Entwurf fuer ein Paper, voerlaeufiger Titel: Sidechain placing in
Homology Modeling via Lagrangian Relaxation, (zu verwenden fuer
die Promotion)

Samir Mourad

July 21, 2005

Sidechain placing in Homology Modeling via Lagrangian Relaxation
Samir Mourad! and Oliver Kohlbacher?

February 2004/Mrz-Mai 2005

Abstract

We illustrate a new approach to the sidechain placing problem. The approach is based on
formulating the problem as an integer linear program and then relaxing in a Lagrangian way a
suitable set of constraints.

Key Words: molecular modeling, discrete optimization, Lagrangian Relaxation

1 Introduction

1.1 Sidechain placing in homology modeling

Conformatitions occuring in proteins can be adequately described by a rather small set of so-
called rotamers for each amino acid. These rotamer libraries can be used to reduce the sidechain
placement problem to a combinatorial optimization problem: search for the set of rotamers with
the minimum energy, i.e., the global minimum energy conformation (GMEC). As the number of
rotamer combinations is very high (...), efficient methods are required to identify the GMEC or
suboptimal solutions sufficiently close to the GMEC.

1.2 Sidechain conformation optimization

In [3] a combinatorial approach for sidechain conformation optimization in Protein Docking area is
introduced. There are introduced two methods. One uses an integer linear program and branch-
and-cut algorithm. In [8] the constraints of the integer program of [3] are improved.

In this paper a Lagrangian Relaxation (LR) approach is introduced for sidechain conformation
optimization to be used in sidechain placing for homology modeling of proteins. The theory of
Lagrangian Optimization is a well established branch in of Combinatorial Optimization and has
been used sucessfully in a large number of applications, in different domains [2]. Recently [5]
decribed an LR approach for Structural Alignment of Large-Size Proteins this was the first time
that a similar approach was used for an alignment problem in Computational Molecular Biology.
Nowadays, LR is the most successful tool to tackle very large problems. These algorithms are
capable of finding near-optimal solutions to instances with millions of variables and thousands of
constraints within minutes on a PC.

!'Universitaet Tuebingen, Wilhelm Schickard Institute for Computer Science, Dept. for Simulation of biological Sys-
tems, Sand 14, D-72076 Tuebingen and VGOEG, Haid-und-Neu-Str.7, D-76139 Karlsruhe, email: mourad@zgoeg.de

2Universitaet Tuebingen, Wilhelm-Schickard-Institute for Computer Science, Dept. for Simulation of biological
Systems, Room C318, Sand 14, D-72076 Tuebingen

1.3 Lagrangian Relaxation

The LR approach is particularly well suited for those cases in which the formulation of a problem
consists of two sets of constraints: a set of nice constraints and a set of bad constraints, whose
removal makes the resulting problem, called the Lagrangian relased problem, easily solvable.

1.The strategy then consists in removing the bad constraints from the formulation and putting them
into the objective function, each weighted by some coefficient (Lagrangian Multiplier). The weight
for a constraint represents a penalty which is incurred by a solution which does not satisfy that
constraint. To any choice of weights corresponds a (relatively easy) problem whose solution yields
a bound to the original problem.

2.The core question of LR is then to determine the optimal weigths, i.e., the Lagrangian multipliers
yielding the best bound. In most cases, the determination of these multipliers is equivalent to solving
a suitable LP, which would be too time consuming in practice. On the other hand near-optimal
multipliers can be found by a simple iterative procedure called subgradient optimization, in which,
at each iteration, the Lagrangian relaxed problem is solved and the multipliers are updated based
on the corresponding solution.

3.Besides yielding an upper bound on the optimal solution of the original problem, the Lagrangian
multipliers (and the associated costs/profits in the objective function) can be used to drive simple
heuristic procedures (in most cases of greedy nature). These procedures typically produce substan-
tially different solutions for different Lagrangian multipliers.

4.Accordingly, if the Lagrangian multipliers are embedded within an iterative procedure to define
near-optimal near-optimal multipliers, namely they are called at each iteration with the current
multipliers, the best solution found over all iterations tends to be near-optimal.

1.3.1 Design of a general LR/MIP algorithm

The following introduction to LR is from [6].

Lagrangean Relaxation is a Price Directive decomposition technique, which in the first instance sim-
plifies and reduces the problem in question by relaxing groups of constraints. Lagrangean relaxation
has been successfully used in processing many different instances of combinatorial optimisation prob-
lems, such as the Travelling salesman Problem. Many combinatorial optimisation problems consist
of an easy problem that is complicated by the addition of extra constraints. Applying LR in these
problems involves identifying these complicating constraints, and then relaxing them by attach-
ing penalties to the complicating constraints and then absorbing them into the objective function.
These penalties are known as the Lagrange multipliers. Due to the relaxation of the complicating
constraints, the relaxed problem becomes much easier to solve. The next aim is to find tight upper
and lower bounds to the problem by iteratively processing sequence of modified sub-problems. LR
involves addressing two important issues; one is a strategic issue and the other a tactical issue. The
strategic issue concerns the classification and relaxation of the constraints. The strategic question
is of the form What constraints are to be relaxed? The tactical issue deals with the selection of a
good technique for updating the Lagrange multipliers. The tactical questions are of the form, How
the reduced problem can be solved? or How can we calculate an efficient bound?.

1.3.2 Relaxation of constraints

Before defining the general MIP problem, lets identify the following index sets:
B ={1,...,|B|} Index set for binary variables,
I={|B|+1,..|B|+|I|} Index set for integer variables,
C={B|+|I|+1,...,|Bl +|I|+|C|} Index set for continues variables,

N = BUI UC Index set for all variables.

Hence, the general MIP problem can be written as:

PO N
min 3. €%
JEN
st 3 a’ijj(é)dka k=1,....m
JEN -
> bz (Z) i, 1=1,...n
JEN

;€ Rt f jeC

zj € {o0,1} iff jeB

zjeZt Mt jel

In the following of this subsection 1.3.2 ...

This initial problem P, is known as the master problem. Since this master problem is difficult to
solve, we relax a set of constraints, CO € [1,m], by attaching Lagrange multipliers Ay > 0. Then,
this relaxed group of constraints are appended to the objective function and forms the following
Lagrange Lower Bound Problem (LLBP):

PL()\) .

min Y, xj(Cj — Z)\kakj) + Z Aedy,
JEN k=1 k=1

st > bljxj(i)gz, I=1,...,n
JEN

zje RY it jeC
zj € {o,1} if je€B
zjeZt Mt jel

The Lagrangian multipliers, \;, penalise the violation of the corresponding relaxed constraints
introduced in the objective function. The selection of which set of contraints to be relaxed is a
strategic issue.

After decomposing the master problem, we are interested in choosing the appropriate numerical

values for the Lagrange multipliers (tactical issue) for the problem P (). In particular, we are
interested in finding the values of A that gives the maximum lower bound.? The Lagrange lower
bound is also known as the Lagrange dual program.

m m
min Y, xi(c; — Y Agagj) + X0 Apdy
jen k=1 k=1

CRADY szwj(i)gz, l=1,...,n
JEN

mazy, , , (Ppuat)
z; € RT iff jeC

z;j€{0,1} iff jeB

z;€Zt aff jel

The best value for A; is calculated by applying iterative updating techniques to the above system
(Pguar)- There are two well-known techniques that have been widely used: Subgradient Optimization
and Multiplier Adjustment.

The estimation of good solution to NP-hard problems by using a non-exact method, like LR, does
not depend only on the calculation of good lower bound. It is equally important to to calculate
good solutions that are feasible and provede upper bounds to the master problem. We thus reduce
the duality gap and provide tight bound for the optimal solution. The duality gap is defined as the
relative difference between the lower bound and the upper bound. In ideal instances, the Lagrange
lower bound is equal to the upper bound. The upper bounds are usually calculated by using a
Lagrange heuristic (LH). An instant of a LH algorithm is to take the LLBP solution vector and to
attempt to convert it to a feasible solution vector to the master problem.

1.3.3 Determination of the Lagrangian multipliers

There have been two main techniques that have been sucessfully applied for finding Lagrange
multipliers in a wide variety of problem instances. There are the subgradient optimization and
multiplier adjustment. Subgradient optimisation is an iterative procedure that, starting from an
initial set of Lagrange Multipliers, attempts to improve the lower bound of the LLBP in a systematic
way. Multiplier adjustment is also an iterative procedure, but modifies only one component of the
multiplier in an iteration.

The literature suggests that subgradient optimization is the preferable method for general discrete
optimisation problems. Subgradient is straight forward to implement and can be applied without
modifications for different problem instances.

Algorithmic Framework of Subgradient Optimisation

Define Cj as the cost coefficient vector of the LLBP (Py)). Hence,

Cj=1cj = Y_ Max
k=1

31f the Py problem is max ..., then we are seeking for the minimum upper bound.

where j = 1,...n (number of coefficients (variables)) and k = 1,...,m (number of constraints). The
main steps that have to be followed to apply subgradient optimisation are set out below:

STEP1: initialisation

e Set m which is a user-defined parameter, equal to 2. (0 < 7 < 2)
e Set the lower bounds to —oo and the upper bounds UB, Z; g to +o0.
e Set N_.LR = 0 number of Lagrange operations.

e Initialise the Lagrange multipliers .

STEP2: calculate lower bound with subgradient method

e Solve the LLBP(Ppy)) for the current set of Ay to obtain the solution vector X; and the lower
bound Zpp. (Z! 5 = {z,})

e If the Z; g > LB, set LB = Z .
STEP3: calculate upper bound

e Apply a Lagrange Heuristic to find a feasible upper bound Zypg. If Zyp < UB, set UB =
Z LB-

STEP4: Update the multipliers
1. Calculate the Subgradients G% for current solution vector Xj.

Gt =dj — Z ag;zj, k=1,..m
JEN

If all G; < 0 for each ’ >’ constraint, then Z; g is feasible.

2. Define a scalar step size T.

(Zup — Z1p)*
m

> (G})

=1

T —

3. Update the Lagrange Multipliers set
M = maz(0,\, +TGY), k=1,...m
STEPS5: Stopping criteria

1. 7 < 0.005
2. (UB-LB) = 0.0

3. Zgl(GZ)Q =0

If stopping rules are not stisfied then go to STEP 2.

The user-defined parameter, controls the step size T. In the case wherein the lower bound did not
improve for 30 consecutive iterations, we half this parameter. Generally speaking, the smaller the
value of this parameter, the smaller is the oscillation of the resulted lower bound (ZLB). In fact,
when the value of the parameter is small, we are trying to improve the lower bound by searching
on the "neighbourhood” of the LB.

There are three termination conditions of the algorithm. The algorithm terminates when the user-
defined parameter becomes very small (i.e. 0.005), or when the dual gap (UB-LB) is equal to
zero, or when the sum of squares of all the subgradients is equal to zero (37%;(GL)? = 0). The
last termination implies that all the constraints are perfectly satisfied and therefore all the Slack
variables of the model are equal to zero.

2 Sidechain placing in Homology Modeling via Lagrangian Relax-
ation - ILP formulation from Kingsford et.al.2005

2.1 ILP formulation

If all pairwise energies between rotamers in positions i and j are non-positive, then we can remove
all variables z,, with u € V; and E,, = 0, and modify the equality constraints

me,:xm, for j=1,.,pand v e V/V;
u€eVj

For each V; let NT(V;) the set union of the V; for which there exists some v € V; and u € V; with
Eyy > 0. Let D' be the set of pairs {u,v} with u € V; such that either v € N*(V}), or v & N*(V})
but E,, < 0. There will be edge variables x,, only for pairs in D'.

Our modified ILP is as follows:

. . . /
Minimize E = Z EoyuToyy + Z By
ueV {uw}eD’

subject to

quu=1 forji=1.,p
u€V;

Z Typy = Tyy Jor j=1,..,p and v€N+(‘/j)
ueVj

> ww<zw for j=1,.,p and v ¢ NT(V))
u€V;:1Fyy<0

An inequality constraint is not included if the sum on the left-hand side is empty.

2.2 Lagrangian Relaxation of Kingsford-Formulation

/ .
mznxuu7zuv{ Z Euuxuu
ucV

+ Z EuoTyy

{up}eD'
+ Z >\jv(Z LTyy — xvv)
j=1,...,p and veNT(V}) u€eVj
+)Y pin(> Tuy — Tuw)} P
maax). . Jv uv VU
Ajuskjo >0 j=1,ep and ’U€N+(V]) UEV; By <0 (Dual)
subject to:

o Ty =1 for j=1,...,p
ueVj

\ Zuu, Tuv € {071}

2.2.1 Dimension of variables and constraints

State variables x,,, and z,,:

There are |V| = n; + ... + n, variables z,
and |V |2/2 variables 2, .

Lagrangian multipliers A\, and p,:

There are p * |V| multiplier variables Aj,
and p * |V| multiplier variables 1.

Constraints:

There are p constraints

Dy =1 for 5=1,...;p.
u€eVj
For a normal protein with rotamers from a library like the Dunbrack-Library (see [7]) p &~ 400 and
n; =~ 80 for i=1..p. Thus we have ~ 5 * 10® state variables,

~ 1,2 % 10" Lagrangian multipliers, and ~ 400 constraints

2.2.2 Implementation of the Lagrangian Relaxation

We can rewrite the following term in the energy function

Y. Euwrw
{u,v}eD’

as

> Euwwruy + EuyTuy
J=1,...,p: u€Vj, veN*T(V}) J=1,c.,p: VENT(V}), u€V;:Eyy <0

and

Y EBuuTyy as Y. EypTyy.
ueV veV

The algorithm consists of the following steps:

1. initialisation of x, A and .

2. for fix A\ and p the energy function is minimized over z,, and z,,.

That means each z,, and z,, are set (within the uncomplicating constraints) either to
0 or to 1 such that the relaxed energy function is minimized with fixed A and pu.

.
Z EyyTyy —
veV J=1,...,p: veN*+(V})
+ Z Z EuvTyy

Jj=L,...,p: veN*T(V;) u€Vj

j=1,...,p: vENT(V;) ueVj

ZLR()UM 2 0) = minl’vv@uv

ueVj

\ Tuus Tuy € {071}

J=1,...p: v¢ N+ (V;)

j=1,0p: VEN+(V}), u€Vj:Eyy<0

+ > >)\jvxuv

+
J=1,..,p: vENT(V;) u€Vj:Eyy <0
subject to:
By Ty, i A2011 Ty, Oder fioy,, Ty,

> Ty =1 for j=1,..,p

First z;r is optimized with respect to z,,. There are only concerned the terms in the
first line. We can divide the v € V into p classes V}, 7 = 1...p. Because we are minimizing

we suppose F,, < 0.

There are |V| =mn; + ... + ny elements in Y Ey,y,

veV
and (p — 1) * |V| elements in
- Z)\jvxvv - Z HjuTyy
j=1,...,p: ve N*t(V}) j=1,...,p: v¢ Nt (V})

10

7=1:
By 011 Ty vgg eeeeeeeemememenenenes A2u11 Tuyqv1; OdeT oy, Toyqv1s

Apv1y Tugyvyy OAET fhpyyy Loy,

By 01ny By w1y weeeeeeeeeeneeens A201n, Toip, vin, OQ€T [1201, Ty vip,

/\pvlm Lv1p, vin, oder Ppvin, Toin, vin,

1=k:

B 0g1 Togy vy ooeveeereneeesneenns Mgy Togrog, Oder iy, Toyvp,
(nOt Akvklkalvkl oder /‘l’kvklkalvkl)
Apvir Togyvgy 0T Lpyyy Loy vgy

Ev,mk Ly, Uy oeeeeeeeeseeeeses Alvknk Topy, Vin, oder P10, Log, Vkn,,
(not)\kvknk Lk Vkny, oder Hkvgp, Lok, Vkn,
Apvknk kankvk)nk Oder /’l’pvknk kankvknk

J=D:

By vy Ty ceeereeenesnennennns Alupy Topivp OA€r fiy,) Typiv,,
Ap—1)vp1 Tvgropr OdT Ly 1), Tuyy v

Ev,m,, Ly Upnp +oeeeresesesesseses Alvpn,, L0 vpmy oder P10, Topny vpny

A(p_l)vpnp xvpnpv}mp oder M(p_l)vpnp xvpnpvlmp

11

Determination of the x,,:

In each class V; only one z,, is 1, the rest is 0.

/* j: residue, n[j]: number of rotamers in residue j */

5,k 1 =0;
j=1.p:
for k=1.n[j]:

relazedRotamerInt Energy|j][k] = 0;
relazed RotamerIntEnergy[j|[k] = relazed RotamerIntEnergy(j|[k] + E,
for Il=1.p,l#j
relavedRotamerInt Energy[j|[k] = relazedRotamerInt Energylj|[k]—maz (A, » v,)

ik Uik

/* now for all rotamers of all residues the relaxed internal energies are computed.
Now for each residue j the rotamer with the minimal internal energy has to be chosen. */

for j=1.p:
/* Initialisation */
RotWithMinRelaxIntEnergy[j] = 1;
MinRelaxIntEnergy[j] = relaxed RotamerInt Energylj][1];
for k=1.n[j]:
if relazedRotamerIntEnergy[jl[k] < MinRelaxIntEnergy[j]
RotWithMinRelaxIntEnergy|[j] = k;
MinRelaxIntEnergy[j] = relazed RotamerInt Energy|j|[k];
endi f

/* now for all variables xz,, are set. */
for j=1.p:

for k=1.n[j]:
/* Initialisation */

xvv[]][k'] = 0;

for 3=1.p:
for k=1.n[j]:
if RotWithMinRelaxIntEnergy[j] ==
T [jl[k] = 1;
endif

Determination of the x,,:

I 1, if 2y, = 1 and x4, = 1 (from determination above)
w 0, otherwise

12

3. The Lagrangian multipliers are updated
To update the Lagrangian multipliers A and p we have to identify the variables in STEP4
of the subgradient algorithm in 1.3.3.
STEP4: Update the multipliers
(a) Calculate the Subgradients G, for current solution vector X .

Gi: = dk/ - Z Ak 5! T4, k, = 1, ...m
J'eN

(b) Define a scalar step size T.

m(Zup — Zre)™

3 .:1(Gz,>2

T =

(c) Update the Lagrange Multipliers set
At =maz(0, Ny, +TGY), K =1,..,m

The variable sets dj and ajjr in (a) are from the complicating constraints (see 1.3.2).
We can write our complicated constraints

Z Typ = ZTyw Jorj=1,..p and v € N+(Vj)
u€Vj

Z Tuy < Tyy for j=1,..p and v & NT(V})
UE‘/jfEuv<O

as:

for 7=1.p:
for k=1.n[j]:
for I=1.p,1 #7:
if ve NT(V))

nll]
x Ty [1[r][5][K] — oo [5][K] = O
else_if vg NY(V;)and u € V;: Eyy <0

nll]
2 T [r5][k] = oo [5][K] < 0O

variable substitution:

elements of V:

j=1.p

k= 1..n[j]

for each element of V there is now an edge defined to all other elements of V
except to those which are in the same class V :

l=1.pl#j

r = 1l.n[l]

zuo[l[r][7][k] = z[l][r][5][k]
ToolJllk] = xlp+ 1][0][5][#]

13

Some explanations concerning the variables:
The following variables are defined through the following indices:

Buo WG, G = Lpik = Lonfflsl = Lp, 1 # i = Lonfi)
Ty : [J][K], (5 = L.ps k = L.n[j])
m complicating constraints: [7][k][l], (7 = L.p;k = L.n[j];l = 1..p,1 # j)
ajig < [1])[r1]{g1][k1](for j: index of state variables) and
[72][k2][l2](for: k’: index for the m complicating constraints)

Computation of a;:
for j1=1l.p:
for ki =1l.nlj]:
fOT‘ ll = 1..p,l1 75 j1 .
if veNT(V;)
for ri=1.n[l]:
for ja=1.p:
fO’f‘ k2 = 1n[]2] :
fOT‘ lQ = 1..p, lg 7'5 jQ :
all][r1][71][k1][l2][g2][k2] = 1 /* factors of @y, ™/
alp + 1][0][j1][k1][l2] 2] (k2] = —1 /* factors of zy,*/
elseif v ¢ NY(V;)andu € Vj: Ey <0
for ri=1.n[l]:
for jo=1.p:
for ko =1.n[j]:
for la=1.p,lo # j2:
a[l][r][71][k1][l2][52][k2] = 1 /* factors of @,/
alp + 1[0][j1][k1][l2][j2][k2] = —1 /* factors of zy,*/

else
for ri=1.n[l]:
for jo=1.p:
for ko =1.n[jo]:
for la=1.p,lo # j2:
all][ri][][k][l2] (2] (k2] = O
alp + 1011 1[k1][l2][52][k2] = O
We identify d = 0.
We have to compute the vector G}Z,, k’=1,...,m. m is the number of complicating con-
straints, which are integrated into the energy function. Thus m is also the number of
Lagrangian multipliers.

14

Computation of the vector G%,, k’=1,....m :

Calculate the Subgradients G%, for current solution vector X .

GZ/ = dk/ - Z Q! T g, k/ = 1,...m
J'eEN

Because di = 0:

Gt/ = - Z Q! 51 T g1 kl = 1,...m
J'eN

Because k’ = 1,...m is equivalent to for jo =1..p:
for ko =1.n[ja]:
for la=1.p,la # j2
we write Gy[l2][j2][k2] instead of G,.

/* initialization */
for jo=1.p:
for ko =1.n[ja]:
for ly=1.p,la # ja:
Gi[la][72][k2] = 0

/* - ak’j’xuv*/

j'en
for j1=1l.p:
for ki =1l.nlj]:
fOT‘ ll = 1..p,l1 75 j1 :
if veNT(V;)
for ri=1.n[l]:
for jo=1.p:
for ko =1l.n[jo]:
fOT‘ lQ = 1..p, lg 7'5 jQ :
Gilla][s2][k2] = Gilla][G2llka] — alli][r1][71][k1][l2][s2] k2] * @[l][r1][51][F1]
elseif v ¢ NY(V;)andu€V;: Ey, <0
for ri=1.nl[li]:
for jo=1.p:
for ko =1l.n[jo]:
fOT‘ lQ = 1..p, lg 7'5 jQ :
Gi[la][g2][k2] = Gilla][f2]lk2] — alli][r1][71][k1][l2][s2] (k2] * @[l][r1][51][F1]
/* - > ak’j’xvv*/

J'eN
for j1 =1.p:
for ki =1l.n[ji]:
for ja=1.p:

for ko =1.n[j]:
for Iy =1.p,la # jo :
Gillo][j2]ke] = Gill2][d2][k2]—alp+1][0][1][k1][l2][j2][ke]+2[p+1][0][51] (k1]

15

4. go to 1.

16

References

[9]

Lamport, L., LaTeX : A Documentation Preparation System User’s Guide and Reference Man-
ual, Addison-Wesley Pub Co., 2nd edition, August 1994.

Nemhauser and Wolsey, 1988
Althaus, Kohlbacher et.al.2002

Eriksson, O., Zhou, Y. and Elofsson, A. (2001) Side-chain positioning as an integer program-
ming problem. In Proceedings of 1st Workshop on Algorithms in BioInformatics, BRICS, Uni-
versity of Aarhus, Denmark, pp.129-141

Caprara and Lancia 2002

C Siamitros, G Mitra and C Poojari Revisiting Lagrange Relazation for Processing Large-Scale
Mized Integer Programming Problems, CTR/27/04 April 2004, Department of Mathematical
Sciences and Department of Economics and Finance, Brunel University, Uxbridge, Middlesex,
UBS8 3PH, www.carisma.brunel.ac.uk

Dunbrack, Rotamer library...

Kingsford, C.L., Chazelle, B. and Singh, Mona (2005) Solving and analysing side-chain posi-
tioning problems using linear and integer programming. Bioinformatics, 21 No.7, 1028-1036

Lasters, I., De Mayer, M. & Desmet, J.: Enhanced dead-end elimination in the search for
the global minimum energy conformation of a collection of protein side chains. Protein Eng. 8

(1995) 815-822

17

