {mow }}=y_{\text {oud }}+(2 \xi-1) \delta r_{\text {max }} \\
& Z_{\text {mew }}=Z_{\text {oud }}+(2 \xi-1) \delta r_{\text {max }}
\end{aligned}
$$

A unique random number is generated for each of the three directions X, Y and Z. $\delta r_{\text {max }}$ is the maximum possible displacement in any direction. The energy of the new configuration is then calculated; This need not require a complete recalculation of the energy of the entire consequence, the neighbor list used by a Monte Carlo simulation must contain all the neighbors of each atom, because it is necessary to identify all the atoms which interact with the moving atom (recall that in molecular dynamics the neighbor list for each atom contains only neighbors with a higher index). Proper account should be taken of periodic boundary conditions and the minimum image convention when generating new configurations and calculating is higher in energy than its predecessor then the Boltzmann factor, $\exp \left(-\Delta \xi\left(r^{N}\right) / k_{B} T\right)$, is compared to a random number between 0 and 1. If the Boltzmann factor is greater than the random number then the new configuration is accepted; If not then it is rejected and the initial configuration is retained for the next move. This acceptance condition can be written in the following concise fashion:

$$
\operatorname{Rand}(0,1) \leq \exp \left(-\Delta \xi\left(r^{N}\right) / k_{B} T\right)
$$

The size of the move at each iteration is governed by the maximum displacement, $\delta r_{\text {mase }}$.
This is an adjustable parameter whose value is usually chosen so that approximately 50% of the trial moves are accepted. If the maximum displacement is too small then many moves will be accepted but the states will be very similar and the phase space will only be explored
very slowly. Too large a value $\delta r_{\text {max }}$ and many trial moves will be rejected because they lead to unfavorable overlaps. The maximum displacement can be adjusted automatically while the program is running to achieve the desired acceptance ratio by keeping a running score of the proportion of moves that are accepted. Every so often the maximum displacement is then scaled by a few percent: if too many moves have been accepted then the maximum displacement is increased; too few and $\delta r_{\text {max }}$ is reduced.
As an alternative to the random selection of particles it is possible to move the atoms sequentially (this requires one fewer call to the random number generator per iteration). Alternatively, several atoms can be moved at once; If an appropriate value for the maximum displacement is chosen then this may enable phase space to be covered more efficiently.
As with a molecular dynamics simulation, a Monte Carlo simulation comprises an equilibration phase followed by a production phase. During equilibration, appropriate thermodynamic and structural quantities such as the total energy(and the partitioning of the energy among the various components), mean square displacement and order parameters (as appropriate) are monitored until they achieve stable values, whereupon the production phase can commence. In a Monte Carlo simulation from the canonical ensemble, the volume will change and should therefore also be monitored to ensure that a stable system density is achieved.

3.4.1 Random Number Generators:

The random number generator at the heart of every Monte Carlo simulation program accessed a very large number of times, not only to generate new configuration but also to decide whether a given move should be accepted or not. Random number generators are also used in other modeling applications; for example, in a molecular dynamics simulation the initial velocities are normally assigned using a random number generator. The number produced by a random number generator are not, in fact, truly random; the same sequence of numbers should always be generated when the program in run with the same initial conditions (if not, then a serious error in the hardware or software must be suspected!). The sequences of numbers are thus often referred to as 'pseudo-random' numbers are they possess the statistical proprieties of 'true' sequences of random numbers. Most random number generators are designed to generate different sequences of numbers if a different seeds. One simple strategy is to use the time and/or date as the seed; this is information that can often be obtained automatically by the program from the computer's operating system.
The numbers produced by a random number generator should satisfy certain statistical proprieties. This requirement usually supersedes the need for a computationally very fast algorithm as other parts of a Monte Carlo simulation take much more time (such as calculating the change in energy). One useful and simple test of random number generator is to break sequence of random numbers into blocks of k numbers, which are taken to be

$$
\begin{aligned}
& \text { coordinates in a k-dimensional space. A } \\
& \text { good random number should give a } \\
& \text { random distribution of points. Many of the } \\
& \text { common generators do not satisfy this test } \\
& \text { because the points lie on a plane or } \\
& \text { because they show clear correlations } \\
& \text { [Sharp and bays 1992]. } \\
& \text { The linear congruential method is widely } \\
& \text { used for generating random numbers. } \\
& \text { Each number in the sequence is generated } \\
& \text { by taking the previous number, } \\
& \text { multiplying by a constant (the multiplier, } \\
& \text { a), adding s second constant the } \\
& \text { increment, b), and taking the remainders } \\
& \text { when dividing by third constant (the } \\
& \text { modulus, m). The first value is the seed, } \\
& \text { supplied by the user. Thus } \\
& \quad \xi[1]=\text { seed } \\
& \text { gij]=MOD }\{(\xi[\mathrm{F}-1-1] \times \mathrm{a}+\mathrm{b}), \mathrm{m}\} \\
& \text { The MOD function returns the remainder } \\
& \text { when the first argument is divided by the } \\
& \text { second (for example, MOD (} 14.5 \text {) equals } \\
& \text { 4). If the constants are chosen carefully, the } \\
& \text { linear congruential method generates all } \\
& \text { possible integers between } 0 \text { and m-1, and } \\
& \text { the period (i.e. the number of iterations } \\
& \text { before the sequence starts to repeat itself) } \\
& \text { will be equal to the modulus. }
\end{aligned}
$$

Fig 8.3:

The period cannot of course be greater than m . The linear congruential method generates integral values, which can be converted to real numbers between 0 and 1 by dividing by m. The modulus as often chosen to be the largest prime number that can be represented in a given number of bits (usually chosen to be the number of bits per word; $2^{81}-1$ is thus a common choice on a 32-bit machine).
Although popular, by virtue of the ease with which it can be programmed, the linear congruential method does not satisfy all of the requirements that are now regarded as important in a random number generator. For example, the points obtained from a linear congruential generator lie on ($k-1$)-dimensional planes rather than uniformly filling up the space. Indeed, if the constants a, b and m are chosen inappropriately then the linear congruential method can give truly terrible results, as shown in figure 8.3.One random number generator that is claimed to perform well in all of the standard tests is that of G Marsaglia, which is described in Appendix 8.1.

3.5 Monte Carlo Simulation of molecules:

The Monte Carlo method is most easily implemented for atomic systems because it is only necessary to consider the translational degrees of freedom. The algorithm is easy to implement and accurate results can be obtained from relatively short simulations of a few tens of thousands of steps. There can be practical problems in applying the method to molecular systems, and especially to molecules which have a significant degree of conformational flexibility. This is because, in such systems, it is necessary to permit the internal degrees of freedom to vary. Unfortunately, such changes often lead to high-energy overlaps either within the molecule or between the molecule and its neighbors and thus a high rejection rate.

3.5.1 Rigid Molecules

For rigid, non-spherical molecules, the orientations of the molecules must be varied as well as their positions in space. It is usual to translate and rotate one molecule during each Monte Carlo step. There are various ways to generate a new orientation of a molecule. The simplest approach is to choose one of the three Cartesian axes (x, y or z) and to rotate about the chosen axis by a randomly chosen angle ξw, chosen to lie within the maximum angle variation, $\zeta w_{\text {max }}$ [Baker and Watts 1969]. The rotation is achieved by applying routine trigonometric relationships. For example, if the vector
($x \mathbf{i}, \mathrm{y} \mathbf{j}, \mathrm{zk}$) describes the orientation of a molecule then the new vector ($\mathrm{x}^{\prime} \mathbf{i}, \mathrm{y}^{\prime} \mathbf{j}, \mathrm{z}^{\prime} \mathbf{k}$) that corresponds to rotation by ξ_{w} about the x axis calculated as follows:

Fig. 8.4: The Euler angles \emptyset, θ et ψ.
The Euler angles are often used to describe
the orientations of a molecule. There are
three Euler angles; \emptyset, θ and $\psi . \quad \emptyset$ is a
rotation about the new x axis. Finally, ψ is
a rotation about the new z axis (Figure
8.4). If the Euler angles are randomly
changed by small amounts $\delta \phi, \delta \phi$ then a
vector $V_{\text {old }}$ is moved according to the
following matrix equation:
$\boldsymbol{V}_{\text {new }}=\mathrm{A} \boldsymbol{V}_{\text {old }}$

$\begin{aligned} & \left(\begin{array}{c} \cos \delta \varphi \cos \delta \psi-\sin \delta \varphi \cos \delta \theta \sin \delta \psi \\ -\cos \delta \varphi \sin \delta \psi-\sin \delta \varphi \cos \delta \theta \cos \delta \psi \\ \sin \delta \varphi \cos \delta \theta \end{array}\right. \end{aligned}$	$\begin{gathered} \sin \delta \emptyset \cos \delta \psi-\cos \delta \emptyset \cos \delta \theta \sin \delta \psi \\ -\sin \delta \emptyset \sin \delta \psi-\cos \delta \emptyset \cos \delta \theta \cos \delta \psi \\ -\cos \delta \emptyset \sin \delta \theta \end{gathered}$	$\sin \delta \theta \sin \delta \psi$ $\sin \delta \theta \cos \delta \psi$ $\cos \delta \theta$
$)$		

| It is important to note that simply |
| :--- | :--- |
| sampling displacements of the three Euler |

angles does not lead to uniform distribution; it is necessary to sample from $\cos \theta$ rather than θ (figure 8.5).

Fig. 8.5:

The preferred approach is to sample
directly in $\cos \theta$ as follows:

$$
\begin{gathered}
\emptyset_{\text {new }}=\emptyset_{\text {old }}+2(\xi-1) \delta \emptyset_{\text {max }} \\
\cos \emptyset_{\text {new }}=\cos \emptyset_{\text {old }}+2(\xi-1) \delta(\cos \theta)_{\max } \\
\psi_{\text {new }}=\psi_{\text {old }}+2(\xi-1) \delta \psi_{\max }
\end{gathered}
$$

The alternative is to sample in \emptyset and to modify the acceptance or rejection criteria as follows:

$$
\begin{aligned}
& q_{0}=\cos \frac{1}{2} \phi \cos \frac{1}{2}(\phi+\psi) \\
& q_{0}=\sin \frac{1}{2} \phi \cos \frac{1}{2}(\phi+\psi) \\
& q_{0}=\sin \frac{1}{2} \phi \sin \frac{1}{2}(\phi+\psi) \\
& q_{0}=\cos \frac{1}{2} \phi \sin \frac{1}{2}(\phi+\psi)
\end{aligned}
$$

The Euler angle rotation matrix can then be written

$$
\mathbf{A}=\left(\begin{array}{ccc}
q_{0}^{2}+q_{1}^{2}-q_{1}^{2}-q_{3}^{2} & \mathbf{2}\left(q_{1} q_{2}+q_{0} q_{3}\right) & \mathbf{2}\left(q_{1} q_{3}-q_{0} q_{2}\right) \\
\mathbf{2}\left(q_{1} q_{2}-q_{0} q_{3}\right) & q_{3}^{2}-q_{1}^{2}+q_{\mathrm{t}}^{2}-q_{3}^{\mathrm{L}} & \mathbf{2}\left(q_{1} q_{3}-q_{0} q_{2}\right)
\end{array}\right)
$$

To generate a new orientation, it is necessary to rotate the quaternion vector to a new (random) orientation. As it is a four-dimensional vector, the orientation must be performed in four-dimensional space. This can be achieved as follows [Vesely 1982]:

1. Generate pairs of random numbers $\left(\xi_{1}, \xi_{2}\right)$ between -1 and 1 until $S_{1}=\xi_{1}^{2}+\xi_{2}^{2}<1$
2. Do the same for pairs ξ_{1} and ξ_{1} until $S_{1}=\xi_{3}^{2}+\xi_{4}^{2}<1$
3. Form the random unit fourdimensional vector $\left(\xi_{1}, \xi_{2}\right.$, $\xi_{3} \sqrt{\left(1-S_{1} / S_{2}\right)}, \xi_{4} \sqrt{\left(1-S_{1} / S_{2}\right)}$.
To achieve an appropriate acceptance rate the angle between the two vectors that describe the new and old orientations should be less than some value; this corresponds to sampling randomly and uniformly from a region on the surface of a sphere.
The introduction of an orientation component as well as translational moves is made. Trial and error is often the most effective way to find best combination of parameters.

3.5.2 Monte Carlo Simulations of Flexible Molecules: /

Monte Carlo Simulations of flexible
molecules are often difficult to perform
successfully unless the system is small, or
some of the internal degrees of freedom
are frozen out, or special models or
methods are employed. The simplest way
to generate a new configuration of a
flexible molecule is to perform random
changes to the Cartesian coordinates of
individual atoms, in addition to
translations and rotations of the entire
molecule. Unfortunately, it is often found
that very small atomic displacements are
required to achieve an acceptable
acceptance ratio, which means that the
phase space is covered very slowly. For
example, even small movements away

> from an equilibrium bond length will cause a large increase in the energy. One obvious tactic is to freeze out some of the internal degrees of freedom, usually the 'hard' degrees of freedom such as the bond lengths and the bond angles. Such algorithms have been extensively used to investigate small molecules such as butane. HOW-ever, for large molecules, even relatively small bond rotations may cause large movements of atoms down the chain. This invariably leads to high-energy configurations as illustrated in figure 8.6 . The rigid bond and rigid angle approximation must be used with care, for freezing out some of the internal degrees of freedom can affect the distributions of other internal degrees of freedom.

Figure 8.6

3.6 Models Used in Monte Carlo Simulation of Polymers/

A polymer is a macromolecule that is
constructed by chemically linking
together a sequence of molecular
fragments. In simple synthetic
polymers such as polyethylene or
polystyrene all of the molecular
fragments comprise the same basic unit
(or monomer). Other polymers contain
mixtures of monomers- Proteins, for
example, are polypeptide chains in
which each unit one of the twenty
amino acids. Cross-linking between
different chains gives rise to yet further
variations in the constitution and
structure of polymer. All of these
features may affect the overall

proprieties of the molecule, sometimes in a dramatic way. Moreover, one may be interested in the proprieties of the polymer under different conditions, such as in solution, in a polymer melt or in the crystalline state. Molecular modeling can help to develop theories for understanding the proprieties of polymers and can also be used to predict their properties.
A wide range of time and length scales are needed to completely describe a polymer's behavior. The timescale ranges from approximately $10^{-14} \mathrm{~S}$ (i.e. the period of a bond vibration) through to seconds, hours or even longer for collective phenomena. The size scale ranges from the $1-2 A$ of chemical bonds to the diameter of a coiled polymer, which can be several hundreds of angstroms. Many kinds of model have been used to represent and simulate polymeric systems and predict their proprieties. Some of these models are based upon very simple ideas about the nature of the intra-and intermolecular interactions within the system but have nevertheless proved to be extremely useful. One famous example in Flory's rotational isomeric state model [Flory 1969]. Increasing computer performance now makes it possible to use techniques such as molecular dynamics and Monte Carlo simulations to study polymer systems.

Most simulations on polymers are performed using empirical energy models (through with faster computers and new methods it is becoming possible to apply quantum mechanics to larger and larger system). Moreover, there are various ways in which the

> configurationally and conformational degrees of freedom may be restricted so as to produce a computationally more efficient model. The simplest models use a lattice representation in which the polymer is constructed from connected interaction centers, which are required to occupy the vertices of a lattice. AT the next level of complexity are the bead models, where the polymer is composed of a sequence of connected 'beads'. Each bead represents an effective monomer' and interacts with the other beads to which it is bonded and also with other nearby beads. The ultimate level of detail is achieved with the atomistic models, in which each non-hydrogen atom is explicitly represented (and sometimes all of the hydrogen as well). Our aim here to is give a flavor of the way in which Monte Carlo methods can be used to investigate polymeric systems. We divide the discussion into lattice and continuum models but recognize that is a spectrum of models from the simplest to the most complex.

3.6.1 Lattice Models of Polymers

Lattice Models have provided many
insights into the behavior of polymers
despite the obvious approximations
involved. The simplicity of a lattice
model means that many states can be
generated and examined very rapidly.
Both two-dimensional and three-
dimensional lattices are used. The
simplest models use cubic or

tetrahedral lattices in models are
usually very simple, in part to reflect
the simplicity of the representation but
also to permit the rapid calculation of
the energy.
More complex models have been
developed in which the lattice
representation in closer to the 'true'
geometry of the molecule. For example,
in figure 8.8 we show the bond
fluctuation model of polyethylene, in
which the 'bond' between successive
moments on the lattice

Figure 8.7

Figure 8.8

Figure 8.9

Represent three bonds in the actual molecule [Baschnagel et al. 1991]. In this model each monomer is positioned at the center within the lattice and five different distances are possible for the monomer-monomer bond lengths.
Lattices can be used to study a wide variety of polymeric systems, from single polymer chains to dense mixtures. The simplest type of simulation in a 'random walk', in which to chain is randomly grown in the lattice until it contains the desired number of bonds (Figure 8.9), In this model the chain is free to cross itself (i.e. excluded volume effects are ignored). Various proprieties can be
calculated from such simulations, by averaging the results over a large number of trials. For example measure of the size of a polymer in the mean square end-to-end distance, $\left(R_{m}^{2}\right)$ is related to the number of bonds (n) and the length of each bond (l) by:

The radius of gyration is another commonly calculated property; this is the root mean square distance of each atom (or monomer) from the center of mass. For the random walk model the radius of gyration $\left(s^{2}\right)$ is given in the asymptotic limit by:

$$
\left(s^{2}\right)=\left(R_{n}^{2}\right) / 6
$$

The ability of the chain to cross itself in the random walk may seem to be a serious limitation, but it is found to be valid under some circumstances. When excluded volume effects are not important (also known as 'theta' conditions) then a subscribe ' 0 ' is often added to proprieties such as the mean square end-to-end distance, $\left(\left(R_{n}^{2}\right)_{0}\right)$.Excluded volume effects can be taken into account by generating a 'self-avoiding walk' of the chain in the lattice (Figure 8.10). In this model only one monomer can occupy each lattice site. Self-avoiding walks have been used to exhaustively enumerate all possible conformations for a chain of a given length one the lattice. If all states are known then the partition function can be determined and thermodynamic
quantities calculated. The 'energy' of each state may be calculated using an appropriate interaction model. For example, the energy may be proportional to the number of adjacent pairs of occupied lattice sites. S variation on this is to use polymers

Figure 8.10

Consisting of two types of monomer (A and B), which have up to three different energy values: A-A, B-B and A-B. Again, the energy is determined by counting the number of occupied adjacent lattice sites. The relationship between the mean square end-to-end distance and the length of the chain (n) has been investigated intensively; with the self-avoiding walk the result obtained is different from the random walk, with $\left(R_{m}^{2}\right)$ being proportional to $n^{1.18}$ in the asymptotic limit.

Having grown a polymer onto the lattice, we now have to consider the generation of alternative configurations. Motion of the entire polymer chain or large-scale conformational changes is often difficult, especially for densely packed polymers. In variants of the verdierStockmayer algorithm [Verdier and Stockmayer 1962] new configurations are generated using combinations of 'crankshaft'; 'kink jump' and 'end rotation' moves (figure 8.11). Another Widely used algorithm in Monte Carlo simulation of polymers (not just in lattice models) is the 'slithering snake'

Abstract

model. Motion of the entire polymer chain is very difficult, especially for densely packed polymers, and one way in which the polymer chain is very difficult, especially for densely packed polymers, and one way in which the polymer can move is by wriggling around obstacles, a process known as reputation. To implement a slithering snake algorithm, one end of the polymer chain is randomly chosen as the 'head' and an attempt is made to grow a new bead at one of the available adjacent lattice positions. Each of the remaining beads is then advanced to that of its predecessor in the chain illustrated in figure 8.12. The procedure is then repeated. Even if it is impossible to move the chosen 'head' the configuration must still be included when ensemble averages are calculated.

Figure 8.11

Figure 8.12

3.6.2 Continuous' Polymer Models/

The simplest of the continuous
polymer models consists of a string of
connected beads (Figure 8.13). The
beads are freely jointed and interact
with the other beads via a spherically
symmetric potential such as the
Lennard-Jones potential. The beads
should not be thought of as being

identical to the monomers in the
polymer; though they are often
referred to as such ('effective
monomers' is a more appropriate
term). Similarly, the links between the
beads should not be thought of as
bonds. The links may be modeled as
rods of a fixed and invariant length or
may be permitted to vary using a
harmonic potential function.
In Monte Carlo studies with this freely
jointed chain model the beads can
sample from a continuum of positions.
The pivot algorithm is one way that
new configurations can be generated.
Here, a segment of the polymer is
randomly selected and rotated by a
random amount, as illustrated in figure
8.13. For isolated polymer chains the
pivot algorithm can give a good
sampling
configurationally/conformational the
space. However, for polymers in
solution or in the melt, the proportion
of accepted moves is often very small
due to high-energy steric interactions.

Figure 8.13

The most unrealistic feature of the freely jointed chain model is the assumption that bond angles can vary continuously. In the freely rotating chain model the bond angles are held fixed but free rotation is possible about the bonds, such that any torsion angle value between 0° and 360° is equally likely. Fixing the bond angles in this way obviously affects the proprieties of the chain when compared to the freely

| jointed chain; one way quantify this is |
| :--- | :--- |
| via the characteristic ratio c_{n}, which is |
| defined as: |

$$
C_{n}=\frac{\left(R_{n}^{2}\right)_{0}}{n l^{2}}
$$

| The characteristic ratio approximately |
| :--- | :--- |
| indicates how extended the chain is. |
| For the freely rotating chain the |
| characteristic ratio is given by: |

$$
C_{n}=\frac{1+\cos \theta^{\prime}}{1-\cos \theta^{\prime}}-\frac{2 \cos \theta^{\prime}}{n} \frac{1+\cos { }^{n} \theta^{\prime}}{\left(1-\cos \theta^{\prime}\right)^{2}}
$$

| Where θ^{\prime} is the supplement of the |
| :--- | :--- |
| normal bond angle (i.e. $\theta^{\prime}=180^{\circ}-\theta$). For |
| an infinitely long chain the |
| characteristic ration becomes: |

$$
C_{\infty}=\frac{1+\cos \theta^{\prime}}{1-\cos \theta^{\prime}}
$$

بسم اللّا الرحمن الرحيم

Dictionary

Contents

A. ... 77
B. ... 77
C.. 77
D. .. 78
E. ... 78
F. .. 78
G. ... 79
I. .. 79
K... 79
M.. 79
N. ... 79
O. ... 80
P. .. 80
Q. .. 80
R... 80
S.. 81
T. .. 81
V... 81
W... 81

English	عربي

A.

Atom	ذرّة
Absolute	قيمة مطلقة
Angular momentum	زخهم زاوي/ كمية الحر كة الز اوية
Antisymmetry	عدم التناظر

B.

Bohr	
Bond	نوذج بور

C.

Charge	شحنة
Covalent bond	رابط تساهي
Computational chemistry	الكعميميائية

Coordinate Systems	إحداثيات النظام
Cartesian coordinates	\|إلحداثيات الديكار تية
Computer-generated models	النماذج اليّ يوجدها الحاسوب
Configuration (electronic configuration)	توزيع إلكتروني
Combination	تو افيق
Coefficients	معامل
Charge	شحنة
Counter	عدّاد

D.

Double bond	رابط مزدوج
Determinant	الُحْدّد
Denominator	لالقام

E.

Energy surface	طاقة السطح
Expression	عبارة جبرية
Expansion	امتداد
Electrostatics	كهروستاتيكا
Exponents	الأس
Eigenvalue	القيمة الذاتية
Eigenvector	المتجه الذاية

F.

Factor	عامل
Factorisation	عَليل

G.

Ground State	حالة قاعية أو حالة أرضية

I.

Internal coordinates	الإحداثيات الداخلية
Indistinguishable	غير متمايزة
Integral	تكامل
Index	مؤشّر
Interaction	تآثر
Iteration	تكرير

K.

Kinetic Energy	

M.

momentum	زنهم الحر كة أو كمية الحركة
Mechanical models	باستخدام نماذج ميكانيكية
Molecular Graphics	رسومات الجزيئية
Molecular modelling	النمذجة الجزيئية
Model	نوذج

N.

Non-linear	غير خطي
Non-covalent bond	رابط غير تساهيم
Normalization	تنسيب آحادي

Nuclei	النوى
Numerator	bum

O.

Orthogonal	متعامدة
Orthonormal	مستنظم

P.

Potential Energy Surfaces	\|أسطح الطاقة الكامنة
Pseudo-atoms	شبه ذرة واحبة (ذرة زائفة)
Polymer	مريّبّبيميائي
Probe molecule	-
Processor	ter
Potential energy	طاقة الوضع
Polar coordinates	النظام الإحدائي القطي
Polynomial	كيّرة المدود
Projection	إسقاط
Polyelectronic	همتعددة اللإلكترونات
Permutations	التباديل

Q.

Quantum mechanics	

R.

Radius	شعأج
Raster devices	الأجزة النقطية

Real number	عدد حقيقي
Repulsion	تباءد

S.

Structure	بُبِّ
Sinusoidal	ا
Single bond	رابط مفرد
Spin	السيين أو الغزل أو الطـِ .
Square	0.
Simplification	تبس
Substitution	تبديل
Symmetry	تناظر

T.

Torsion angle	زاوية إلإلتواء
Theoretical chemistry	الكيمياء النظرية
Term	ح

V.

Vector devices	الأجهزة الناقلة
Virtual reality	الواقع الإنتراضي
Vector	
valence	تكافٔز

W.

Wavefunction دالة موجيّة

[^0]: ${ }^{1}$ Ab initio quantum chemistry methods are computational chemistry methods based on quantum chemistryl أساليب Ab initio.هي من طرق المعلوماتية الكيميائية اليت تستند إلى كيمياء الكم (بسبب موسوعة ويكيديا الإلكترونية)

[^1]: ${ }^{2}$ LCAO is a quantum superposition of atomic orbitals and a technique for calculating molecular orbitals in quantum chemistry.(Ref:Wikipedia)/هو تراكب الكم من المدارات الذرية وتقنية لحساب المدارات الجزيئية في كيمياء الكم LCAO
 ${ }^{3}$ Ref: http://en.wikipedia.org/wiki/Linear combination of atomic orbitals molecular orbital method : المصدر

