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1 ���� 

1.1 �! %&�1  

45�67� ���E����) �	
����� :Fluid Mechanics  (��397� ��67� ���E���� O� P>�Q R3S 6�) �	
����� :

Continuum Mechanics ( �)�)I T�� 6�* 	
����� ��� U��	* %1�V�W��* �5�6H�� �)�)I P� X�� %
R3Y9��45�67� ��� �9)Z �Z ��'�E O� [:�H@  O�\* %��67� ]�^ P���� ���_�� P5�	
�G�� `6�H��  a *I 

 b��I 1�33S �c9d e��#	* %�-�L� ���' f �c9)��� *I 45�67� �����#	� *I %�-�L� g�> ���' f �c9)���

 ��5�6^� 1������#	��� `�#cQ %�#���)(������)��* ( ��5�7� 1������#	���*)(������)+��, .( ��� h�H	
 %A���L� �J��* %�Q�i��� %(W;�� %�>�H�� �i� j�k* %45�67�� ���l� ��5�	
�G�� 1��:��� �	�d �Z R3Y9��

�$)- ��)=���*  %45�67� ���E���m ��397� �5�H:�� =6�' ��n� �i	�' ����H' 1�@�.0  1�co �/* %pQ�9�� 
 ����HL� 45�67� 1������#	� j��� T�7� R3Y9�� h:H	*)�	
�����:Computational FluidDynamics  (

)CFD.(  

1.1.1 	
����  

 45�� �:��� 4:q- 45�67�)��-� ./�� :fluids  (r ��,  8��HEK� ����/ A��� sI P�* %A��7� ��6tI O� �>6:
�^ s*�L� C�E�� ��B ��u * R@�� ��cJZ �$u  vd . O� w�- 45�67� O:;9 �5�6H�� %1�V�W�� %��K.�� �E��'I* 

 8K�D��E���� plastic solids. 

�Z A��> 45�67� x#3 :  

• 	
���0�1234� � ��5 (compressible fluids) W9  X�� 45�67� P�*  (W;�� �W9� �c9Q�i- �
1�V�W�� �i� �c��> 4/�6�� .  

• 0�1234� � ��5 CD 	
���(incompressible fluids)  �W9� �c9Q�i- �W9  � X�� 45�67� P�* 
�5�6H�� �i� �c��> 4/�6�� 4F6�� .  

• ��# 6�E 45�6�: FG����� 	
��� �/K> [�Q &6�  45�� 6� ��cJ��2 a =��GE�� )��cJ�� �q�9E ��67� ]6, ( 
 z)�#9�� v��$ {)� |��	* %1��$��'�� I�.� O� �\ {�@9H� ��B h�> sI ��0� �/K>�J*
���� .� P

 }���� {)� h�> 45�7� ���O 6�E p2)�3. 

                                                      
1 O� wiki/org.wikipedia.ar://httpz ���� O� p@� O��*  

2 engl. stress 
3  H!IJ”LG��3“) �	
����� :Isaac Newton  ( s��#	*C����LG��3 H!IJ ) 4�	�#	  1643 a 31U���  1727 ( =�J� O�����7� ���:�� &�- P5�	
�Q s
��Z  }�>*

1��F�	� j�Q }�>* ���.0�� {��� |6H��Q* P5�:�-* 16�K��� }�>*�	�,.�� �	��  f ���$u  =�J��� {_>I O� ���'�**  . [��9- ��	*����.0�� �GH�G�� ��F�	��� =6�D� 8�9- s���* 
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• ��# 6�E �� 45�6�: N�G��3 O 	
�� v��$ g��Y9)�� [E�	�J x�* O�\ � 45�� 6� �J*
��� . z��I �9� 
 ������1��76.�� �i� ��5�,�� �5�6H�� O� �i���* ��E6 6�EK�� 45�67� O� �.5���� 1��:��6.��* z,9��� %

 z5�k�,#�� %g��� ��*6.��,.  

1.2 P�"��� Q�R2�  

��9�� �� C�B &� =*�#9	 z�9��� ��� f:  
•  R�Y� 745�67� ���E���) �	
����� :Fluid Mechanics ( 

• �� ���� RY s��> ���29��)�	
����� :Numerics / Numerical Computation ( 

•  z���)� ����HL� 45�67� 1������#	�)�	
�����:Computational FluidDynamics (  

1.3 Technicalities 

�U�)� f �� ����HL� 45�67� 1������#	�)�	
�����: Computational Fluid Dynamics ) (CFD( 6�  ��G�-
45�7 ����9�� �39� )continuous fluid (  

in a discretized fashion on a computer. One method is to discretize the spatial domain into 

small cells to form a volume mesh or grid, and then apply a suitable algorithm to solve the 

equations of motion (Euler equations for inviscid, and Navier–Stokes equations for viscous 

flow). In addition, such a mesh can be either irregular (for instance consisting of triangles in 

2D, or pyramidal solids in 3D) or regular; the distinguishing characteristic of the former is 

that each cell must be stored separately in memory. Where shocks or discontinuities are 

present, high resolution schemes such as Total Variation Diminishing (TVD), Flux Corrected 

Transport (FCT), Essentially NonOscillatory (ENO), or MUSCL schemes are needed to avoid 

spurious oscillations (Gibbs phenomenon) in the solution. 

If one chooses not to proceed with a mesh-based method, a number of alternatives exist, 

notably : 

Smoothed particle hydrodynamics, ngian method of solving fluid problemsa Lagra, )SPH ( 

                                                                                                                                                                      
 g�> �,E1687 f ���$u  z9��� �i-I O� {���� �	��  1�	�_E {_�7 U�)I ���F�* ����)K��� ���E���7� . x�* %8�9��� ��� f“O 6�E ”������ ���k��� �-�L� "E�6/* �$Ki�� 

 �Z ��:���� A�_#�� h�> 1�0�) X��*s��7� }���� �F** ����@�� �$Ki�� &*�@�� "O 6�E " z-6- h�> g�HJD� �-�' &I��D� g��JI �^ X��* �	*�� "E�6@�� �>6:r �c:�d 
 "� +�H �� 1�.$Z p	�t O> �cHGE ����.0�� "E�6/"��.- "��.-6��� �-�L�� ���l� �	�_E =6' 1��$ X�� ��@.97� `6�,�� ���VZ � O�* ����k���� ���l� [9	�_E* �:,�� �	
-�� 

 ��@  �Z b�I ������ A�6i����: . p��9	 �:�Q*���E���7�� O�>I %"O 6�E " O� ��� ���l� �/�0�� C�@� ���.��-�L� ��:- �	*�
�� �-�L� ��:-* . {�> f*1�	�3.�� ��9�� %"O 6�E "
 =*I�-�> 86�H� ]3[P�:>  . &�6�D� �	�_E �6t ��;	I j��-*)&6�( &I �_'K� h�> ���:9�� �6,#7� ��� ���D� C6;�� ��,  X�� &�6�D� O� �	���� �Z P5�7� x�0�� .

 ��� %j�k �Z �Q�F���*�	�9�� O 6�E &6E�/ U��* 163�� �>�) . `��,	 %1��F�	��� {��� �.H#���*"O 6�E" "
9#.	� �	�G 6J " |�B f�	60  �F�G9��* ����9�� 8�H' . j��-*
 v.$I %��;	I�::�7� O	�L� 1�k �	�_#�� �� h:H	 �� �6t* "O 6�E �@	�t " A�6J67� ��G�D� z	�@9� ���l�������� �)��� f {��)* b6@�� ��H�H9� . �E��� �_ "O 6�E " ���Q���

 g�> s�JI sI� �K09)� [9.$I s��� ��D� �. �� h�>I f C�:���� "�2005 p��9	 �:�Q  C�:���P��7� 4:9�� [� &�- O� 6� �K09)�� ��� ['�t s��� =��H�� &�-* ��0	��� 
 h�> �$u  {_>I{���� �	�� " O 6�E " gI"O	�9,#	! 1��I ." &I P� �K09)�� �q�9E vE�-*"O 6�E "���$u  �i-D� �9�	 6�.]4[ &�- %j�k h�> wA*K> "O 6�E "@  �	�W�� ���) h�>

�:5�@�� ��#	��� |��>D� 4� �w@G9� O�	 } [EI O� {���� ( f =�:>D� O� �	���� ��q9#�*U�@7� 8�9��� 1��HG  [� [ ���c)Z }���� �#	 } X�� ����.0�� g6���� f [q9EI �� �i-I 
&�� �'. 
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Spectral methodsa technique where the equations are projected onto basis functions like the , 

spherical harmonics and Chebyshev polynomials,  
Lattice Boltzmann methodswhich simulate an equivalent , )LBM (mesoscopic system on a 

Cartesian grid, instead of solving the macroscopic system (or the real microscopic physics).  

It is possible to directly solve the Navier–Stokes equations for laminar flows and for turbulent 

flows when all of the relevant length scales can be resolved by the grid (a Direct numerical 

simulation). In general however, the range of length scales appropriate to the problem is 

larger than even today's massively parallel computers can model. In these cases, turbulent 

flow simulations require the introduction of a turbulence model. Large eddy simulations 

(LES) and the Reynolds-averaged Navier–Stokes equations (RANS) formulation, with the k-ε 

model or the Reynolds stress model, are two techniques for dealing with these scales. 

In many instances, other equations are solved simultaneously with the Navier–Stokes 

equations. These other equations can include those describing species concentration (mass 

transfer), chemical reactions, heat transfer, etc. More advanced codes allow the simulation of 

more complex cases involving multi-phase flows (e.g. liquid/gas, solid/gas, liquid/solid), non-

Newtonian fluids (such as blood), or chemically reacting flows (such as combustion). 
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2 ������ �� !"�� �� ����  

������ �� !"�� �*�Q �'I �	����� 1��F�	��� *I 1��F�	��� �)���� {9c	 s��� 1���V��6l� ��397� 1��F�	��� �-�,� ��� �L ) O> �^ �
���	�����0@97� 1��F� ( g��Y9)����F�	� 1���:> 
8�;��* 4:�� �i� �0�H� .� ���29�� �)��� f s����� ���29�� �c�� X�� �-�,7� ��� u,#  *I %A�W97� *I ��@�@L� 1��W97� �)��� O� *I PF�	��s����� P0l� ��� =6@' O:F  ���>D�

�	�@���* ��@�@L�) �.-�7�( �5�H� ��� �d �:- %���F�G9�� 1����7��)�#^�* C�	
�G�� �5�H� ���* %.  

2.1 ]T�U[ ���U ���W�  

� �	���� ��397� 1��F�	��� f �5�H7� O)�	���:9)�� (continuous mathematics j�9� � p�W� �'a��,�� closed-form solution)  A�>�/ *I �@	�t �J6  � ��! ��m sI
��23�� *I p�/��� �L� �#5�0>� .( ��nZ j�k ��i�I O�����  P)D� 4��9�� )x2) ( �_E�u0l� ���� error function( ������ �'* %�*�L� �i- +6Q �:Q �H��l� �J���� O� ������ ) �#���

���I a*�T�Q .(O	���� �#	�� h@.9	 1��L� ]�� f   : g��Y9)�� �	�@  �' ��nZ ��*�� �*IPG��
� ���d asymptotic analysis O> �2.�� O�\ *I s��> �' numerical 

solution .�L� ��nZ ���:>s����� ���29�� �� =�r P� s����� .  

2.1.1 ]T�U[ ��+���"��) X�Y�Z�� [�%��  

 ��.� O�\ 1���V��6l� O� �6#�� ��� h:H  ��' %�� ���V��6� p	�t O> p�/� ��,� �d &I s����� ���29�� f �5�H7�"A�B�.� +�t "direct methods   : �^�i�P)*�W�� ��39��� 
Gaussian elimination �L ��0l� 1����7� �  (�H.9�� �@	�t*) ���.:�) �@	�t (simplex method f ��0l� �r��� linear programming.  

 g��Y9)�� �c�' O�:7� O� &6�	 �/ ���L� ]�� f %A�B�.� 1���V��6¡ �d � �5�H7� O� �i��� `�#� %���@7�� O���	*u  86�)I iterative method . ":Y9� I�.  �@	�0�� ]�� �i�
86�07� �L� O� �����G� 8�9@	 s��� �D� z	�@9�� ��nZ* . 1���V�6� �E��'I �J�69  ���#> �' �����Q �i-I �¢D �E��'I �	����9�� +�0�� �;G  �@Q A�B�.�) ����H' A��/* �/I �#�V z�09  �/

�2�� ��J z	�@9� �Q�FZ �/I ( �i-I &6�  �/ *I����@9)� . ��397� 1��F�	��� �-�,� ��� �L 1���V��6l� �)���� {9c	 s��� 1��F�	��� �*�Q �'I �	����� 1��F�	��� *I s����� ���29��

)��0@97� 1��F�	��� O> �^ �
��� (8�;��* 4:�� �i� �0�H� ��F�	� 1���:> g��Y9)�� .����� ���29�� �c�� X�� �-�,7� ��� u,#  ��@�@L� 1��W97� �)��� O� *I PF�	��� ���29�� �)��� f s
 �	�@���* ��@�@L� ���>D� =6@' O:F s����� P0l� ��� *I %A�W97� *I)�.-�7�(�)�#^�* C�	
�G�� �5�H� ���* %���F�G9�� 1����7� �5�H� ��� �d �:- %.  

2.2 ]T�U[ ���U ���W�  

 �	���:9)�� 1��F�	��� f �5�H7� O� �	����continuous mathematicsp�W� �' j�9� � a ��,��closed-form solution)  ��! ��m sI �#5�0>� A�>�/ *I �@	�t �J6  �
��23�� *I p�/��� �L� .( P)D� 4��9�� ����  ��nZ j�k ��i�I O�)x2) ( u0l� ���� �_E�error function( +6Q �:Q �H��l� �J���� O� ������ �*�L� �i- ������ �'* %)���I �#���a

T�Q*� .(O	���� �#	�� h@.9	 1��L� ]�� f  :*�� �*I � ���d g��Y9)�� �	�@  �' ��nZ ��asymptotic analysis s��> �' O> �2.�� O�\ *I numerical solution . ���:>
s����� ���29�� �� =�r P� s����� �L� ��nZ.  

2.2.1 ]T�U[ 	�%W"��  

 h>�  ���:��� ]�� %�G�) =6�L� �Q*��� ��0@9� ��F�	� �5�Hm �^��.9)� �Z e�9d �/ �	���:9)��� x39  X�� �5�H7� %b��I 1��' f"4�0@9�� "discretization . �' %Ki:Q ������
���F�G ���� p�0#� O� �G�9£ ¤�@E �#> ������ �:�/ p	�t O> Ki� %1�E��.�� O� �*�� ���@m �c��i� PW.#	 %��F�	� ���� 6�  ��) ������ +�0Edomain( �:9H� =�r O> A��.> 6� +�0#�� &I 4� %

continuum.  

2.2.2 ]T�U[  ���G\�%�]� +�^"3�)  

������ �� !"�� L� ��$ �R�� �\-$ ��^� \�%�]� ��Y �I�+� .��F�	� ��uH� �' �Z u0l� ���	 &I �^K� O� O�\ +�t A�> `�#� .z	�@9�� C�0�uQ Round-off error O� u,#  
 ��i� ���29)���@�@L� ���>D���,�  f p�/� ��L� A�*�� 1�!1 finite-state machine)  4�  �i���:/��� z�)�6L����Y9H7�  .( C�0�I�9.�� Truncation���#> ¥�d  C�¢Z {9	 

��uH:�� p�/��� �L� O> ����� =�V �� �	�@9�� �L� &6�	* �	����  �@	�t . 4�0@9�� ���:> �;	Idiscretization 4� z��W�� f pQ�69  � ��0@7� �5�H7� =6�' &D �.��� 4�0@  C�0�I ¥�d 
�	���:9)�� �5�H7� =6�'.  



 ����HL� 45�67� 1������#	� �� ����)�	
����� :Computational Fluid Dynamics ) (CFD(  

 
0l� ��� ��,9E� {9�) %�� u0� ��6  {9	 �7�'����997� 1���HL� =K� O� u . ��03� �Z �6@	 ���*�	����� �� �.i�� numerical stability   :l� &�- �kZ �	��> �9��$ ���V��6� &6�  � u0
A�B�.� [��� �� ��� 1���HL� =K� {Y;9	 . ��uH7� vE�- �kZ �Z �#�� &6�	 � ��� ��.t,�� A��J¤*� well-conditioned ��uH7� 1��0�� 1�W  �kZ ��¦F ���@m �W9	 �L� &I sI %

��¦F ���@m . ¤*�,�� �¦�) ��uH� ��6>�E* �H-��7� ���L� fill-conditioned   :�L� 1���H' O:F �.- ��,� 1��0�7� f u0l� {Y;  {9	.  

� �d X�� ���V��6l� &6�  &I O�\ %=�6'D� 4�:§ s����� ���29�� �:c� &6�  ¨�9��� �c�' �@	�0� �� ��uH7� ���.0� (@Q p��9	 � �6F67�Q �	��> �9��$ �� *I �	��> �9��$ ¤*�,�� A��J ��uH
¤*�,�� �¦�H�� �5�H7� �L A�@9H� 1���V��6� ��n� �Q�FZ ¤*�,�� A���� ��F�	��� �5�H7� �L A�@9H� 1���V��6� ��nZ �;	I.  

2.3 ]T�U[ ������� ��_��� � ��U���� �R��W"��  

• =�i:9)�� 1��F�	�   

•  z	�@9��  

•  ��0l� 1����:�� s��> �'  

•  ���F�G9�� 1����:�� s��> �'  

•  s��> P0� �J  

2.4 ]T�U[ �2�* *�5�  

• s����� ���29�� 4�F�6� �:5�/   

2.5 ]T�U[ ��$+�� 4`)  

• Scientific computing FAQ    
• Numerical analysis DMOZ category  
• Links to Open Source Scientific Computing codes  
• Numerical Recipes Homepage - with free %complete downloadable books  

• Alternatives to Numerical Recipes  
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3  ��#��� ������� 	
���� ���������)CFD( 

In all of these approaches the same basic procedure is followed. 

During preprocessing the geometry (physical bounds) of the problem is defined.  

The volume occupied by the fluid is divided into discrete cells (the mesh). The mesh may be 

uniform or non uniform.  

The physical modeling is defined – for example, the equations of motions + enthalpy + 

radiation + species conservation  

Boundary conditions are defined. This involves specifying the fluid behaviour and 

properties at the boundaries of the problem. For transient problems, the initial conditions are 

also defined.  

The simulation is started and the equations are solved iteratively as a steady-state or 

transient.  

Finally a postprocessor is used for the analysis and visualization of the resulting solution.  

3.1.1 Discretization methods 

The stability of the chosen discretization is generally established numerically rather than 

analytically as with simple linear problems. Special care must also be taken to ensure that the 

The . discretization handles discontinuous solutions gracefullyEuler equations and –Navier

Stokes equations.and contact surfaces,  both admit shocks 

Some of the discretization methods being used are: 

Finite volume methodor standard approach used most often in " classical"This is the ). FVM (

commercial software and research codes. The governing equations are solved on discrete 

control volumes. FVM recasts the PDE's (Partial Differential Equations) of the N-S equation 

in the conservative form and then discretize this equation. This guarantees the conservation 

of fluxes through a particular control volume. Though the overall solution will be 

conservative in nature there is no guarantee that it is the actual solution. Moreover this 

method is sensitive to distorted elements which can prevent convergence if such elements 

are in critical flow regions. This integration approach yields a method that is inherently 
[)density remain physically meaningfulquantities such as . e.i(conservative citation needed: ] 

 
see ( is the vector of fluxes F,  is the vector of conserved variablesQwhere Euler equations or 

Stokes equations–Navierand ,  is the cell volumeV, ). he cell surface areais t 
Finite element methodbut is , This method is popular for structural analysis of solids). FEM (

also applicable to fluids. The FEM formulation requires, however, special care to ensure a 

conservative solution. The FEM formulation has been adapted for use with the Navier–

Stokes equations. Although in FEM conservation has to be taken care of, it is much more 

approach. stable than the FVM]4[ Consequently it is the new direction in which CFD is 
[movingcitation neededrobustness of the solution is better in FEM though for /Generally stability. ]

.some cases it might take more memory than FVM methods]5[  
In this method, a weighted residual equation is formed:  
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where Ri is the equation residual at an element vertex i , Q is the conservation equation 

expressed on an element basis, Wi is the weight factor and Ve is the volume of the element.  
Finite differenceIt . nd is simple to programThis method has historical importance a.  method

is currently only used in few specialized codes. Modern finite difference codes make use of 

an embedded boundary for handling complex geometries making these codes highly 

efficient and accurate. Other ways to handle geometries are using overlapping-grids, where 

the solution is interpolated across each grid.  

 
Where Q is the vector of conserved variables, and F, G, and H are the fluxes in the x, y, 

and z directions respectively.  
Boundary element method. The boundary occupied by the fluid is divided into surface mesh.  

resolution schemes-HighTo capture .  are used where shocks or discontinuities are present

sharp changes in the solution requires the use of second or higher order numerical schemes 

This usually necessitates the application of . that do not introduce spurious oscillationsflux 

limiters to ensure that the solution is total variation diminishing.  

3.1.2 [editTurbulence models ] 

Turbulent flow produces fluid interaction at a large range of length scales. This problem 

means that it is required that for a turbulent flow regime calculations must attempt to take this 

into account by modifying the Navier–Stokes equations. Failure to do so may result in an 

unsteady simulation. When solving the turbulence model there exists a trade-off between 

accuracy and speed of computation. 

3.1.2.1 [editDirect numerical simulation ] 

Direct numerical simulation (DNS) captures all of the relevant scales of turbulent motion, so 

no model is needed for the smallest scales. This approach is extremely expensive, if not 

intractable, for complex problems on modern computing machines, hence the need for models 

to represent the smallest scales of fluid motion. 

3.1.2.2 [editStokes–averaged Navier-Reynolds ] 
: Main articleStokes equations–averaged Navier-Reynolds 

Reynolds-averaged Navier–Stokes (RANS) equations are the oldest approach to turbulence 

modeling. An ensemble version of the governing equations is solved, which introduces new 

apparent stresses known as Reynolds stresses. This adds a second order tensor of unknowns 

for which various models can provide different levels of closure. It is a common 

misconception that the RANS equations do not apply to flows with a time-varying mean flow 

because these equations are 'time-averaged'. In fact, statistically unsteady (or non-stationary) 

flows can equally be treated. This is sometimes referred to as URANS. There is nothing 
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inherent in Reynolds averaging to preclude this, but the turbulence models used to close the 

equations are valid only as long as the time over which these changes in the mean occur is 

large compared to the time scales of the turbulent motion containing most of the energy. 

RANS models can be divided into two broad approaches: 

Boussinesq hypothesis  
This method involves using an algebraic equation for the Reynolds stresses which include 

determining the turbulent viscosity, and depending on the level of sophistication of the 

model, solving transport equations for determining the turbulent kinetic energy and 

dissipation. Models include k-ε (Spalding), Mixing Length Model (Prandtl) and Zero 

Equation (Chen). The models available in this approach are often referred to by the number 

of transport equations they include, for example the Mixing Length model is a "Zero 

Equation" model because no transport equations are solved, and the k-ε on the other hand is 

a "Two Equation" model because two transport equations are solved.  
Reynolds stress model) RSM ( 

This approach attempts to actually solve transport equations for the Reynolds stresses. This 

means introduction of several transport equations for all the Reynolds stresses and hence this 

approach is much more costly in CPU effort.  

3.1.2.3 [editLarge eddy simulation ] 

 

 
Volume rendering of a non-premixed swirl flame as simulated by LES. 

Large eddy simulations (LES) is a technique in which the smaller eddies are filtered and are 

modeled using a sub-grid scale model, while the larger energy carrying eddies are simulated. 

This method generally requires a more refined mesh than a RANS model, but a far coarser 

mesh than a DNS solution. 

3.1.2.4 [editDetached eddy simulation ] 

Detached eddy simulations (DES) is a modification of a RANS model in which the model 

switches to a subgrid scale formulation in regions fine enough for LES calculations. Regions 

near solid boundaries and where the turbulent length scale is less than the maximum grid 

dimension are assigned the RANS mode of solution. As the turbulent length scale exceeds the 

grid dimension, the regions are solved using the LES mode. Therefore the grid resolution for 

DES is not as demanding as pure LES, thereby considerably cutting down the cost of the 

computation. Though DES was initially formulated for the Spalart-Allmaras model (Spalart et 

al., 1997), it can be implemented with other RANS models (Strelets, 2001), by appropriately 

modifying the length scale which is explicitly or implicitly involved in the RANS model. So 

while Spalart-Allmaras model based DES acts as LES with a wall model, DES based on other 

models (like two equation models) behave as a hybrid RANS-LES model. Grid generation is 

more complicated than for a simple RANS or LES case due to the RANS-LES switch. DES is 
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a non-zonal approach and provides a single smooth velocity field across the RANS and the 

LES regions of the solutions. 

3.1.2.5 [editVortex method ] 

The Vortex method is a grid-free technique for the simulation of turbulent flows. It uses 

vortices as the computational elements, mimicking the physical structures in turbulence. 

Vortex methods were developed as a grid-free methodology that would not be limited by the 

fundamental smoothing effects associated with grid-based methods. To be practical, however, 

vortex methods require means for rapidly computing velocities from the vortex elements – in 

other words they require the solution to a particular form of the N-body problem (in which the 

motion of N objects is tied to their mutual influences). A long-sought breakthrough came in 

the late 1980’s with the development of the Fast Multipole Method (FMM), an algorithm that 

has been heralded as one of the top ten advances in numerical science of the 20th century. 

This breakthrough paved the way to practical computation of the velocities from the vortex 

elements and is the basis of successful algorithms. 

 

Software based on the Vortex method offer the engineer a new means for solving tough fluid 

dynamics problems with minimal user intervention. All that is required is specification of 

problem geometry and setting of boundary and initial conditions. Among the significant 

advantages of this modern technology; 

It is practically grid-free, thus eliminating numerous iterations associated with RANS and 

LES.  
All problems are treated identically. No modeling or calibration inputs are required.  

Time-series simulations, which are crucial for correct analysis of acoustics, are possible.  
The small scale and large scale are accurately simulated at the same time.  

3.1.3 [editVorticity Confinement method ] 

The Vorticity Confinement method (VC) is an Eulerian technique, well known for the 

simulation of turbulent wakes. It uses a solitary-wave like approarch to produce stable 

solution with no numerical spreading. VC can capture the small scale features to over as few 

as 2 grid cells. Within these features, a nonlinear difference equation is solved as opposed to 

finite difference equation. VC is similar to shock capturing methods, where conservation laws 

are satisfied, so that the essential integral quantities are accurately computed. 

3.1.4 [editTwo phase flow ] 

The modeling of two-phase flow is still under development. Different methods have been 

proposed. The Volume of fluid method gets a lot of attention lately, but the Level set method 

and front tracking are also valuable approaches. Most of these methods are either good in 

maintaining a sharp interface or at conserving mass. This is crucial since the evaluation of the 

density, viscosity and surface tension in based on the values averaged over the interface. 
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3.1.5 [editSolution algorithms ] 

Discretization in space produces a system of ordinary differential equations for unsteady 

problems and algebraic equations for steady problems. Implicit or semi-implicit methods are 

generally used to integrate the ordinary differential equations, producing a system of (usually) 

nonlinear algebraic equations. Applying a Newton or Picard iteration produces a system of 

linear equations which is nonsymmetric in the presence of advection and indefinite in the 

presence of incompressibility. Such systems, particularly in 3D, are frequently too large for 

direct solvers, so iterative methods are used, either stationary methods such as successive 

overrelaxation or Krylov subspace methods. Krylov methods such as GMRES, typically used 

with preconditioning, operate by minimizing the residual over successive subspaces generated 

by the preconditioned operator. 

Multigrid is especially popular, both as a solver and as a preconditioner, due to its 

asymptotically optimal performance on many problems. Traditional solvers and 

preconditioners are effective at reducing high-frequency components of the residual, but low-

frequency components typically require many iterations to reduce. By operating on multiple 

scales, multigrid reduces all components of the residual by similar factors, leading to a mesh-

independent number of iterations. 

For indefinite systems, preconditioners such as incomplete LU factorization, additive 

Schwarz, and multigrid perform poorly or fail entirely, so the problem structure must be used 

for effective preconditioning.
[6]

 The traditional methods commonly used in CFD are the 

SIMPLE and Uzawa algorithms which exhibit mesh-dependent convergence rates, but recent 

advances based on block LU factorization combined with multigrid for the resulting definite 

systems, have led to preconditioners which deliver mesh-independent convergence rates.
[7]

 

3.2 [editSee also ] 

Blade element theory  
Finite element analysis  

Immersed Boundary Method  
Fluid mechanics  

List of finite element software packages  
Visualization  
Wind tunnel  

Multidisciplinary design optimization  
Turbulence modeling  
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3.4 [editExternal links ] 
D TutorialCF. with references to robotic fish,  Many examples and images 
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 :CourseIntroduction to CFD(Kuzmin  Dmitri – Dortmund University of Technology)  
"Retrieved from dynamics_fluid_Computational/wiki/org.wikipedia.en//:http" 
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