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1 Useful Concepts in Molecular Modelling

[z o) dadaill LB sajiall aaliall

1.1 Introduction /issial

What is molecular modelling?

“Molecular” clearly implies some
connection with molecules. The
oxford English Dictionary defines
“model” as ‘a simplified or
idealized description of a system or
in mathematical
terms, devised to facilitate
calculations and  predictions’.
Molecular modelling
therefore appear to be concerned
with ways to mimic the behavior of
molecules and molecular systems.
Today, modelling is
invariably associated
computer modelling, but it is quite
feasible to perform some simple
molecular modelling studies using
mechanical models or pencil, paper
and hand calculator. Nevertheless,
computational techniques
revolutionized molecular modelling
to the extent that most calculations
could not be performed without the
use of a computer. This is not to
imply that a more sophisticated
model is necessarily any better than
a simple one, but computers have
certainly extended the range of
models that can be considered and
the systems to which they can be
applied.

process, often

would

molecular
with

have

Fig1: Example of
Molecular Model
(Source:
http://[www.giantmolecu

le.com/shop/scripts/vrod
View.asp?idproduct=6)

Fig2: Example of
Molecular
Modelling(Source:
http://wwwl.imperial.ac

.uk/medicine/people/r.di

ckinson/)
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The ‘models’” that most
chemists first encounter are
molecular models such as the
‘stick" models devised by
Dreiding or the ‘space filling’
models of Corey, Pauling and
Koltun (commonly referred to
as CPK models). These models
enable three-dimensional
representations of the
structures of molecules to be
An  important
advantage of these models is
that they interactive,
enabling the user to pose ‘what
if .../ or ‘is it possible to ...
questions. These  structural
models continue to play an
important role both in teaching,
and in research, but molecular
modelling is also concerned
with
models, many of which have a
distinguished  history. =~ An
obvious example is quantum
mechanics, the foundations of
which were laid many years
before the first computers were
constructed.

constructed.

are

7

some more abstract

There is a lot of confusion over
the meaning of the terms
‘theoretical chemistry’,
‘computational chemistry’ and
‘molecular modelling’. Indeed,
many practitioners use all three
labels to describe aspects of
their research, as the occasion
demands!

Fig3: space filling model of
formic acid
vaslat‘space-filling” 7 sai
o) 5l
(Source:
http://www.answers.com/topic/
molecular-graphics)

Fig4: Stick model
(Created with Ball View)
‘Stick” z3sai

L

Fig5: 'Ball and Stick” model of

proline molecule (Source:
http.//commons.wikimedia.org/w
iki/File:L-proline-zwitterion-
from-xtal-3D-balls-B.png)

(4]

b Ol e ol
e Ay ) 3l aill Ayl
Lee il 30" Stick"J) 3L
space "zl sl Dreiding
Corey e _nal A "filling
Koltun s ¢« Pauling ¢
(CPK gy e o ,al)
er)u R gt G'ALA.'J\ sl et
1 i 5l A i AL
o Aagall Ly 3l (pn s i
Jalwill a8 ed&:\u_qﬂ =
oSl e Jat sl st 1AL
J) Y Al G'ALA.'J\ sl |
el el =l
OS5 sl (Al ¢ Gl
O Eiay ¢ AT A Hlas 3Ly
dUie . 5ok 0l 4l Leie daall
oy SIS0 52 el
gj_ﬁi oy & e Gl gi
1Y) sl
dsa d ¥ e S 2a
AUl Glallain W) ixa
“theoretical 4=_haill LX)
dola sladll ¢chemistry”
“computational ER EPWIN|
Ay jalldsiall chemistry”
= . “molecular modeling”
SPCTIL PRFC AP |
o agda W Glallaia Al
et e sy agilanl Cutl sa
Aalall




‘Theoretical chemistry” is often considered
synonymous  with  quantum  mechanics,
whereas computational chemistry encompasses
not only quantum mechanics but also
molecular mechanics, minimization,
simulations, conformational analysis and other
computer-based methods for understanding
and predicting the behavior of molecular

systems. Most molecular modelling studies
involve three stages. In the first stage a model is
selected to describe the
molecular interactions in the system. The two
most common models
molecular modelling are quantum mechanics
and molecular mechanics. These models enable

intra- and inter-

that are wused in

the energy of any arrangement of the atoms
and molecules in the system to be calculated,
and allow the modeler to determine how the
energy of the system varies as the positions of
the atoms and molecules change. The second
stage of a molecular modelling study is the
itself, energy
minimization, a molecular dynamics or Monte
Carlo simulation, or a conformational search.
Finally, the calculation must be analyzed, not
only to calculate properties but also to check
that it has been performed properly.

calculation such as an

1.2 Coordinate Systems/ it/ a5

It is obviously important to be able to specify
the positions of the atoms and/or molecules in
the system to a modeling program. There are
two common ways in which this can be done.
The most straightforward approach is to
specify the Cartesian (X, y, z) coordinates of
all the atoms present. The alternative is to use
internal coordinates, in which the position of
each atom is described relative to other atoms
in the system. Internal coordinates are usually
written as a Z-matrix. The Z-matrix contains

LSlSal Lol e il LSl jtiad e Lille
At A gle sbeal) Jadi 3 Y Gra 8 ¢ S
A al) LalSall Lyl ¢ it oK) 1S401S0
@}@JSL@MAJ#}‘BSM\}‘MU‘
aedl Cgaiall e 4l Cullud) e La e

Ay jall oLl o sl a8 3
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LSailSaall 5 oSl LSilSe aldail) 8 il sl
= Laladi o) YT el g aill Laa 40yl
leoa Alee S 2 3lail sda Ay jall dadail
¢aldaill 8 iy a s il j3 de gana (oY Al
A 48 33a% the modeler Gm Tl g
LA adl g &l Ay 588 ) A HLULasl) 48U
54 A jadl Aadaill Al 5 e Al Aa Ll
laia Cisy ol ¢ Monte Carlo 38 ) 44y 3l
Clboall Jalas e 2 Y ¢ 1 paals | 55 0 sShy
Lol (€05 paibiadll s Jal (0 i il ¢

Zanma (S el a8 4l e Sl

e 5ol Al (5% ol agall (e O el 511 (e
835 sall Gl sl 61/ 5l AN ) g ayaa
Oy y el A Al el p 8 ‘e\_h:d\
2aa% ea A8y LAY el @l Slall (S yidia
(Cartesian ~ coordinates) g,ﬁ )15:0—“ Gl s
E¥.) dgﬁ_ﬂ\ C.g_d\ .EJJA.}AM Q\JM\ bm;j (X/Y/Z)
internal  )Alalall cldla Ayl alaas
Aai b JS a8 e cat Al ¢ (coordinates
Clilaay) S Hllail) 8 s Al Al )
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one line for each atom in the system.

A sample Z-matrix for the Jalaie Jla ( Z-matrix) JUia
staggered conformation of ethane )-L'I-"\)(Ethane) OEY e
(see Figb) is as follows: : &LAS (Fig6
1 C
2 C 154 1
1 C
5 ¢ 151 1 3 H 10 1 1095 2
' 4 H 10 2 1095 1 180.0
3 H 10 1 1095 2 3
4 H 1.0 2 1095 1 180.0 3 5 H 10 1 1095 2 600
5 H 1.0 1 1095 2 60.0 4 4
6 H 1.0 2 1095 1-600 5 i
06 : 6 H 1.0 2 1095 1-60.0
7 H 1.0 1 1095 2 1800 6 Fljé’@Tt’?“t‘;?gZed .
conformation of ethane.
8 H 10 2 1095 1 600 7 7 H 1.0 1 1095 2 180.0
6
8 H 1.0 2 1095 1 60.0
7

In the first line of the Z-matrix we define
atoml, which is a carbon atom. Atom
number? is also a carbon atom that is a
distance of 1.54 A® from 1 (columns 3 and 4).
Atom 3 is a hydrogen atom that is bonded to
atom 1 with a bond length of 1.0 A°. The angle
formed by atoms 2-1-3 is 109.5%, and the
torsion angle (defined in fig7) for atoms 4-2-1-
3 is 180° Thus for all except the first three
atoms, each atom has three internal
coordinates: the distance of the atom from one
of the atoms previously defined, the angle
formed by the atom and two of the previous
atoms, and the torsion angle defined by the
atom and three of the previous atoms. Fewer
internal coordinates are required for the first
three atoms because the first atom can be
placed anywhere in space (and so it has no
internal coordinates); for the second atom it is
only necessary to specify its distance from the

235 (Z-matrix)$) 48 stadl) (1 J Y1 k) =
2500 Hs— S 53 o8 5 ¢( Atom1) 152
s o afiy S50 Ladl 8 (Atom2)
3352 (453 EA_AQ‘Y\) 13,00 (A2 544
Jsda 130 diatie (a9 08 33 4 (Atom3)
da 3 10965 4503 2-1-3 <A &5 A 140
(Fig7 JSad) 8 o'y =all) 4 gilall Ay ) 3l 5
pend 1388 5 Aa )3 180 ssbudi 4-2-1-3 <l Al
AN Lad 553 JS ¢ (oY) AN Ly <l A
(= 48Lusall :(internal coordinates) 4l Sl
1A sl 3l ¢ Gl saasall <l Al gaa) )5 A
G055 ¢ Al 3 (e Gl w53 LK
C'_a\JJJ\ (= A5 &= EJ.SJ\ Laaaas ‘é_d\ ;\}JY\
Jal e JBY) Adalall cildlaay) ol Zald)
O Saa (AW E AT Y YT AT el A
CEREVR VR RN B IPAVERY | gt W3 K PP B JRpE~
Al 5,30 Al g ¢ (Al cillaa) (sl L]
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first atom and then for the third atom only a
distance and an angle are required.

It is always possible to convert internal to
Cartesian coordinates and
However, one coordinate system is usually
preferred for a given application. Internal
usefully describe the
relationship between the atoms in a single
molecule, but Cartesian coordinates may be
appropriate when describing a
collection of discrete molecules.

vice versa.

coordinates can

more

Internal coordinates are commonly used as
input to quantum mechanics
whereas  calculations
mechanics are usually done in Cartesian
coordinates. The total number of coordinates
that must be specified in the
coordinate system is six fewer than the
number of Cartesian coordinates for a non-
linear molecule. This is because we are at
liberty to arbitrarily translate and rotate the
system within Cartesian space without
changing the relative positions of the atoms.

programs,

using  molecular

internal

What is a Torsion angle?

A torsion angle A-B-C-D is
defined as the angle between
the planes A, B, C and B, C, D.
A torsion angle can vary
though 360° although the
range -180° to +180° is most
commonly used.

O Waxgd Al ALl a5 1a (g )5 gucal) (pad
dagd iy o) 3l g ddliall callai a5 g ¢ A gY1 5,0
ABJU\EJJH

Sl a) (e Jm i iy (- Sadll (4
g S aldlaa) ) (internal)  Alala
Jindy ¢ b pay (pwSally (uSall 5 (Cartesian)
S Me@@#h&u\jé@m\_‘:
SO s A8Ma) Caat o Anaal) cilaad
¢ 2al5 (molecule) s > =3 2uie sai e

(Cartesian oKl aldla Al Sl
e gana Ciua g die i) (585 S coordinates)
Aladio Al o (e

el JA e A0 ClflaaY) aladil gL
(> 4 ¢« (quantum mechanics) o< KailSaa
gty )l LSSl Aol Agbuoal) cilyleall
e Jdlaa) Al alilaay) 8 sale 218
@ sl 8 aass o sy ) clilaay)
e5 3 A LSl clflaay) b lasae (e J8 diu
s Ll asY  (non-linear) —ha
o 90 Sl eladll Jaladg jag HLk)

Al Al ¢ Lia Y

o) i) Ayl AL

ABCD  slsil¥lag sl 5oy
SABC o 485l ) 3 Ll
o ¢l N A5 31 S s BCD
545 da 3 [80- U sl B
Ax 180+

[7]



1.3 Potential Energy Surfaces/dolS @lb/l zhu/

In  molecular modeling the Born-
Oppenheimer approximation is invariably
assumed to operate. This enables the
electronic and nuclear motions be

separated; the much smaller mass of the

to

electrons means that they can rapidly adjust
to any change in the nuclear positions.
Consequently, the energy of a molecule in its
ground electronic state can be considered a
function of the nuclear coordinates only. If
some or all of the nuclei move then the energy
usually change. The
positions could be the result of a simple
process such as a single bond rotation or it
could arise from the concerted movement of a

will new nuclear

large number of atoms. The magnitude of the
accompanying rise of fall in the energy will
depend upon the type of change involved.
For example, about 3 kcal/mol is required to
change the covalent carbon-carbon bond
length in ethane by 0.1A° away from its
equilibrium value, but only about 0.1kcal/mol
is required to increase the non-covalent
separation between two argon atoms by 1A°
from their minimum energy separation. For
small isolated molecules, rotation about single
bonds usually involves the smallest changes
in energy. For example, if we rotate the
carbon-carbon bond in ethane, keeping all of
the bond lengths and angles fixed in value,
then the energy varies in an approximately
sinusoidal. The energy in this case can be
considered a function of a single coordinate
only (i.e. the torsion angle of the carbon-
carbon bond), and as such can be displayed
graphically, with energy along one axis and
the value of the coordinate along the other.

Changes in the energy of a system can be
movements on a

considered as

day,h pladil Ladly (a8 ¢ Ay jadl Aadall <
(Born-Oppenheimer approximation)
 eaa) g SIS ; 2y 3 At SN
g\@kwuﬁ\é&ﬁjdﬁdﬂ\ VY u\quu
Dhie) Sy ¢ Il Ap s sill Cadl gall 8
IS o (paay culam) 1)) lagd A el cldlaadl
s 501l pall Sy ol i G5 (s 5153
Oy e sy dleal a5 ) 32308
Qi S ji (single bond rotation) 2l Lf\ A
O 8 20 e (a3 flia e dS n Aoy L
P b el Lalia ) 30 3 ass 2 diat ) A
¢ UG Jow e ,@xd\);ﬂ\&ﬁgcﬁu\
(3 kcal/mol) d}*/gﬁ)}j\s}l;\s?) Q‘P‘—Luﬂ;
~05= N G covalent bond =) Jsda sl
dx P A 0.1 =3 (ethane) Q&Y (B o0 S
i i el (<l ¢ L) 58 A (e I
33 ¥ ( keal/mol 0.1) Jss/ Lﬁ)jju s1S0.1
CJ}.AJS“ O O3 O non-covalent =) ae Ll
.u,—.’jy\ Akl aeld iy Al sa Argon
0253 O ¢ Ay 3aall 8 padl ity Sl s i,
¢ sy lasidle (single bonds) 33_riall Jayl 5 1)
¢ Ul Jas Ao daall 8 il pal) jral e
e (0N s Sl a5 eat Ll 13)
L5305 dadd s 50 apen Jda dad ads e ¢ LAY
(sinusoidal) e—n> JSby alias dstall ol A3l
dads gl sda Lguusd\ el pSa Ly o
2 o) Y Ay ) ) JAk) JaBdgingle coordinate
o4 (aye Says ¢ (O30S 058 G e )
Aad s Js¥) Jsne Jsb e A8l sy ¢ Gily
DAY yadl Job e (coordinate) <lilaaY)
QSJQS?M\ULLQQ\M\ Olde) (Sag
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multidimensional ‘surface’ called the energy
surface.

1.4 Molecular Graphics/ 4/ clogus,

Molecular graphics (MG) is the discipline and
philosophy of studying molecules and their
properties through graphical representation.
IUPAC limits the definition to representations
on a "graphical display device".

Computer graphics has had a dramatic impact
upon molecular modelling.

It is the interaction between molecular graphics
and the underlying theoretical methods that has
the accessibility of
modelling methods and assisted the analysis
and interpretation of such calculations.

enhanced molecular

Over the years, two different types of molecular
graphics display have been used in molecular
modelling. First to be developed were vector
devices, which construct pictures using an
electron gun to draw lines (or dots) on the
screen, in a manner similar to an oscilloscope.
Vector devices were the mainstay of molecular
modelling for almost two decades but have now
been largely superseded by raster devices. These
divide the screen into a large number of small
"dots", called pixels. Each pixel can be set to any
of a large number of colors, and so by setting
each pixel to the appropriate color it is possible
to generate the desired image.

Molecules are most commonly represented on a
computer graphics using stick' or 'space filling'
representations. Sophisticated variations
these two basic types have been developed, such
as the ability to color molecules by atomic
number and the inclusion of shading and
lighting effects, which give 'solid' models a more
realistic appearance.

Computer-generated models do have some

(9]
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advantages when compared with their
mechanical  counterparts.  Of  particular
importance is the fact that a computer model can
be easily interrogated to provide
quantitative  information, @ from  simple
geometrical measures such as the distance
between two atoms to more complex quantities
such as the energy or surface area. Quantitative
information such as this can be very difficult if
not impossible to obtain from a mechanical
model. Nevertheless, mechanical models may
still be preferred in certain types of situation due
to the ease with which they can be manipulated
and viewed in three dimensions.

very

A computer screen is inherently two-
dimensional, whereas molecules are three-
dimensional  objects. = Nevertheless, some

impression of the three-dimensional nature of
an object can be represented on a computer
screen using techniques such as depth cueing (in
which those parts of the object that are further
away from the viewer are made less bright) and
through the use of perspective. Specialized
hardware enables more realistic three-
dimensional stereo images to be viewed. In the
future ‘virtual reality’” systems may enable a
scientist to interact with a computer-generated
molecular model in much the same way that a
mechanical model can be manipulated.

Even the most basic computer graphics program
provides the
manipulation of models, including the ability to
translate, rotate and ‘zoom’ the model towards
and away from the viewer. More sophisticated
packages can provide the scientist with
quantitative feedback on the effect of altering
the structure. For example, as a bond is rotated
then the energy of each structure could be
calculated and displayed interactively.

some standard facilities for

For large molecular systems it may not always
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be desirable to include every single atom in the
computer image; the sheer number of atoms can
result in a very confusing and cluttered picture.
A clearer picture may be achieved by omitting
certain atoms (e.g. hydrogen atoms) or by
representing groups of atoms as single “pseudo-
atoms’. The techniques that have been
developed for displaying protein structures
nicely illustrate the range of computer graphics
representation possible. Proteins are polymers
constructed from amino acids, and even a small
protein may contain several thousand atoms.
One way to produce a clearer picture is to
dispense with the explicit representation of any
atoms and to represent the protein using a
‘ribbon’.  Proteins are also
represented using the cartoon
developed by J Richardson.

commonly
drawings

1.5 Surfaces/zhw/ obsluw

Many of the problems that
are studied using molecular
modelling involve the non- )
covalent interaction .
between two or more

facilitated by examining the o
van der waals, molecular or
accessible surfaces of the

--'

molecule. The wvan der
waals surface is simply
constructed from the

overlapping van der waals
spheres of the atoms, Fig 8.
It corresponds to a CPK or

accessible surface

- .-‘
L4 - .
+ - 4

»
s
molecules. The study of !
such interaction is often '
. ;sf
» - -

van der Waals surface

Fig 8: The van der Waals surface is
shown in red. The accessible surface
is drawn with dashed lines and is
created by tracing the center of the
probe sphere (in blue) as it rolls along
the van der Waals surface.(Source:
http://en.wikipedia.org/wiki/ Accessibl
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space-filling model. Let us
now consider the approach
of a small “probe” molecule,
represented as a single van
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der waals sphere, up to the
van der waals surface of a P
larger molecule. k8
The finite size of the probe
sphere means that there will
be regions of ‘dead space’,
crevices that are not
accessible to the probe as it

Molecuar sutface

Fig9 : (Source:
http://www.ccp4.ac.uk/.../newsletter38/03

wvan der Waals

e . S| d\éﬁqduc«gj;
l}‘fm“fl ace

dj)ﬁ\e‘uﬂgw\e@\
Alia () i 4] iy a8 gidl)

‘ O ooy ¥ "o dalicd’ (3halic

] Frobe sphete . . .
’ o) a8 i) el

S5 Jpa il LY (3 58
S

rolls about on the larger
molecule.

This is illustrated in fig 1.4. The amount of
dead space increases with the size of the
probe; conversely, a probe of zero size would
be able to access all of the crevices. The
molecule surface contains two different types
of surface element. The contact surface
corresponds to those regions where the
probe is actually in contact with the van der
waals surface of the ‘target’. The re-entrant
surface regions occur where there are
crevices that are too narrow for the probe
molecule to penetrate. The molecular surface
is usually defined using a water molecule as
the probe, represented as a sphere of radius
1.4 A°.

The accessible surface is also widely used. As
originally defined by Lee and Richards this is
the surface that is traced by the center of the
probe molecule as it rolls on the van der
waals surface of the molecule (Fig.1.4). The
center of the probe molecule can thus be
placed at any point on the accessible surface
and not penetrate the van der waals spheres
of the atoms in the molecule.

_surfarea.htmi(

alua¥) aae 2l 3 e Al Cilalidll dae ala 1y
st 1) a8 glall auwall () aSally g A8 i)
6 sy AN S ) g ol 45y ¢ jham dnnn
raie (e Gt Gue s (e g il mhau
Ghlial elli ) celiall C.lm.d\ i | C.lm.d\
b s pe lSial e 2 giall anall ) s
re-entrant surface Al ddhia ,)-@-LJ .'QJ@J\' JG D-s
Jsai mand ¥ Al dduall 3800 aal i S
50 )l s 33 ad La Llle o8 giall 675 3al
b s adsia aaS clall (1 o5 ) pladinly

.Q\;JJL_%“LLL mué.ucgg}‘)srun;

-c-“‘\j JSio LA%\ accessible surface —! eiiiw-ﬁ
(é—"w Richards sLee = a0 Cuuwa) (g
sl el 3 e 5 daces (s hadl el
(Fig.1.4) s 3>l J8 o ld mha s Jsa L
o Ak gl e e{s dall S e s oS Uil
S8 anall J2, O O3 accessible surface =l
,9;5)';5\ Jala Jl @)l

1.6 Computer Hardware and Software/ s/ ciboaa s S jga/

The workstations that are commonplace in
many laboratories now offer a real alternative
to centrally maintained 'supercomputers' for

ol idall (e agasll 853 g sall Jandl (Sl 2
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molecular modelling calculations, especially
as a workstation or even a personal computer
can be dedicated to a single task, whereas the
supercomputer has to be shared with many
other users. Nevertheless, in the immediate
future there will always be some calculations
that the power that
supercomputer can offer. The speed of any
computer system is ultimately constrained by
the speed at which electrical signals can be
transmitted. This means that there will come a

require only a

time when no further enhancements can be
made using machines with ‘traditional’
single-processor architectures,
parallel computers will play an ever more
important role.

serial and

To perform molecular modelling calculations
one also requires appropriate programs (the
software). The software used by molecular
modelers ranges from simple programs that
perform just a single task to highly complex
packages that integrate many different
methods. There is three items of software
have been so widely used: the Gaussian series
of programs for performing ab intio quantum
mechanics, the MOPAC/AMPAC programs
for semi-empirical quantum mechanics and
the MM2 program for molecular mechanics.

dnbuall Alleally & o83 Sl 'supercomputers'
i sl Jaanll LS S Gy ¢ Ay all Axdaill
BSTENP W AEN PE DV PIVIEN. 35 PRTILGY IPPN
(peddiine Bie aa & yilia ()¢S (33arl) @ gulall
Alia ¢ Ko 8l Jaiaall 8 elld aay, cp A
OSar Y ol 55l i 3l el ians Ll
e s o) a8 $laall sl V) Leardy o)
Lo Jiin i de pulsa e qosuls Ll
Yy il adl ey 1ha s 400 5eSd) LY
5 eal) aladiuly Slisendl e 3 3all Sl oSy
Al Lite 1 nigh o sl s il e 3 il
dpaal LT ) 50 ualli g 431 sial) sl all

e i 5 (gl

Leanl 404 jad) Aadiaill Aglaadl cililaal) elal callaty
sl 5155 (el ) i el
Uarerdl zeal yall (40 3al) Andaill 8 deadiiudl)
282l 3al]) mal yall g Jadh Baa) 5 daga g2 (A
2005 Alia A4B2 ) 5kl e el ey a5 il
el g Gl e Lgaladin o3 il el ) (e g ) 50l

ab intio 285 Gaussian ke zmal EANIIVEREN
AMPAC / MOPAC g 325 ¢ 2SI LSl
MM2 gl s A paill 4 o SIH L SpilSdl

1.7 Units of Length and Energy/ 4ikly skl <ilaa

Z-matrix is defined using the angstrom as Jshall 3aa S a5 yiuadl Al 7 matrix < a0 Ay
the unit of length (1 A°= 10 " m=100pm). D g i 3 ():m S 100 = A 10-10= a5 yiwa ',\1)
The angstrom is a non-SI (International A_A.D\.ﬂ KA PPRCH RV PN | e‘l"ﬂ dai e o g
Syst f unit it but i R o fazs
ystem of units) unit but is a very 21 o dad g, U1 sl =555 5 ) M Jas

U Ab initio quantum chemistry methods are computational chemistry methods based on quantum chemistry/
(s S LSy s A g g rnen) oS elaas€ ) it ) AibaasSl) Al slaall 3 )k (e (. AD initio <l
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convenient one to use, as most bond | a g yu A

-

lengths are of the order of 1-2 A° One islall i 8 G I J.Ai 3aa g ellia Oi LS

other very commonly non-SI unit found in
molecular modelling literature is the
kilocalorie (1 kcal=4.1840 kJ). Other systems
of units are employed in other types of

claadll doadl aldasll Al e oo gl jal)
=4l m 3w 1) kilocalorie 4l yall &l janl)
O A Aadail Caa gl @llsa 5 (Js—= 518 401840

calculation, such as the atomic units used i Dbl G 5 A t\ﬁj\ Lg paiiend Glaa gl

in quantum mechanics.

S S L pasied ) A3 sas )

1.8 Mathematical Concepts/ usl /) aoliall

A full appreciation of all the techniques of
molecular modelling would require a
mathematical treatment. However, a proper
understanding does benefit from some
knowledge of mathematical concepts such as
vectors, matrices, differential equations,
complex numbers, series expansions and
lagrangian multipliers and some very
elementary statistical concepts.

e a8 Jal e bl Aslleally 2Ll oy
G Ay i ]y ol Al i
¢ vector A—aiall JAady byl a;\ﬁu-ﬁ“
Ll alall Yol =all cmatrices <l gdia Ll
complex Bada ) aljjy\j ¢ differential equations
mleY dlieliaag ¢ Gl ol bl ¢ numbers
A oY) Ailany) aaliall (any
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2 Computational

Quantum

Mechanics

[ LSS0 il slas

2.1 Introduction / 4ais

There are number of quantum theories for
treating molecular systems. The one which has
been widely used is molecular orbital theory.
However, alternative approaches have been
developed, some of which we shall also describe,
albeit briefly. We will be primarily concerned
with the ab initio and semi-empirical approaches
to quantum mechanics but will also mention
techniques such as Huckel theory, valence bond

Aalail) A alleal A I iy s e 2ae Gllia
¢l Dladld ki eds A jall
s poda g ot LaS Ylanioal 3N Ayl
A 5 ab initio) alie ¥ sl S35 (5 AY) zgill
Ceayl 84 [SXNPEN| RENTIN semi-empirical
4,5 ¢ Huckel 4 ki J-e L@l a2y
45l :\—J)jé-"_j valence bond <o)l LSS
.Density functional dadnls 4l

theory and Density functional.

The starting point for any discussion of quantum 4_lag 2 Schrodinger 3 b A Talaa )
mechanics is the Schrodinger equation. The full , G; saill | ?55\ Ll el 3».:1‘2 Sy

time-dependent form of this equation is:

h2 2 H? 02

eq.2,1
(_ 2m (31:2 N

Eq. (2,1) refers to a single particle (e.g. an
electron) of mass m which is moving through
space (given by a position vector
r =xi+ yj + zk ) and time (t) under the
influence of an external field V' (which might
be the electrostatic potential due to the nuclei
of a molecule). & is Planck’s constant divided
by 21 and i is the square root of -1. W is the
wavefunction =~ which the
particle’s motion; it is from the wavefunction
that we can derive various properties of the
particle. When the external potential V is
independent of time then the wavefunction

o7 T oz

characterizes

9 (e L dalatial) Adaleall JLlS)

*\ ., _ind

m AL (0538 JAe) e () Eq. (2,1) o
AL .n\ﬁ \w\ \3) ;1.}5 &‘\ J .1(‘ gﬂ)
sl Sl AplSa) a8 Al v kAl daall
AN Planck 4ed 58 1 L (ss ol s Adas all
AP -1 a3l gay 271 e da saida
) (e LSS ) i ) A e LI
SN 55 Larie ilasaall AaHA A ailoa &)
Alall AU Sy ol iy Ao ja e VA A
s e s

-
LR

Seey ali ~m€i
vy g Yy
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can be written as the product of a spatial part (= Y1 A2 ald oi G W (r, 1) = () T(E)
and time part: #(r, t) =¢(r) T(t). We shall Laa (a8l ddas o jue AU ) 65 Ladie Ol
only consider situations where the potential is 1S5 ol s b ddass Sl aia gyl ddalel

independent of time, which enables the time- . « . XTRE
’ 8 lL Jayi e yuall eanll JAa e
dependent Schrodinger equation to be written sl basise s

in the more familiar, time-independent form:

eq.2,2 R’
! By(r) = —5—V(r) + V(r)y(r).
2m
E is the energy of the particle and we have DbaiAY13s Jlaatind o3 B asuall d8Ua &
used the abbreviation V*(pronounced ‘del (“del squared’ saxall) V2
squared’):
eq.2,3 o2 GL o2

V=

oz* + Oy’ * 02

It is usual to abbreviate the left-hand side of eq. a8y Adalaall (ja (5l Agal) jaidd ladole
(1,1) to A W, where H is the Hamiltonian Hamiltonian = 1 of G 1/ (1,1)

operator: operator:

eq.2,4 R ?‘12
H=-——V+V
2m

This reduces the Schrodinger equation Jal Aw =pgp Al iy pddlolra paiinlaa
toH¥ = E¥. To solve the Schrodinger  4lalaa CA" vl g Al alan) canny cdlalaall o2
equation it is necessary to find values of E | &, L g yrall Valaall 58 LAl jaing 4

and functions W. The Schrodinger equation . a . ‘.
¢ i Yol =l (o );M

falls into the category of equations known as g o l;“ ‘ elger‘walug :’b - ) !

partial differential eigenvalue equations in B2 G = o -~ operator

which an operator acts on a function (the scalar — — Ay paa l—ﬁii),-.’)(eigenfunction)
eigenfunction) and returns the function  eigenvalue Ailas Ao Jav JUa .(eigenvalue)
multiplied by a scalar (the eigenvalue). A
simple example of an eigenvalue equation is:

Eq.2,5
d
= (v)=ry

[17]



The operator here is d/dx. One eigenfunction
of this equation is y=¢ ®*with the eigenvalue r
being equal to a. Eq.1,5 is a first-order
differential ~equation. The  Schrodinger
equation is a second-order differential
equation as it involves the second derivative
of W. A simple example of an equation of this

type is

dx? -

dalaall o2gl Eigen I Ak d/dx oo L Jaddll
=il | @ g sl (Eigenj\ M;*ﬂ) rol) =gy i A
ity J oY) Laalal o il ) 7,5 ddabaall
Jaii g ¢ AN Laliill i i) ) jaia gy Alalas

2 sl 138 (e dabaal Jasesy JBe P G BRG)

TV

the ¢y = Acoskx+ B sinkx d—SZ, 6 Adaleall s 2a5,

Eq.2,6

d?y _
The solutions of eq2,6 have
form y =

are constants. In the Schrodinger equation W
is the eigenfunction and E the eigenvalue.

2.1.1 Operators / ¢ sixdiall

The most commonly used operator is that for
the energy, which is the Hamiltonian operator
itself, F. The energy can be determined by
calculating the following integral:

Eq.2,7
[77 v+ Avdr
[T wswdr

E

(W*) : the wavefunction may be a complex
number.

E: scalar and so can be taken outside the
integral.

If the wavefunction is normalized then the
denominator in eq.2,7 will equal 1.

The Hamiltonian operator is composed of two
parts that reflect the contributions of: kinetic and
potential energies to the total energy. The kinetic

energy operator is:

Acoskx + Bsinkx, where A, B and k AW ¢ yrid gyl Adalaa 8 0 gl ABkOi WY

Leiad & Bl g Rigen Jl ddua

Lo sad JIEY) Jadial) 5o d8Uall () siliala Jidia )
- Jell) 1 Gludal DA e Al Gludal) (Sa

= J?’#FIW::IT=J¥’#E¥’:£T

S e e (oS8 38 da gal) Al ;g

Al caslS 1Y) Sl e A3 O Sas B
eq.2,7 Adaladll L& = il GLd dpmds Ao sl
1 sl

OS85 e i S e O il Jrdie Gl
e gl Al 5 A Hall Al e )
: 5 A all Al Jide A8 Jles)
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Eq.2,8
h? \vi 2

2m

And the operator for the potential energy 4 yall 3 jluall (o yuia poia sl A8la Jrdia Jadig g
simply involves multiplication by the 3,3 B O STy dpully AUl calilSay A nliall
appropriate expression for the potential o Wad i e Jad . .- i
eﬁfr ; For an elljectron in an isolatedpatom or H)M e S s e ~J\
lgy-l 0 cential o 381 s 0o ST (g A8l 5 5l ke Ll
molecule e potential energy operator vl ) ) . .
comprises the electrostatic interactions & .‘j\ g_:.l._U).\S“S y‘j SESCY Ui ; ‘_lb" 1_.1”
between the electron and nucleus and the U= 2 & “A\Jf\f—’ﬁ AA.\J UJJ.—‘SS\?! il
interactions between the electron and the e s dlaiaall A8l Jadia 8 ciligig il
other electrons. For a single electron and a : L“AL"\S\ gaill

single nucleus with Z protons the potential
energy operator is thus:

Eq.2,9

Ze*©

4T

V=—

Operator for linear momentum along the x Juhadll < jal) 0SS ol A8 jall as g Jadia

direction : -x olaiy) 3 ) ga B
Eq.2,10

h @

i dx
The expectation value of this quantity can (ye40aSl) odgd a8 gill dad e Jpaall Saj
thus be obtained by evaluating the following . ét_ﬂ\ BACSA( &:ﬁj A
integral: )
Eq.2,11

[w= %%wﬂ
P T Ty e war

2.1.2 Atomic Units /33 claag

The atomic units of length, mass and energy gl Ao & 48kl 5 J shall g ABSH 4, )3 Slas )
are as follow: . uj\_ﬂ\

1 unit of charge equals the absolute .. . } A alal) el PENEETIN st e
[19]



charge on an electron,
le] =1.60219x 107 (

le] =1.60219 x 107%% ( .0y iS)

e 1 mass unit equals the mass of the
electron, m_ = 9.10593 x 10" kg

:0s ALY

m, =9.10593 x 10 kg

e 1 unit of length (1Bohr) is given by (JAJ-’ S s G.J}A-.’ 1) Jshll 8as g csj“’j d
il

;n‘ﬁ

=h*y .
%o f’am*mge* =5.29177 X 107 11m,

a,

— h?
0 fd]:?r Zm,e? = 5.29177 X 107 1m.

It is the radius of the first orbit in 5 IR T f dsd) Jlaall gl )
Bohr's treatment of the hydrogen (53¢ ) Ll Jsay .C)f.;JJJ—..‘GJ\
atom. It also turns out to be the most (3 (s -8l J5 (e Caga 5 35SV i)

probable distance of 1s electron from
the nucleus in the hydrogen atom.

¢ 1 unit of energy (1 Hartree) is given
by
E, =e’/4meya, = 4.35981 X 1071#]

It corresponds to the interaction

el £33 3150

&u\y(dﬂju 1)5\§LM\EJAJGJ:£ °
E, =e’/4meya, = 4.35981 X 107 ]

s S Gt S ae (381 5% ) LS
A8l & gena gsbuy . 50 glad leglad,

between two electronic  charges 0.5- G son—edl 803 H Oso—Sl 15—

separated by the Bohr radius. The
total energy of the 1s electron in the
hydrogen atom equals -0.5 Hartree.

2.2 One-electron Atoms

In an atom that contains a single electron, the
potential energy depends upon the distance
between the electron and the nucleus as given
by the Coulomb equation.

It is more convenient to transform the
Schrodinger equation to polar coordinates r, 0
and ¢, (wavefunction) where:

r: the distance from the nucleus

0: the angle to the z axis

¢: the angle from the x axis in the xy plane

Eq.2,12

[20]
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q;n!m = Rn! (ijlm(E’ f,'bj

Y(6,0) : angular function called a spherical S90S Bl e 43 ) 5 ks 51y(6,0)
harmonic a‘w‘gl"‘“‘ gk :R(r)
R(r) : radial function (n—1’)2,,1’f)1,0ﬂ\§\airi
n: principal quantum number: 0, 1, 2,... L,(-1)...0...,(1-1),-1 :wkw\ AN 2ae

I: azimuthal quantum number : 0, 1,..., (n-1)

m: magnetic quantum number : -1, -(I-1), ...0...(l-

1,1
Eq.2,13 f
1/2
Ru(r) = — [(—) ol e (-2) p )
i::=+ 1221*;’71%, where na, is the Bohr radius. A gld A nay Qus o p =271 /na,

w110p0) is a special type of function called a  _o. 3 ail s S e e & 5= b LA (p)

ntl
Laguerre Polynomial Laguerre Polynomial

Eq.2,14
Yim (6. 0) = 0,,,(0)2,,()
With:
2, (9) = —exp (img)
@i+ 1) (- Iml)! . |ml
0,,.(8)= 2 (I + |m|)! P, (cos6)

#,.(¢): The solutions to the Schrodinger e—‘-ﬂéj aia g el Jglal) P ()
equation for a particle on a ring. the associated ) (s&5 aills g dlule . plm (cos 8)

leml (cos8): Series of function called the

( Legendre polynomials.
associated Legendre polynomials.
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2p,

N Q

3dlyy

3d,,

Fig2.1:

The common graphical representations of s, p and d orbitals/

5,p,d el & jidall e g N Jiaill
Src: http://butane.chem.uiuc.edu/pshapley/GenChem2/Intro/orbit.gif

The energy of each solution is a function of the
principal quantum number only; thus orbitals
with the same value of n but different 1 and m
are degenerate. The orbitals are often
represented as shown in fig 2.1. These graphical
representations are not necessarily the same as
the solutions given above. For example, the
‘correct’ solutions for the 2p orbitals comprise
one real and two complex functions:

Jah w1} ASI) 20al) Aida g o Ja JS A ()
Im e Lal pdad Gedi b el ladl (o) Jull
s LS il plaadl s L Wil 5 ki ) oS
ol Alal) JIS3YI 028 20 B SN A (e
e odel s, Saall Jolall udi Lel 5 55 pually
0555 2p <l ladd Aagaall' Jslall ¢ JUl Jasws

RN PRRT N E PR FENREN PR

2p(+1) =+/3/4nR(r)sin @ gl®
2p(0) =+/3/4mR(r)cos @
2p(—1) =+/3/4nR(r)sinfe ¢

R(r): The radial part of wavefunction

/3/4m: A normalization factor for the angular
part.

2p (0): function corresponds to the 2p: orbital
that is pictured in Fig 2.1.

Aonsall A e e lal) 6 5a iR(r)

130 e all (galal i Jale /3727

Fig 8 osaall 2p, e e (381 55 40k 5:2p (0)
2.1
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The linear combinations below are the 2px and 2py s g 2px el 3 sad oLial Adadl) sl 43l

2py orbitals shown in Fig 2.1.

Fig 2.1 (s (s sal

2p, = 1/2[2p(+1) + 2p(—1)] =+/3/4n R(r)sin B cos ¢
2p, = —1/2[2p(+1) - 2p(—1)] =/ 3/4mR(r)sinfsin ¢

These linear combinations still have the same 4llall 48Ua jud3 Ll J) ) Le Adadd) chlisd) ¢il) s34

energy as the original complex wavefunctions.

ALaY1 A8 el g sl

2.3 Polyelectronic Atoms and Molecules/ i Jadl g <l Al aaia ¢y 9 sl

Solving the Schrodinger equation for atoms
with more than one electron is complicated by
a number of factors. The first complication is
that the Schrodinger equation for such systems
cannot be solved exactly (solutions can only be
approximations to the real true solutions).

A second complication with multi-electron
species is that we must account for electron
spin.

Spin is characterized by the quantum number
s, which for an electron can only take the value
Y. The spin angular momentum is quantized
such that its projection on the z axis is either
+h or —h. These two states are characterized by
the quantum number ms , which can have
values of +1/2 or -1/2, and are often referred to
as ‘up spin” and ‘down spin’ respectively. The
spin part defines the electron spin and is
labeled o or 3. These spin functions have value
of 0 or 1 depending on the quantum number
ms of the electron. Each spatial orbital can
accommodate two electrons, with paired spins.
In order to predict the electronic structure of a
Polyelectronic atom or a molecule, the Aufbau
principle is employed, in which electrons are
assigned to the orbitals, two electrons per
orbital. For most of the situations that we shall
be interested in the number of electrons, N,
will be an even number that occupy the N/2
lowest-energy orbitals.

S I @l AT paia g 5 E A e Ja dlee )
Grany SD g 3a8a0 dlae (a caaly 5 S e
oS Y Al a1 AE A Jal gl e 22e
Ayl ol Jidl i gyl Aol (380 Ja ala)
Al Jplall i Ay i Jy s slad o <ay)
Bad il tb_'&\ f— ) Al W) (:\A:xM_“
e claa Lile oyl ga oy 1Y)
s S

S A s aSlanay Gue Wl o 5l
172 (gsbast A 231 of (5 I

Z Jsaa Ao abalin] Jie o5l 3 aa 300 J 38 2
aSl axay Ul Glila Jaaii kSl +h Loal s
Lle s 172 sl412 Aad 330 ol oSas Al em,
ouSe! gl Melull jlie aa” sl L) i L
(HoA e 3all) Guaad) ¢ 3 daay MAeluldl @ jlie
3 B ) a s () J3A0 05 )
e sy dalg gl jiia dad ol il Cailda g
ms O3 Y S
Gl a8 e iy O GSa Jlae JS
A5 ) Al w8 g5 Jal o (/32 2)
e Jas sy el g STy sasiall g 3all 5l 5l
ot e 3K 5 ol gl Caglsaeld
VLA adhnad danilly sl laall L) i g sisty)
8 g N el g STV aamy LD (e g A
7933 2ae ¢ N/2=) (a8l Hlaa Jadey
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Electrons are indistinguishable. If we exchange
any pair of electrons, then the distribution of
electron density remains the same. According
to the Born interpretation, the electron density
is equal to the square of the wavefunction. It
therefore follows that the wavefunction must
either remain unchanged when two electrons
are exchanged, or else it must change sign. In
fact, for electrons the wavefunction is required
to change sign: this is the antisymmetry
principle.
Eq.2,15

() oy Liad 1305 3l ata e il g iSOy
s A8USH) a5 58 U el g SIS e 2 9 )
O3 STV ABES 0 ¢y g pundil) L 5 Ay
AN o) Y das gall ATl ala S gl
) i o Ladie Ll i W (0 amy a5l
o ADlall st camy 4S8 V) 5 el SSIY (g
Lo 1 5 ciadlall it Jad cpe el 5 S0

Bl axe (e <8 2

2.3.1 The Born-Oppenheimer Approximation/ J-‘.-.‘LG-.‘:‘JLOJ&‘ L.J&"

The electronic wavefunction depends only on
the positions of the nuclei and not on their
Under the Born-Oppenheimer
approximation the total wavefunction for the
molecule can be written in the following form:

momenta.

Eq.2,16

e ga e hadid g IV A gall A)al) atad
-G S8 Ca ey Lea e e gl 55
Adlaa ) da gall 1Al AUS (o Sy ¢ padl gl

: ‘_ALJ\ I ‘_Ax: c«gs‘)éﬂ

¥ . (nuclei, electrons) = ¥(electrons)¥(nuclei)

The total energy equals to the sum of the
nuclear energy and the electronic energy. The
electronic energy comprises the kinetic and
potential energy of the electrons moving in the
electrostatic field of the nuclei, together with
electron-electron repulsion:

Eq.2,17

A sill A8l ¢ o ane dBlall Maa) (55l
g SN ALY i 5 A I A8l
I S e bl 28U S jal) 8L
o) i 05 5l i 56l Jiall (338 paiil

O A -5 STV el ae ia

E,,. = E(electrons) + E(nuclet)
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2.3.2 General Polyelectronic Systems and Slater
Py PRI KXY

A determinant is the most convenient way to
write down the permitted functional forms of
a Polyelectronic wavefunction that satisfies the
antisymmetry principle. In general, if we have
N electrons in spin orbitals X1,Xo,...,
acceptable form of the wavefunction is:

X~ then an

Eq.2,18

X1(1) x2(1)
X1(2) Xx2(2)

W=
=

| Xll[N] XEI(N]

X1(1): indicates a function that depends on the
space and spin coordinates of the electron
labeled “1".

that the wavefunction is

=

y
normalized.

This functional form of the wavefunction is
called a Slater Determinant and is the simplest
form of an orbital wavefunction that satisfies the
antisymmetric principle.

(If any two rows of determinant is identical,
then the determinant vanishes)

ensures

When the Slater determinant is expanded, a total
of N! terms results. This is because N! different
permutations of N electrons.

For example, for the three-electron system the
determinant is

X1(1)
L [x1(2)
V12 Xl[Ej

=

Expansion of the determinant gives the following
expression:

Determinants / $ dalal) axmiall G gAY dakai)

JIaY) AU adle Y Ay jlall ga 23 )
el g IV saraiall dpa sall Ad0all daliall duiks o))
DS 13 cale Sy bl aae fase okt )
X1,X2,..., XN :\—,}j‘)‘d\ ‘L‘\‘)\J-A\ Q,J ‘—’l—’j)jﬁ‘ N L‘.—.’ﬂ

58 el A gl ANl IS (d ¢

XN(1)
XN(2)

XN:[N] o

cililas) g eladlly ddlaie 4 g e Jasx1(1)
"1" 9 )ﬁm d)’d\

f.ml;\ wm;d\ al)al) u\ (o —
Arak ey doa sal) ANA aidn o 1) JSG) \q_a,
Al A el Alal ladd JaaY) KA 4 g 5N
" L) e fasa a g 5 N2
S5 ¢ 2l e s G Gilad Gllia IS )
(22l elasa) ) elly

NI (= Ac gana ¢ Jll) daai alugi e iy
N Calite s Nl sy 13y pellaae
5 i A5G 5 Uil aaadll of + e,y 5
e

X2(1) X3(1)
X2(2) X3(2)
X2(3) X3(3)

Al Ay el 3 bl coaall) alatal e i
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X1(1)x2(2)%3(3) — X1(1)X3(2)X2(3) + X2 (1)X3(2)X1(3)
—X2(1)X1(2)X3(3) + ¥3(1)X1(2)x2(3) — X3(1)X2(2)X1(3)

This expansion contains six terms (= 3!). The
six possible permutations of three electrons
are: 123,132,213,231,312,321. Some of these
permutations involve single exchanges of
electrons; others involve the exchange of two
electrons. For example, the permutation 132
can be generated from the initial permutation
by exchanging electrons 2 and 3 (If we do so
we will obtain the wavefunction with a
changed sign —\V).By contrast, the permutation
312 requires that electrons 1 and 3 are
exchanged and then electrons 1 and 2 are
exchanged. (This gives rise to an unchanged
wavefunction).

In general an odd permutation involves an
odd number of electron exchanges and leads
to a wavefunction with a changed sign; an
even permutation involves an even number of
electron  exchanges and returns the
wavefunction

Gl =30 s A e g giag ala e 1aa
0 Gl g I A Sl ddi N ol
s1 8 a2y (5 sl 123 132,213,231,312,321:
= el g YIS (e B3 pde YL e Joalll
e OB Jalt (o A Ganadl (5 sl s
adagll e diaad ) Sy Sl Sl Sy
O daas e AW Adagill A (46 132
Cllati ¢ pSally g (@ Aadlally it ae dos sall
Jaai a3 (pe 9 35 1 Dl S Joa 312 Aall
=8 Ao e Al ey La 138)2 5 1 il Sy
(B e

e Jald Ao o yaall Jagll (5 pdath cale JS5
Aadle st () (5330 Lae Sl SISV (e 3 40
ol e da 50 jall Alasill (5 sdati ¢ daa gall A1l
da gall A %j&b}ﬂy‘wcjﬁydm
NSRS

The Slater determinant can be reduced to a
shorthand notation. In one system of the
various notation systems, the terms along the
diagonal of the matrix are written as a single-
row determinant

2 paall AUS 235 ¢ Aaliadl) J) 35AY) (3 4k saa)
Mae alidgiadll g ki Joh Ao 53 sa gall
ke

Eq.2,19

X1(1) X2(1) X
X1(2) X2(2) X
X1(3) X2(3) X

3(1)
3(2)
3(3)

=|x1 x2 Xx3|

The normalization factor is assumed. It is
often convenient to indicate the spin of each
electron in the determinant; this is done by
writing a bar when the spin part is  (spin
down); a function without a bar indicates an
spin (spin up). Thus, the following are all
commonly used ways to write the Slater

OsSiLeUlle (55 salal) il Jule ()
fa2aall 8 5,38 JS J e (Al 3 lad clia
gl sl (358 (Bl Ly 2 4 Gk e ol g
Lal ¢(Jinl (A J3e) B Aomd) e adl ()5S Laxie
O (e N d5e) o Al e el oS Leie
g b Lad Ledsh 81 oy p5 () g 55 A )
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determinantal wave function for the Be atom
(which has the electronic configuration 1s?

i gall 012 s ddme AUS) Aerdiedll (30l
(1925 5 (55 S Loms59) b ol 530

2s%)
Eq.2,20
¢ (1) 6,.(1) ¢,.(1) B,.(1)
W= i qu_?[E:] E'jj_?[E] fib:stzj ﬂzs(E]
VI ¢y, (3) 9,.(3) #..(3) @,.(3)
¢1.(4) G, (4) ¢:.(4) G, (4)
= | ¢y 0,025 Oy
= |15 15 25 25|

An important property of determinants is that
a multiple of any column can be added to
another column without altering the value of
the determinant. This means that the spin
orbitals unique; other
combinations give the same energy.

are not linear

&) A8 5a ol o ALl Al Cliall saa)
i (s ST dgale ) ciliad o 08 3 sale
G @l ol J e of g 138 33 all 4 ad
i O AN Ahall 38 gl Say g 3oy 8
) g3l sl

2.4 Molecular Orbital Calculations / ) Jlaal) clibea

2.4.1 The Energy of a General Polyelectronic System/ aladl daxiall i g Sy sl 43Ual)

For N n-electron system, the Hamiltonian takes
the following general form:

3 ) sibialel) 3% ¢ 05,30 Naldai Jal (e
+alal) JS

A, B, C, etc: indicates the nuclei.

1, 2, 3, ...: indicates the electrons.

The Slater determinant for a system of N
electrons in N spin orbitals can be written:

ol Jde Ju:&l A B C
O A Jde Jyi1,2,3
N5 O3S N e pldail B sasall 44US (Say
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X1(1) X2(1) XN(1)
X1(2) X2(2) XN(2)
X1(N) X2(N) XN'(N]
Each term in the determinant can thus be S sl 83 S Sa Sy Sy
written Xi(l)Xj(Z)Xk(3)...XM(N—I)XU(N) where (,_Q i,j,k,...,u,v & FER (I)Xj(Z)Xk(S)...Xu(N—l)Xv(N)
i,j,k, ...,u,v is a series of N integers. Sl N s
As usual, the energy can be calculated from -y AL Ciladia) (S csalallS
YHY
E= J
J ww
J. YHY = J. J. drydry wdry [[Xi(ljx_j(zjxk (3) ]

x (—%Z Vi (/) — (/) ot (1frﬂj+(1frﬂ)+---)

x [X,(1)X;(2)x, (3) .. ]I

[ = [ [ dredes {5 (DX, @53 ] @WK, 25,3 ]

If the spin orbitals form an orthonormal set
then only products of identical terms from
the determinant will be non-zero when
integrated over all the space.

(If the spin orbitals are normalized, integral
will equal 1)

(If the term involves different electrons, it
will equal zero, due to the orthogonality of
spin orbitals).

The numerator in the energy expression can
be broken down into a series of one-electron
and two-electron integrals. Each of these
individual integrals has the general form:

Ac gana JS5 Al Gl laall Ay Jia b
(term 2 ) 393 all (L8 cdalative 4982 alatia
Lodic Jiaa (5 sbai Y aaal) (e Jad Zatlll el

(Jalss
s sboy (Lalal A ie A 3l @l Hladl) cilK 1))

adle cdaling alsg yi<l) e 3all o) gia) Jla )
(AR & lae dalad o ¢ jhia (5 sk

O Al (A yuadl 3 5lued) 8 Jas ) s (S
O i) LSS g aad ol) 9 3 SSTY) ML
1aa 340 LK o3 (e 3 jiie JalSS JS oy ST

-alal) JSll

J J dridy, ... [terml]operator[term2]

[term1] and [term?2] each represent one of the

o) daas e A (S [term2] s [term1] A Jia
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N! terms in the Slater determinant. To
simplify this integral, we first recognize that
all spin orbitals involving an electron that
does not appear in the operator can be taken
outside the integral. For example, if the
operator is 1/ria, than all spin orbitals other
than those that depend on the coordinates of
electron 1 can be separated from the integral.
The orthogonality of the spin orbitals means
that the integral will be zero unless all indices
involving these other electrons are the same
in [term1] and [term2].

For integrals that involve two-electron
operators (i.e. 1/rj), only those terms that do
not involve the coordinates of the two
electrons can be taken outside the integral.

Y sl @ as o) sy (Jwalall 13 Jasess Jad o
e Y 0 e ki e S
i o JalSil (e m 2 O S Sl
G ylae JS ol (Jidiall g 1/rn LS 1) (L)
Glilaa) e g alay Sl e Lo J il
Aadad () JelSill (e pgliad 1Sy ] (g5 3SY)
131 Y] a5 g JalSilI () e A0 31 @)l
G g SV s e Cpana il Sl JS cilS
[term2] s [term1] (58 Ledd (A (5 AV

G ) Jadia et Al cBlalsal) Al
(terms) 2s3ad) a2a Jad ¢(1/r) Jia il 5 yi<IY)
el g SV e (i) Gldlaa) e Y Al
Sl (e g A Ol apdaiads

It is more convenient to write the energy
expression in a concise form that recognizes
the three types of interaction that contribute to
the total electronic energy of the system.

First, there is the kinetic and potential energy
of each electron moving in the field of the
nuclei. The energy associated with the
contribution for the molecular orbital Xi is
often written Hi“* and M nuclei. For N
electrons in N molecular orbitals this
contribution to the total energy is (the actual
electron may not be ‘electron 1’):

S s S &y ) A8 5 e AUS JmdY) (e
Hlan) (o agua N AN ST £ sl aaty
Alaill A 1Y 8L

IS a1l A8kl 5 A8 jall ddUall @llia aa gy Y
AU i€ Lo Llle (o 5) Jals & yaty 5 5))
M s Hieore 1388 Xi ss )l alguls ddasi jall
cos 3 e N (o s N dal e s
035SY1) o GBI Jlas] e alenY) 12a
:( “electron 1’ 35l &*ﬂ\

B3|

N
Bzt = ) [ drk @ (—
i=1

M

N
’ Z
Vi _ E —A)Xi(1j= E Hi_ciora
T
= 4 i=1

F: |

The second contribution to the energy arises
from the electrostatic repulsion between pairs
of electrons. This interaction depends on the
electron-electron  distance  (Ji5).The  total
Coulomb contribution to the electronic energy
of the system is obtained as a double
summation over all electrons, taking care to

el e ddall Sl Al Ll Y ey
Aaing g SV (e )55l (e (Sl g 5eS)
()30 s ST G Adlusal) e oLl 1
O B B S
S (Ao 793w a0 el A 5 STy aLkadl)
5w U dSae o Gajall pa el Sy
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count each interaction just once: ssaal

N
1
Efoulomb — Z drydey X, (1)X(2)—X;(2) X, (1)
= 12
N 1
= Z drydry X (1) X, (1jr X}-(EJJ@'(EJ
IET; 12
The third contribution to the energy is the Mol Jalil) e ddUall GG aleuy)
exchange ‘interaction’. (= Adhiall s Gl g S e ) Jaa) 1)

If two electrons occupiec.l the same region of 85 g 21 e oL ee ?SJ 38 Sy sloadll

space and had parallel spins then they could be | . v -4 -5 Y e ?SS\ G\ e

considered to have the same set of quantum | = 2 I ?w-) “. B
o .SH Ay "C .vv&jwulx\(d)_’d\)

number. Electrons with the same spin thus tend . . )
to 'avoid' each other, and they experience a 451‘”9 Las ‘&’JY\ LF"USJSM 2e Ll 4.:1.«:3@_&3}
lower Coulombic repulsion, giving a lower P EEN = ) Qt—“;\ ‘—“—”‘3; .@J‘ aalh
energy. The total exchange energy is calculated -l dlalaal)

by the following equation:
N N

E::;::MQE :i i JI drydrs Xi(lej.[E] (;)Xi- (EJXJ[l] = Z Z K,;

i=1j =i%1 i=1j =i+l

Kij, Energy due to the exchange. (ALl dalatie 48U K
The prime on the counter j'indicates that the | a8 ¢a aaall o Ao Jxi ;7 232l (§ 48 daDhall ()
summat.ion is only 9ver electrons with the 2= diaaia (d J_‘;) e Cld Gl g J_,gm e
same spin as electron i. oI

2.4.2 Calculating the Energy from the Wavefunction: The Hydrogen Molecule / :4:> gall A1all (e 48Ual) ciludial
RESSIVIPREY

In the most popular kind of quantum | Agleall el oo dn & 5<Y) g il 8
mechanical calculations  performed on LA\ e J;, ¢l Hal) uj‘; A LF",j\ ?53\ AilSdl
molecules each molecular spin orbital is Ll LS‘L"; b g o S e J3e JS
expressed as a linear combination of atomic e laddl 2_1)3]\ &yl #‘ eyl e )L)
orbitals (the LCAO approach)®.. Thus each ”. . s T e s .
molecular orbital can be written as a|$ 2T s dS el US;&J\SSQ‘(%A ‘
G g yenaS

2 LCAO is a quantum superposition of atomic orbitals and a technique for calculating molecular orbitals in
quantum Chemistry.(Ref:Wikipedia)/aS-“ ebasS (8 43 jall @l jlaall Ciluad 455 5 49,00 <l jlaall (e oSI S) 5 58
LCAO
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summation of the following form:

Eq.2,21

where ¥; is a molecular orbital represented as
the sum of k atomic orbitals gbu, each

multiplied by a corresponding coefficient “,
and x represents which atomic orbital is

combined in the term.> There are two
electrons with opposite spins in the lowest
energy spatial orbital (labeled 1og), which is
formed from a linear combination of two

hydrogen-atom 1s orbitals:

Ok g seaS Shaa el Hladll sa ¥ G
Jalray (g e aal g S (@i Al @l ladll
J\J.AS\ c.ac.A;S\ H;L:t; L Jas 9 ¢ L A uliall
e il S e e 53 lia sad) 8 (5 )
Dlaall oY) AsUl 84 Saa loaliae i
B3 B 5 e 5S¢0yl (omall) A8

s opa el 3, g1 <l Hlaa Cpe Y

Eq.2,22

lo, = A(1s, + 1s5)

To calculate the energy of the ground state of
the hydrogen molecule for a fixed
internuclear distance we first write the

wavefunction as a 2 ¥ 2 determinant:

e5 st Ao al) A A8l ol tial ol
Ol Lide (5 5l A5 Aol ddluall s 5 )2
2% 2 208 daa gl AN Y K8

Eq.2,23
_1x1(1) x2(1)

v= X1(2) x2(2)

X1(1)x2(2) — X1(2)x2(1)

(See paragraph 2.1.1 operators) In atomic

Glas sl o laded) (Jriiall 2,11 abaiall xa) )

units the Hamiltonian is thus: t R Al
Eq.2,24a
go-tV? _1v? _Za_Zs Za Zs 1
2 2 T Ta T Thy Tha T
Eq.2,24b

3 Ref: http://en.wikipedia.org/wiki/Linear combination of atomic orbitals molecular orbital method : el
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T

b

= I'-‘I1 + + (1/72)

1 and 2: indicate the electrons. R j—m ‘539 dﬁa ‘A B
A and B: indicate the nuclei. RHEPRVNY g‘ Jy 1,2
1 Lﬁjudjmw ZB.S7.A

Za and Zs:nuclear charges =1. . . e
A p & 1o saed) ey Al

The energy of this hydrogen molecule:

Eq.2,25
[7w« Awdr
E ==
[77w = wdr

The normalization constant for the wavefunction | i ySIY daa sall adall Cul) Lﬁahy\ il
of the two electrons hydrogen molecule is 12 2 25 ddaladl P e\_g,d\ S1A2 s Cpa gl
and so the denominator in Eq.2, 25 is equal to 2. ) 2 sl
$ubst1tut10n of hydrogen molecule wavefunction b s agl e {5 3ad A gl A0 o s
into Eq.2, 25 .

2,25 Aalxall

Eq.2,25
E= iﬂ dp,do,{[X1(1)X2(2) — X2(1)X1(2)][H, + H,
+ (1/m)][x1(1)x2(2) — x2(1)x1(2)]}

E= ﬂ dT1dT2X1(1)x2(2)(H, )x1(1)x2(2)
— ﬂ dT1dT2x1(1)x2(2)(H,)x2(1)X1(2) + -~
- H dT1dT2X1(1)x2(2)(H,)X1(1)x2(2)

— ﬂ dT1dT2Xx1(1)x2(2)(H,)x2(1)x1(2) + -

+ [[ arsarzxiree (=
- f f dTldTEXl(leE(E](

)xzmmz}

! )Xz(1jx1(2j+---

12

Each of these individual terms can be | )2 gaal) of Lidaay 13) €2y A IS J) A R
simplified if we recognize that terms dependent | . S« sl ):SN\ P le 30 dixa (terms
upon electrons other than those in the operator | . < o=l g DAl 880 g gl L SSIY)

can be separated out. For example, the first '8 . WUy« . . .
K\EAL WAl ey e JUL Lo

term in the expansion, Eq.2,25,is: o= d} ‘ d ) . -
. Eq.2,25
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ﬂ dT1dT2x1(1)X2(2)(H,)x1(1)x2(2)

This paragraph is incomplete

2.4.3 The energy of a Closed-shell System/ 4&lial) A8al) aUas 43l

In a closed-shell system containing N electrons
in N/2 orbitals, there are two spin orbitals

associated with each spatial orbital Y and

Yi. The electronic energy of such a system can

be calculated in a manner analogous to that for
the hydrogen molecule. First, there is the
energy of each electron moving in the field of
the bare nuclei. For an electron in a molecular
orbital X;, this contributes energyHii" . If there
are two electrons in the orbital then the energy
is 2H:"" and for N/2 orbitals. The total
contribution to the energy will be:

N/2 (2 05 Sl N (6 simg Ailae ddida oLy 8
dasi e Jyall Gl jlae e ot Slla aa g1 ¢yl

OSaspB s P Sl G laall (e aal 5 S

g_:\.m_x;\i lilaa A_Q.x)}:u A_ui).\ﬂ‘)’\ PEBAY u_a\.m.x;\
JSAJU:MJ\_\A cYJ\ _u;t;j‘)ﬁ_}@\ ¢L§JA4JL£
Sl Cre B3l 31530 Jlae A & a5 )
CHEETE AAUal 5SS X s Dl A s
¢ olaall 8 b g STV (e i) Sl LS 1Y)
Slan) O5Sas lae N2 J2HSTE AdUa 5SS

ECIRKON

Niz

Z 2 HEG: omrg

1

The Coulomb interaction between each pair of
electrons in the same orbital must be included;
there is no exchange interaction because the
electrons have paired spins. The total energy is
thus given as:

G 30 S O a1 sSI LN S AT sy
Y oS5 e 1 sl i b iy Y
Sl Lt el g JiSIY (Y SIS Jals o

T3 B a5 A 5330 (U 2)

Nf2Z

E=

NjZN/j2

ZEH”’"E*ZZ(% K,)

i=1 j=
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2.5 The Hartree-Fock Equations/ & - sk <¥alas
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