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ABSTRACT 

In the last decade, autonomous quadcopters have gained a huge attention in both 

academic and industrial fields. They have been developed and improved to solve complex 

problems that have a direct risk on humans. In this thesis, an autonomous, triangular shaped, 

swarm of quadcopters based on leader-follower scheme based on GPS position will be 

designed and implemented for the purpose of forest fire and smoke detection that will be 

implemented based on machine learning. The system will receive live video stream from a 

flying quadcopter over a forest region and detects the fire and smoke in the received frame. 

The system uses Artificial Neural Networks (ANNs) based on Darknet-53 and YOLO V3 

pretrained network with 1200 train images and 200 test images for model validation. The 

swarm is to be controlled via a ground station controller which gives the high-level 

commands and will be flying over 120 meters from ground. Also, a Kalman filter will be 

added to estimate the quadcopters’ position in case of GPS shortage. For the fire detection 

system, the base station is composed of a laptop PC which will receive a live video-stream 

from a quadcopter flying over a certain region of forests and then run the detection algorithm 

on CPU. For testing purposes, the swarm system will be designed and tested in 2 stages: 

standalone control system for each drone and a swarm controller and to test the fire detection 

system accuracy, virtual fires and smokes are simulated in a recorded drone live footage. The 

system effectively detected fire and smoke in a video-stream with accuracies of 98% and 96% 

respectively. Whereas, for the swarm system, unsatisfactory results were found in terms of 

cooperative control but with successful individual control.  
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CHAPTER 1. INTRODUCTION 

1.1. BACKGROUND 

Unmanned Aerial Vehicles (UAVs) have grabbed a great attention in both academic 

and practical fields through the past decades. They are used in various fields such as military 

reconnaissance, like gathering sensitive data during and after military missions to aid in 

security and decision-making. In addition, UAVs are used in Search and Rescue (SR) 

missions, where 3-D mapping of catastrophic regions can help rescue teams for better 

estimation and preparation before entering hazardous situations. In addition, UAVs can be 

used in agriculture field, taking advantage of them in a variety of farming needs such as 

spraying fertilizers and insecticides, identifying weed infestations, and monitoring crop 

health. Other applications such as live entertainment, inspection, weather forecasting and 

maritime operations can be found in [1] [2]. Because of their simple structure, small size, 

strong mobility and low cost, UAVs were chosen to complete hazardous tasks. In 1907, the 

Breguet Brothers built the first flyable quadcopter called “gyroplane No.1 shown in Figure 

1.1 [3] [4]. 

 

Figure 1.1. Breguet Richet Gyroplane No.1 
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 So far, engineers have developed quadcopter UAVs to solve the problem of vertical 

flights which pilots had with conventional winged UAVs [5]. Compared with the latter, 

quadcopters do not require a tail rotor to stabilize their heading, they can cancel out net 

torques naturally because of their rotors’ mount. quadcopters can fit in more sophisticated 

flight environments with their ability to travel in narrow spaces, apply roll and ultra-soft 

flight and hovering, take-off and land vertically, (VTOL), and move in a flexible manner [6]. 

Quadcopter maneuvering can be achieved by varying rotors’ speeds as shown in Figure 1.2. 

With the evolution of quadcopter UAVs, they became fully autonomous. They can track 

specific trajectory, hold their altitude, and maneuver in narrow areas on their own. Scientists 

and control system engineers developed various controllers to achieve quadcopter’s full 

autonomy such as conventional PID controllers, backstepping, robust controllers (such as 

Sliding Mode Controllers (SMC)), and fuzzy logic controllers. Each of these is characterized 

by its flexibility and boundaries. For example, conventional PID controllers do not take into 

consideration the unknown disturbances acting on the system, while robust controllers do.  

 

Figure 1.2. Quadcopter maneuvers 
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Nowadays, world becomes more complex and more connected than ever before 

which led to more complicated objectives, and the need to deal with complex tasks requires 

new methodologies, such as imitating swarm of robots to survey unknown environments. 

Compared with a single quadcopter, using a swarm of quadrotors in missions can increase the 

efficiency as well as it increases the probability of mission success. In addition, using 

quadcopter swarm can increase the surveillance area, scan a whole damaged building quickly, 

and reduce the expense of military missions. Quadcopter team is a popular research topic as it 

can solve real-world tasks efficiently [7] [8] [9]. 

For instance, in 2019, heat and drought wave different areas all around the world. 

Consequently, many countries suffered from wildfires. Around 50,447 wildfires occurred, 

which burned around 4.7 million acres of green lands according to National Interagency 

Fire Center (NIFC) [10]. In 2019, series of 100 fires have broken out within 24 hours in 

Lebanon as officials said. This catastrophe started in Lebanon’s western mountains, and 

spread to other areas, because of a heatwave and strong winds which the country faced 

October. Furthermore, Lebanon’s ability to face this catastrophe was almost non-existent. 

Lebanon’s firefighting helicopters could not be used because of the lack of maintenance [11] 

[12]. 

 In order to respond to this disastrous event, emergency responders around the world 

started using next-generation technologies to help avoid wildfires, prevent spread wildfires, 

and extinguish them when they occur [13]. For instance, the fire department in State of 

Michigan in USA in coordination with the University of Michigan College of Engineering 

used a swarm of quadcopters to combat wildfire effectively with the goal of finding, mapping 

wildfires and reporting the estimated fire boundary. The swarm flies above the fire boundary 

and then reports accurate and real-time fire estimates. Thus, responders can know where they 
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can go to be safe, where they cannot go, and how they can help certain people who are in 

need [14]. 

There are plenty of high-level controllers in which engineers trying to improve by 

time to establish a fully-autonomous formation control such as virtual structure [15], 

Behavior-Based Robotics (BBR) [16], and leader-follower technique [17]. Where the leader 

moves along with a predefined trajectory while the followers are controlled to maintain a 

desired position (orientation and distance) with respect to the leader [18]. This approach is 

highly effective and can be reconfigured easily [19]. These algorithms should be optimally 

combined with path-planners in order to achieve a safe and efficient mission. 

Path-planning algorithms, in such missions, should generate an obstacle-free path to 

the quadcopter team taking into consideration the anti-collision of agents. There are many 

path-planning and obstacle avoiding algorithms used by scientists such as backstepping 

obstacle-avoiding techniques, genetic, and Neural Network UAV path-planning. Artificial 

Potential Fields (APF) is also another path-planning algorithm and is widely used in robotics 

field. It first started by Oussama Khatib in 1980’s for path-planning of mobile robots and 

manipulators [20]. APF can briefly be described as a goal attracting and obstacles repelling 

the robot through artificial forces. The sum of forces applied determines the speed and 

direction the robot should take in order to reach its goal and repel from obstacles.  

Moreover, the advancement of industry in the last century increased the 

environmental pollution and climate change in many regions of the world. This led to rising 

global temperatures which is one of the reasons for the outbreak of fires in large areas of 

forests [1] [2]. In 2013, the US had lost 104,131 Hectares of forest due to fires [3]. According 

to the European Forest Fire Information System (EFFIS) report, the Middle East and North 

Africa have lost at least 176,116 Hectares of Forest in 2014 [4]. 
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In 2019, a series of fires broke out in the forests of Lebanon and nearby countries with 

nearly 100 fires on the Lebanese territories, according to the Lebanese Civil Defense [5]. In 

2020, and based on the data and estimates of the municipalities in the villages, the area 

burned in this incident has reached 12 million square meters [6]. Unfortunately, this happens 

every year in Lebanon. Meteorological experts stated that the fires were caused by high 

temperatures, which reached 38 degrees Celsius (nearly 10 degrees above the average), and 

dry winds that contributed to forest fires [7]. 

Problems caused by the lack of technological aspects in the field of fire detection are 

obviously disastrous. There is still no way to know when the early flames are that caused the 

fire ignited. Because there are no methods used in Lebanon that keep on checking and 

identifying the forests’ status, it is always too late to prevent forest fires that happen every 

year. These fires contribute to a great physical, climate, and economic losses. Thus, it is a 

must to develop monitoring systems that detect fires, especially early flames, and show their 

status (level, direction, speed). This will help firefighters in accessing the stage safely and 

treating fire quickly and efficiently which will definitely save more lives and green spaces. 

Unfortunately, traditional fire detecting sensors, such as ionization smoke sensors and flame 

detectors frequently lack efficiency when stationed in nature, and often have false alarms. 

This raises an urgent need for a better and more accurate technology. 

The fire detection system using drones has gained a huge turnout especially in the past 

two decades. This system has been gradually developed throughout the years, starting from 

remote-controlled drones with smoke sensors, to installing cameras on autonomous drones 

that take pictures of the fire and transmit live video stream of the fire and how it is moving. 

This technology helped NASA to detect effectively the California wildfire in 2008 and 

helped preventing it from spreading in an uncontrolled manner [8]. On one hand, using 

drones to detect fires has positive aspects. They help firefighters to specify the state of the 
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fire like its direction and  extension. Besides, their convenient size helps them penetrate 

through areas unreachable by pilots. Drones also cost less than helicopters and decrease 

human losses by being their substitute. On the other hand, there are drawbacks. Being always 

available and hovering above forests are constrained by their low flying time and some 

technical risks. 

Firstly, continuous use of quadcopters results in less efficient motors, this is called 

motor aging. Motors will lose their power as they “grow up” which may cause undesirable 

behavior of the drone and maybe crashing. Moreover, quadcopters’ communication channels 

maybe interfered with other signals. This risk causes loss of information between sender and 

receiver and may end up with a disastrous situation. In addition, and one of the most common 

risks, sudden power death due to battery deficiency may occur and crashing will defiantly 

occur. These risks should be taken into consideration and never be ignored in the design stage 

of a quadcopter. 

1.2. PROBLEM STATEMENT 

Lebanon has faced many events which tested its readiness and capabilities to face 

fires throughout the last decade. According to the American University of Beirut [21], fires in 

Lebanon were classified as a recurring disaster with no efficient intervention. In 2010, 320 

fires ignited with 4661 hectares burned. In 2014, 156 fires ignited which resulted in 1852 

hectares burned. In 2016, 260 fires ignited with 1871 burned hectares. And, in October 2019, 

more than 120 fires ignited simultaneously within 48 hours only. Fire density was 

approximated to be 0.16 fires/km which is 10 times larger than the Amazon’s famous fire in 

2019. As a result, significant losses in private and public properties appeared, more than 2000 

hectares of green land were burned and 1 person died because of asphyxiation. These 

catastrophic events have several factors. Weather conditions are one of the factors. During 
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October 2019, Lebanon faced a heatwave with maximum and minimum temperatures 

exceeding historical averages, low humidity, and wind speed of 10 m/s (normally 3 m/s in 

Beirut). Figure 1.3 shows the hourly temperature in October 2019 compared with historical 

average temperatures. Moreover, weak response is also a main factor. It includes slow early 

response, lack in firefighters, and absence of necessary equipment to face fires. In addition, 

one of the most important factors is the lack of prevention measures. Lebanon fire prevention 

system lacks early fire detection. For this reason, deploying a monitoring system is a must 

and autonomous swarm of quadcopters could be one of these systems as it provides an “eye 

in the sky” for stakeholders and since multiple quadcopters can increase coverage area and 

survey larger areas with at same time.  

 

Figure 1.3. AUB Statistics: Hourly Temperature Compared with Maximum and Minimum 

Historical Temperatures in 2019 

However, deploying swarm of quadcopters is a challenging task. Quadcopters 

should behave as a coherent team to complete their surveillance mission in the most efficient 

way and with no crashing. In a perfect world, a quadcopter team can follow its predefined 

trajectory infinitely without colliding because of its perfect sensors and communication time 

almost negligible. Unfortunately, in real world applications, perfect sensors and ultimate 

coordination do not exist and have a lot of constraints. 



24 

 

 A Quadcopter swarm is susceptible to sensor noises which weakens the localization 

and quality of the formation and may result in formation loss or crashing. Moreover, 

formation control may encounter sudden unknown type of disturbances including strong wind 

gust, flying birds, or sudden communication loss with positioning system satellites. These 

disturbances have high occurrence probability and cannot be predicted. Furthermore, 

formation path-planner, which is responsible to plan an obstacle-free path, is vulnerable to 

the dynamics of moving obstacles in the surrounding environment where fast-moving or 

nonpredictable objects result in unstable decisions. In addition, black smoke released from 

fires can temporarily negatively affect the behavior of onboard sensors and cameras for each 

agent in the formation. These mentioned constraints limit the deployment process of 

formation controllers and are extremely challenging to deal with.  

Early fire detection is very necessary. Take the wildfire that broke in 2019 in the 

Lebanese forests for instance. This fire caused dangerous injuries for more than 88 civilians 

[9] and 5 firefighters and burnt at least 4 houses in the surrounding area [10]. 3700 acres of 

green land became ashes in 48 hours, which means the loss of thousands of olive trees and 

other fruity trees that their owners depended on for their income [9]. Usually, the detection of 

wildfires is late due to either false alarms or the complete absence of alarms in some forests. 

This partially eliminates the possibility to access the terrain which allows the fire to nurture 

by the various fuel sources in the forest. Thus, the need for an efficient way to detect early 

fires is extremely necessary to avoid further losses. 

1.3. THESIS OVERVIEW 

In this thesis, a decentralized, autonomous quadcopter team consisting of 3 

quadcopters will be designed and implemented which is characterized by: 

• Fly in a triangular-shaped formation with 5 meters safe distance between agents. 
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• Track a predefined obstacle-free path, with a longitudinal speed of ≤ 5
𝑚

𝑠
 over 

regions with high probability of fires. 

• Send attitude, altitude, position and live-stream data to a Ground Control Station 

(GCS) in real-time. 

• Land after 20 minutes of continuous flight. 

The swarm is to be formed using Leader-Follower (L-F) structure, where one 

quadcopter sends its position information to all followers which by turn, maintain a specific 

distance from it without losing the formation. For attitude, altitude and position tracking, a 

PID controller will be implemented. Artificial Potential Field (APF) is chosen as a path-

planning algorithm for its simplicity and high efficiency because it takes into consideration 

static and dynamic obstacles located around. In addition, and to deal with uncertainties in 

sensors and unknown disturbances, a Kalman Filter (KF) is to be implemented onboard of 

every single quadcopter as an optimal state estimator. The behavior of proposed controllers, 

path-planner and estimation algorithm is to be tested on MATLAB simulation environment. 

As for the fire detection system, this thesis is dedicated to design and implement an 

early fire detection system, with the aid of quadcopter, based on Machine Learning 

(ML)/Neural Networks (NN). 

 The system is responsible to detect fires in video frames received from quadcopters 

flying over a region of forest. For this reason, a “Yolov3” neural network model will be used 

to detect fire in a frame. This model has been chosen for its high training accuracy and the 

ability to work with low-cost computers. The model will be trained using 1000 of positive 

images (images with fires). The labeling of images will be done using “labelImg” software. 

Model training will be handled over “Google Collabs” that offers a free GPU. In addition, a 

simple proportional controller will be used to calculate the necessary actions for a 2-D gimbal 

in order to keep the camera focused on fire region. 
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1.4. LITERATURE SURVEY  

There are a lot of work relating path-planning and formation control of quadcopters 

have been published. For example, Nguyen and Sung [22] proposed a robust adaptive 

formation controller to keep a team of quadcopters, based upon leader-follower scheme, in a 

specific formation with the presence of unknown uncertainties. Promising results obtained by 

simulations. However, they did not test it over real quadcopters. Another method presented 

by Falin Wu et al. [23] where they used a linear PID controller to control each individual 

quadcopter along with a Sliding Mode Controller (SMC) to solve the formation problem. 

They acquired effective performance upon simulations, ignoring practical noises and 

communication delays. Moreover, similar work presented by Mu et al. [24], Khaled and 

Youmin [25] and Mercado et al. [26] where they also used SMC to solve the leader-follower 

tracking formation control problem. The SMC was very responsive to keep the formation in 

shape but its main disadvantage is the chattering of control input which results in oscillating 

followers and decreases the lifetime of the system.  

The proposed formation control methods are designed to operate in an obstacle-free 

environment. In most cases, the environment is full of obstacles. For this reason, Reagan et 

al. [27] implemented a real-time obstacle avoiding algorithm using APF to control multiple 

quadcopters in order to reach a specific goal location with following the most feasible 

obstacle-free path. They tested this algorithm using simulations and on real quadcopters 

indoor with achieving very effective results in keeping the formation as well as reaching the 

goal. However, the main disadvantage of using APF is the necessity preliminary knowledge 

of robots’ position, obstacles’ position and target position where it also needs a lot of fine-

tuning to achieve the best performance. Milad Nazarahari et al. [28] updated the use of APF. 

They used APF to find all feasible paths between the starting position to goal position, then 

they developed an Enhanced Genetic Algorithm (EGA) to improve these initial paths and 
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find the optimal path between the robot and goal. They combined path length, smoothness, 

and safety in order to achieve a multi-objective path-planning. Furthermore, Derek J. Bennet 

and Colin R. McInnes [29] used bifurcating potential fields to establish formation 

reconfigurability while maintaining robustness and to failures. They proved how various 

formation patterns can be autonomously established by simple free parameter change. They 

tested the proposed algorithm using simulations only.  

There are a lot of fire detection algorithms and techniques used by scientists and 

engineers to help in early fire detection and monitoring processes using UAVs. For example, 

Chi Yuan et al. [11] did effectively extract and track fire pixels in an infrared video sequence 

received from a UAV. They used brightness and motion clues along with image processing 

histogram segmentation to extract hot object regions. They also used optical flow sensors to 

calculate motion vectors of these hot candidate regions. Another work done by Casbeer et al. 

[12], where they explored the feasibility of a short term, low altitude UAV team to 

cooperatively track and monitor forest fires’ propagation. They simulated a full 6-DOF 

dynamic model of the UAVs and some numerical models for forest fire propagation. They 

did not test it in real fire situations. In addition, Zhou et al. [13] gathered video streams from 

a UAV and applied orthorectification method of these received images to monitor forest fires. 

They pointed out some specific problems which should be treated in case of forest fire 

detection and presented some primary solutions to these problems. However, there were no 

results presented. Moreover, Mubarak Mahmoud et al. [14] collected 6 videos available 

online and used image processing algorithms to detect fires. They first applied background 

subtraction to capture movements within the region detected. Then they converted the 

moving regions from RGB color space into YCbCr which helped them to apply 5 different 

fire detection rules in order to separate fire pixels. 
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And finally, they used temporal variation method to distinguish between fire and fire color 

objects. They achieved 96.63% accuracy detection rate. Another method proposed by Henry 

Cruz et al. [15] developed a method, which can be used on UAVs, called Forest Fire 

Detection Index (FFDI) based on using a new color index. This index is based on vegetation 

methods to detect flames and smoke. They tested this method upon a database imagery with 

acquiring very good results of about 96.82% precision accuracy over 960 x 540 pixels 

samples along with 0.0447 seconds processing speed. 

1.5. THESIS OUTLINE 

The rest of the report is divided as follows; Chapter 2 will include simulation and 

control of 3 quadcopters tracking a goal position with avoiding obstacles using APF repulsive 

forces. In addition to the mathematical modeling and control of a quadcopter drone. Chapter 

3 will illustrate the components to be used. Chapter 4 will combine all parts together and will 

show the practical design procedure (technical aspect) of 3 quadcopters flying as a team with 

implementing Kalman Filter (KF) for better position estimation and will show the procedure 

followed to train a Neural Network (NN) in order to detect fire in camera frames and the 

design of th simple control system to drive a camera gimbal to keep tracking fire region.  

Chapter 5 will show the economical, ethical, and environmental impact of this project. 

Chapter 6 will show the results and chapter 7 will conclude the project.  
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CHAPTER 2. SYSTEM DESIGN 

2.1. INTRODUCTION 

In this chapter, a mathematical model, including the kinematics and dynamics, of a 

quadcopter UAV and the design of its PID-based attitude, altitude, and position controllers 

will be presented. Then, the simulation will be integrated to control 3 UAVs following 

leader-follower scheme. The simulation is done using MATLAB/Simulink environment in 

order to ensure the viability of the proposed controllers in real world application. Figure 2.1 

illustrates the high-level control diagram of L-F scheme. The trajectory planner generates the 

desired leader’s trajectory 𝒓𝒅 = [𝑥𝑑 , 𝑦𝑑 , 𝑧𝑑]𝑇 and the desired course angle for every 

quadcopter in the team (𝜓𝑑). Each quadcopter in the team is equipped with a local planner 

(position, altitude, attitude and obstacle avoidance controllers) that can achieve partial 

undependability from leader’s decisions. However, the desired trajectory of each follower is 

directly dependent upon leader’s position. The desired trajectory will be tracked by the leader 

quadcopter and the formation controller is responsible for maintaining the followers’ relative 

desired distance from the leader (∆𝑥, ∆𝑦). A main advantage of this method is the ease of 

implementation and expendability (i.e., “n” followers can be added easily) however it lacks 

full independence. 
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Figure 2.1. Leader-Follower high-level controller block diagram 

 

Figure 2.2: Quadcopter high-and low-level controllers 

 Figure 2.2 shows the overall control system structure. The quadcopter is equipped 

with a high-level (position) controller responsible for tracking a desired trajectory in 

(𝑥𝑑 , 𝑦𝑑 , 𝑧𝑑), generated by the trajectory generator, and a low-level (attitude controller) 

controller responsible for tracking the rotational setpoints (𝜑𝑑, 𝜃𝑑 , 𝜓𝑑). The quadcopter then 

receives 4 control inputs (𝑢1, 𝑢2, 𝑢3, 𝑢4) which control the throttle force, rolling, pitching, 

and yawing torques respectively. 

  The quadcopter produces rotational torques in order for it to navigate in space. These 

rotation angles can be described as Euler angles in 3D. The rotations about x-axis, y-axis and 
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z-axis are represented as rolling (𝜑), pitching (𝜃), and yawing (𝜓) respectively as shown in 

Figure 2.3.  

 

Figure 2.3. Quadcopter rotation angles 

 

2.2. PRELIMINARIES AND ASSUMPTIONS 

To achieve the desired coordination between several quadcopters, some basic 

information and constraints should be known.  

• The rotation angles about [𝑥, 𝑦, 𝑧] axes are represented by Euler angles, roll, pitch and 

yaw [𝜑, 𝜃, 𝜓] respectively with constraining −25 <  𝜑 < 25𝑜 ,  −25𝑜 <  𝜃 < 25𝑜 

(for linear region) and −180𝑜 <  𝜓 < 180𝑜 as shown in Figure 2.4.  

• The quadcopter is assumed to be a rigid body of mass “m” and an inertia matrix “J”. 

Also, the propellers are also assumed to be rigid with neglecting flapping effect.  

• The quadcopter is symmetrical and its center of mass is exactly located at the center 

of the rigid body.  

• Motor inertia is assumed to be neglected. 

• Flat earth is assumed.  



32 

 

 

Figure 2.4. Quadcopter rotation angles and coordinate frames 

2.3. KINEMATIC MODEL 

Translations and rotations of a quadcopter are represented in 2 different frames as in 

Figure 2.4; Body fixed frame B and inertial frame I. Generally, a quadcopter is equipped with 

an Inertial Measurement Unit (IMU) which senses quantity relative to its body frame but on 

the other hand a Global Positioning System (GPS) returns the quadcopter’s position in 

inertial frame. Also, the system actuator inputs are relative to body frame. However, and 

because most of quadcopter missions are handled in the fixed inertial frame, it is necessary to 

establish a conversion concept that translates rotations and translations from body to inertial 

frames and vice versa.  

As mentioned before, the attitude of the quadcopter is represented by Euler angles, 

with phi, theta and psi, defined by  𝝓 = [𝜑, 𝜃, 𝜓]𝑇   , being the rotations about the inertial x-

axis, y-axis and z-axis respectively. The position of the quadcopter in the inertial frame is 

represented by 𝒓 = [𝑥𝑖, 𝑦𝑖, 𝑧𝑖]
𝑇
, the angular velocities with respect to body frame 𝝂 =

[𝑝, 𝑞, 𝑟]𝑇 and 𝑽𝑩 = [𝑣𝑥
𝑏 , 𝑣𝑦

𝑏 , 𝑣𝑧
𝑏]

𝑇
 represents the linear velocity components in the body 

frame. 
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There are several ways to calculate the direction cosine matrix which establishes the 

conversion between these two frames. The rotation matrix from inertial frame to body frame 

using Euler angles can be seen in equation (2.1). Derivation process can be found here [30]. 

𝑅𝑖𝑛𝑒𝑟𝑡𝑖𝑎𝑙
𝑏𝑜𝑑𝑦

= [

cos(𝜃) cos(𝜓) cos(𝜃) sin(𝜓) − sin(𝜓)

sin(𝜑) sin(𝜃) cos(𝜓) − cos(𝜑) sin(𝜓) sin(𝜑) sin(𝜃) sin(𝜓) + cos(𝜑) cos(𝜓) sin(𝜑) cos(𝜃)

cos(𝜑) sin(𝜃) cos(𝜓) + sin(𝜑) sin(𝜓) cos(𝜑) sin(𝜃) sin(𝜓) − sin(𝜑) cos(𝜓) cos(𝜑) cos(𝜃)
] (2.1) 

The transformation from body frame to inertial frame can be obtained by inverting 

the matrix in equation (2.1), and because it is orthonormal matrix, its inverse is simply the 

transpose of it.   

𝑅𝑏𝑜𝑑𝑦
𝑖𝑛𝑒𝑟𝑡𝑖𝑎𝑙 = [

cos(𝜃) cos(𝜓) sin(𝜑) sin(𝜃) cos(𝜓) − cos(𝜑) sin(𝜓) cos(𝜑) sin(𝜃) cos(𝜓) + sin(𝜑) sin(𝜓)

cos(𝜃) sin(𝜓) sin(𝜑) sin(𝜃) sin(𝜓) + cos(𝜑) cos(𝜓) cos(𝜑) sin(𝜃) sin(𝜓) − sin(𝜑) cos(𝜓)

−sin(𝜓) sin(𝜑) cos(𝜃) cos(𝜑) cos(𝜃)
] (2.2) 

 

Therefore,  

  [
𝑥𝑖

𝑦𝑖

𝑧𝑖

] =  𝑅𝑏𝑜𝑑𝑦
𝑖𝑛𝑒𝑟𝑡𝑖𝑎𝑙  [

𝑥𝑏

𝑦𝑏

𝑧𝑏

] 

 

(2.3) 

 

Similarly, Euler rates are used to determine the attitude of the quadcopter in the 

inertial frame. Thus, the relation between Euler rates and body angular rates is calculated as 

follows [31]: 

 𝑻𝑖𝑛𝑒𝑟𝑡𝑖𝑎𝑙
𝑏𝑜𝑑𝑦

= [

1 0 − sin(𝜃)

0 cos(𝜑) sin(𝜑) cos(𝜃)

0 − sin(𝜑) cos(𝜑) cos(𝜃)
] (2.4) 

 As a result, the Euler rates in the inertial frame can be obtained as: 
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  𝝓̇ =  [

𝜑̇

𝜃̇
𝜓̇

] = 𝑇−1
𝑖𝑛𝑒𝑟𝑡𝑖𝑎𝑙
𝑏𝑜𝑑𝑦

[
𝑝
𝑞
𝑟
] (2.5) 

With,  

  𝑻−1
𝑖𝑛𝑒𝑟𝑡𝑖𝑎𝑙
𝑏𝑜𝑑𝑦

= 𝑻𝑏𝑜𝑑𝑦
𝑖𝑛𝑒𝑟𝑡𝑖𝑎𝑙 = [

1 tan(𝜃) sin(𝜑) tan(𝜃) cos(𝜑)

0 cos(𝜑) − sin(𝜑)

0 sin(𝜑) sec(𝜃) cos(𝜑) sec(𝜃)
] (2.6) 

2.4. DYNAMICAL MODEL  

The dynamical study studies the effect of the external forces applied on the 

quadcopter and how these forces affect its behavior (translational and rotational). It is worth 

of mentioning that the quadcopter is an under-actuated system which has 4 input parameters 

with 6 DOF, in other words, it has 6 outputs with only 4 inputs. The dynamical model of the 

quadcopter can be calculated from Newton’s second law where the summation of all external 

forces acting on the quadcopter equals to its mass multiplied by its linear acceleration. Also, 

the summation of all torques equals moment of inertia multiplied by angular acceleration. 

The translational and rotational models, given in the inertial frame, are represented as [32] 

[33] [34] [35] [36]:  

 

𝑥̈ =
1

𝑚
[(cos(𝜑) sin(𝜃) cos(𝜓) + sin(𝜑) sin(𝜓))𝑢1 − 𝑘𝑓𝑥𝑥̇] 

𝑦̈ =
1

𝑚
[(cos(𝜑) sin(𝜃) sin(𝜓) − sin(𝜑) cos(𝜓))𝑢1 − 𝑘𝑓𝑦𝑦̇] 

𝑧̈ =
1

𝑚
[(cos(𝜑) cos(𝜃))𝑢1 − 𝑘𝑓𝑧𝑧̇] − 𝑔 

(2.7) 

 

 

𝜑̈ =
1

𝐼𝑥𝑥
[𝜃̇𝜓̇(𝐼𝑦𝑦 − 𝐼𝑧𝑧) − 𝐽𝑡𝑝𝛺̅𝜃̇ + 𝑢2] 

(2.8) 
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𝜃̈ =
1

𝐼𝑦𝑦
[𝜑̇𝜓̇(𝐼𝑧𝑧 − 𝐼𝑥𝑥) + 𝐽𝑡𝑝𝛺̅𝜑̇ + 𝑢3] 

𝛹̈ =
1

𝐼𝑧𝑧
[𝜃̇𝜑̇(𝐼𝑥𝑥 − 𝐼𝑦𝑦) + 𝑢4] 

 With, m is the total mass of the quadcopter and g is the gravity force in the negative 

z-direction.[𝐼𝑥𝑥, 𝐼𝑦𝑦, 𝐼𝑧𝑧] are the moment of inertia about each axis. [𝑘𝑓𝑥, 𝑘𝑓𝑦, 𝑘𝑓𝑧] are drag 

constants resulted from aerodynamical effects. 𝐽𝑡𝑝 is the total rotational moment of inertia 

around the propeller axis and 𝛺̅ = −𝛺1 + 𝛺2 − 𝛺3 + 𝛺4 is the total gyroscopic torque 

affecting the quadcopter.  

The inputs of the quadcopter (𝑢1, 𝑢2, 𝑢3, 𝑢4) can be written as: 

 [

𝑇ℎ𝑟𝑜𝑡𝑡𝑙𝑒
𝑅𝑜𝑙𝑙𝑖𝑛𝑔
𝑃𝑖𝑡𝑐ℎ𝑖𝑛𝑔
𝑌𝑎𝑤𝑖𝑛𝑔

] =  [

𝑢1

𝑢2

𝑢3
𝑢4

] =  [

𝑏 𝑏 𝑏 𝑏
0 −𝑙𝑏 0 𝑙𝑏

−𝑙𝑏 0 𝑙𝑏 0
−𝑑 𝑑 −𝑑 𝑑

]

[
 
 
 
 
𝛺1

2

𝛺2
2

𝛺3
2

𝛺4
2]
 
 
 
 

 (2.9) 

Where, b is a thrust coefficient characterized by the physical properties of the 

propellers, l is the arm length, d is a drag constant and 𝛺𝑖 (for i = 1,2,3,4) is the rotor speed. 

Equation (2.9) is used to map the desired motors’ speeds with the desired control actions. 

Figure 2.5 shows the translational dynamics, shown in equation (2.7), and Figure 2.6 shows 

the rotational dynamics, shown in equation (2.8), implemented in Simulink.  
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Figure 2.5. Translational dynamics Simulink model 

 

Figure 2.6. Rotational dynamics Simulink model 

The parameters for the dynamical model are summarized in Table 2.1. Equations for 

these physical quantities are clearly presented in Appendix A (A.1). 
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Table 2.1. Physical parameters 

Parameter Description Value Unit 

𝒎 Mass of the quadcopter  2 𝑘𝑔 

𝑰𝒙𝒙 Moment of inertia about x-axis 0.0641 𝑘𝑔.𝑚2 

𝑰𝒚𝒚 Moment of inertia about y-axis 0.0641 𝑘𝑔.𝑚2 

𝑰𝒛𝒛 Moment of inertia about z-axis 0.1148 𝑘𝑔.𝑚2 

𝒈 Gravity force 9.81 𝑚. 𝑠2−1
 

𝒃 Thrust constant 1.02 × 10−6 𝑁.𝑚. 𝑠2 

𝒅 Drag constant 1.3 × 10−7 𝑁.𝑚−1 

𝒍 Quadcopter arm length 0.275 𝑚 

𝑱𝒕𝒑 Total rotational moment of inertia 

around the propeller axis 
104 × 10−6 𝑘𝑔.𝑚2 

𝒌𝒇𝒙 x-axis drag constant  0.00215 𝑁.𝑚−1 

𝒌𝒇𝒚 y-axis drag constant 0.00215 𝑁.𝑚−1 

𝒌𝒇𝒛 z-axis drag constant 0.00215 𝑁.𝑚−1 

2.5. LINEAR MODEL 

Linearizing the quadcopter equations of motion is crucial in order to design linear 

controllers like PID. Linearizing a system can help designers better predict a system’s state 

and control it using easy linear controller tools. The general form of a non-linear system can 

be written as: 

 𝑥̇ = 𝑓(𝑥, 𝑢) (2.10) 

Since the quadcopter is a highly non-linear system with strong coupling between 

states, it is very hard to find a predictable state solution at time “t”. Thus, linearization is 

made about an equilibrium point such that: 

 𝑓(𝑥̅, 𝑢̅) = 0 (2.11) 

Where 𝑥̅ is the state at equilibrium point and 𝑢̅ is the equilibrium input in which 

when applied, the system stays at equilibrium with all of its state derivatives equal to 0. The 
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equilibrium point chosen is the hover point (small oscillations model) which has the 

following characteristics: 

• 𝜑 ≈ 𝜃 ≈ 0 

• cos(𝜑) = cos(𝜃) = 1 

• sin(𝜑) = 𝜑 𝑎𝑛𝑑 sin(𝜃) = 𝜃 

• 𝝓̇ = 𝒗 

• [𝑢1, 𝑢2, 𝑢3, 𝑢4] = [𝑚𝑔, 0,0,0] 

Therefore, equations (2.7) and (2.8), which represent the non-linear dynamics of the 

quadcopter, are realized to become: 

 

𝑥̈ = 𝑔 [(𝜃cos (𝜓) +  𝜑sin (𝜓))] 

𝑦̈ = 𝑔 [(𝜃𝑠𝑖 𝑛(𝜓) − 𝜑cos (𝜓))] 

𝑧̈ =
1

𝑚
𝑢1 

(2.12) 

 

 

𝜑̈ =
𝑢2

𝐼𝑥𝑥
 

𝜃̈ =
𝑢3

𝐼𝑦𝑦
 

𝛹̈ =
𝑢4

𝐼𝑧𝑧
 

(2.13) 

2.6. CONTROLLERS 

The objective of this thesis is to form a cooperative flight between 3 quadcopters 

tracking a predefined trajectory without colliding. So first, and to achieve full autonomy, the 

control strategy is to design robust and independent altitude, attitude, and position PID-based 

controllers for each quadcopter and then implement a formation control algorithm to achieve 

swarming (see Figure 2.1). The detailed closed loop control diagram for a single quadcopter 

is shown in Figure 2.7.  
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Figure 2.7. Single quadcopter control system block diagram 

2.6.1. PID Controller 

The Proportional, Derivative and Integral (PID) controller is a linear-type controller 

used to stabilize a system with respect to a given state setpoint. This controller is used for its 

efficiency, simplicity, and ease of implementation in real-world applications. However, PID 

is limited in linear regions only and can withstand only very narrow range of unknown 

disturbances acting on the system. Consider a controlled variable (distance, velocity, angle or 

temperature etc.), state error (difference between desired state and actual state) defined in 

time domain 𝑒(𝑡) = 𝑥𝑑 − 𝑥𝑎𝑐𝑡𝑢𝑎𝑙, the PID controller output is calculated as: 

 𝑢(𝑡) = 𝐾𝑝𝑥
𝑒(𝑡) + 𝐾𝑖𝑥 ∫𝑒(𝑡)𝑑𝑡 + 𝐾𝑑𝑥

𝑑𝑒(𝑡)

𝑑𝑡
 (2.14) 

and in frequency domain (Laplace):  

 𝑈(𝑠) = 𝐾𝑝𝑥
𝐸(𝑠) +

𝐾𝑖𝑥

𝑠
𝐸(𝑠) + 𝑠𝐾𝑑𝑥

𝐸(𝑠) (2.15) 
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Figure 2.8. PID controller block diagram 

Where, [𝐾𝑝𝑥
, 𝐾𝑖𝑥 , 𝐾𝑑𝑥

] are positive the proportional, integral and derivative gains 

respectively. 𝑥 is the controlled variable. Changing these gains will result in completely 

different system behavior. Thus, these gains should be tuned according to the desired system 

behavior chosen by the designer. Tuning these gains in real systems is difficult and has no 

direct rule. However, the following guidelines for tuning these values can be beneficial most 

of the times: 

• Proportional action reacts proportionally with the error. Increasing 𝐾𝑝 speeds up the 

system response but decreases stability. 

• Integral action accumulates the error signal over time in order to remove the steady 

state error. Increasing 𝐾𝑖 removes steady state error but it does also increase the 

oscillations and decreases stability accordingly.  

• Derivative action damps the system when approaching the setpoint. Increasing 𝐾𝑑 

will surely increase the stability but it slows down the response.  

• Set 𝐾𝑖 = 𝐾𝑑 = 0 and keep increasing 𝐾𝑝 until the system starts oscillating. At that 

point, multiply 𝐾𝑝 by 0.6 and stick to that value. 

• Similarly, with fixed 𝐾𝑝, start increasing 𝐾𝑑 until the system starts oscillating, then 

divide 𝐾𝑑 by 2 and stick to that value.  
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• For 𝐾𝑖, and because it is very sensitive, increase it by a step of “0.001” each time and 

observe the behavior of the system. When it starts oscillating, divide 𝐾𝑖 by 2 and 

stick to that value. 

2.6.2. Position Controller 

The goal of the position controller is to track a predefined trajectory or reach a fixed 

coordinate in the inertial frame (𝑥𝑖 , 𝑦𝑖, 𝑧𝑖). To do this, this PID-based controller is required to 

transform the error signals into roll and pitch commands since translational movements are 

directly coupled with rotational movements (equation (2.12)). For example, to reach a 2D 

goal point located at [10,0] with fixed altitude and 0 degree heading angle (ψ = 0), the 

quadcopter should produce pitching torque only but if the goal point is at [0,10] the 

quadcopter should roll. This conversion function is held by “Euler Conversion” block which 

transforms the desired 2D accelerations with respect to inertial frame into desired attitude. 

From the linear model presented in equation ((2.12), the desired roll and pitch angles can be 

calculated as: 

 

 

𝜑𝑑 =
1

𝑔
[𝑥̈𝑑 sin(𝜓𝑑𝑒𝑠) − 𝑦̈𝑑 cos(𝜓𝑑𝑒𝑠)] 

𝜃𝑑 =
1

𝑔
[𝑥̈𝑑 cos(𝜓𝑑𝑒𝑠) + 𝑦̈𝑑 sin(𝜓𝑑𝑒𝑠)] 

(2.16) 

With 𝑥̈𝑑 and 𝑦̈𝑑 are the (X-Y) PID position controller output and are given by: 

 

𝑒𝑥 = 𝑥𝑑 − 𝑥𝑎𝑐𝑡𝑢𝑎𝑙 

𝑒𝑦 = 𝑦𝑑 − 𝑦𝑎𝑐𝑡𝑢𝑎𝑙 

(2.17) 

 𝑥̈𝑑 = 𝑘𝑝𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛
𝑒𝑥 + 𝑘𝑖𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛

∫𝑒𝑥 𝑑𝑡 + 𝑘𝑑𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛
𝑒̇𝑥   (2.18) 
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𝑦̈𝑑 = 𝑘𝑝𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛
𝑒𝑦 + 𝑘𝑖𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛

∫𝑒𝑦 𝑑𝑡 + 𝑘𝑑𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛
𝑒̇𝑦 

Similarly, the altitude controller needs to transform its desired vertical acceleration 

from inertial frame to body frame (using rotation matrix in equation ((2.1) in order to 

calculate the desired throttling input (𝑢1) in body frame. This is done using “Force 

Conversion (I – B)” block. From equation (2.7), the desired throttle input can be calculated 

as: 

 𝑢1
𝑑 =

𝑚

cos(𝜑) cos (𝜃)
𝑧̈𝑑 (2.19) 

With 𝑧̈𝑑 being the output of altitude PID controller and is given by equation (2.20). 

It is worth of mentioning that when the altitude error is 0, the controller should keep a bias of 

1g force in order to maintain hovering. The position controller implemented in Simulink is 

shown in Figure 2.9. 

 𝑧̈𝑑 = 𝑘𝑝𝑒𝑧 + 𝐾𝑖 ∫𝑒𝑧 𝑑𝑡 + 𝐾𝑑𝑒̇𝑧 + 𝑔 (2.20) 

Where, 𝑒𝑧 = 𝑧𝑑 − 𝑧𝑎𝑐𝑡𝑢𝑎𝑙 is the altitude error. 

 

Figure 2.9. Position controller Simulink model 
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2.6.3. Obstacle Avoidance 

For the safety of each quadcopter, an obstacle avoidance algorithm should be 

implemented. This algorithm will directly affect the high-level commands of the position 

controller (𝑥̈𝑑 , 𝑦̈𝑑). Figure 2.10 shows the position controller equipped with Obstacle 

Avoidance (OA) algorithm which is based on APF repulsive forces. 

 

Figure 2.10. Position controller with obstacle avoidance algorithm 

These repulsive forces are generated in a way to keep each quadcopter away from 

obstacles. Also, these forces are characterized by intense strength when the quadcopter is 

near any obstacle and have decreasing influence when it is far from obstacles. There are 

many forms of repulsive force equations, one possible repulsive force generated from an 

obstacle “i” is as [37]: 

 𝑈𝑟𝑒𝑝𝑖
(𝑞0) = {

1

2
𝑘𝑟𝑒𝑝 (

1

𝑑𝑜𝑏𝑠𝑡𝑖
(𝑞0)

−
1

𝑑0
)

2

 , 𝑖𝑓 𝑑𝑜𝑏𝑠𝑡𝑖
(𝑞0)  ≤  𝑑0

0                                                 , 𝑖𝑓 𝑑𝑜𝑏𝑠𝑡𝑖
(𝑞0)  >  𝑑0 

 (2.21) 

With 𝑑𝑜𝑏𝑠𝑡𝑖
(𝑞0) is the Euclidean distance between the UAV and obstacle “i”. 𝑘𝑟𝑒𝑝 is 

a scaling factor used to scale the repulsive force intensity according to designer’s choice and 

𝑑0 is a safe distance chosen by the designer, the repulsive force has no effect if the distance to 
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the obstacle is greater than this value. Figure 2.11 illustrates the effect of repulsion when a 

quadcopter’s 2D position varies from (𝑥, 𝑦) = (−20: 100,−20: 100) and obstacle positions 

of (20,20), (15,50) and (60,80). Repulsive forces can be simply by considering the 

quadcopter as a ball rolling in space. When this quadcopter reaches an obstacle, the slope of 

the environment will prevent the ball from approaching the obstacle. It can be seen clearly 

that when a quadcopter approaches an obstacle, the repulsive force goes very intense, while it 

has completely no effect when the quadcopter is far away.  

 

Figure 2.11. Repulsive field 

Hence, the gradient of this repulsive field will attract the quadcopter towards the 

obstacle. So, to repel the quadcopter from obstacle, it is crucial to apply the negative gradient 

upon the robot. The negative gradient of this repulsive field, 𝐹𝑟𝑒𝑝𝑖
(𝑞0) =  −∇𝑈𝑟𝑒𝑝𝑖

(𝑞0), is 

given by: 

 𝐹𝑟𝑒𝑝𝑖
(𝑞0) = {

𝑘𝑟𝑒𝑝 (
1

𝑑𝑜𝑏𝑠𝑡𝑖
(𝑞0)

−
1

𝑑0
)

1

𝑑𝑜𝑏𝑠𝑡𝑖
2 (𝑞0)

𝑒̂𝑖 , 𝑖𝑓 𝑑𝑜𝑏𝑠𝑡𝑖
(𝑞0)  ≤  𝑑0

0                                                               , 𝑖𝑓 𝑑𝑜𝑏𝑠𝑡𝑖
(𝑞0)  >  𝑑0 

  (2.22) 
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Where, 𝑒̂𝑖 =
𝜕𝑑𝑜𝑏𝑠𝑡𝑖

(𝑞0)

𝜕(𝑞0)
 is said to be a unit vector to indicate the direction of the 

repulsive force. This repulsive force vector can be considered as an external force acting on 

the quadcopter, thus it can be considered proportional to the acceleration of the quadcopter in 

its body frame, the desired acceleration in the inertial frame can then be calculated as: 

 

𝑥̈𝑑
𝑅𝑒𝑝 = 𝐹𝑟𝑒𝑝𝑥

sin(𝜓𝑑) − 𝐹𝑟𝑒𝑝𝑦
cos (𝜓𝑑) 

𝑦̈𝑑
𝑅𝑒𝑝 = 𝐹𝑟𝑒𝑝𝑥

cos(𝜓𝑑) + 𝐹𝑟𝑒𝑝𝑦
sin (𝜓𝑑) 

(2.23) 

And therefore, the total acceleration acting on the quadcopter is (see Figure 2.10): 

 

𝑥̈𝑑 = 𝑥̈𝑑
𝑃𝐼𝐷 + 𝑥̈𝑑

𝑅𝑒𝑝 

𝑦̈𝑑 = 𝑦̈𝑑
𝑃𝐼𝐷 + 𝑦̈𝑑

𝑅𝑒𝑝 

(2.24) 

  From equation (2.24), it can be seen that the position PID controller is acting as an 

attractive force guiding the quadcopter towards the goal position, and the APF repulsive 

forces guide the quadcopter away from obstacles. The total desired acceleration determines 

the required roll and pitch angles.  

2.6.4. Attitude Controller 

Attitude controller is responsible to track the desired (𝜑𝑑, 𝜃𝑑 , 𝜓𝑑) generated from 

the position controller in order to achieve the desired translation in space (inertial frame). 

Since the attitude or rotational system is responsible for all translational and rotational 

movements, its stability is crucial to ensure the whole system’s stability. From equation 

((2.13), and from their Laplace transform, it can be seen that all 3 angular acceleration linear 

dynamics are marginally stable with 2 poles at the (0,0) of the s-plane.  

 
𝜑(𝑠)

𝑈2(𝑠)
=

1

𝑠2𝐼𝑥𝑥
 (2.25) 
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𝜃(𝑠)

𝑈2(𝑠)
=

1

𝑠2𝐼𝑦𝑦
 

𝜓(𝑠)

𝑈2(𝑠)
=

1

𝑠2𝐼𝑧𝑧
 

From equation (2.25), the root locus plot can be illustrated as Figure 2.12. Root 

locus plot varies a proportional gain (K) from 0 to infinity and shows all probabilities of 

closed-loop poles. However, using only a proportional gain will not stabilize these systems 

because this type of controllers does not shift the location of poles. Instead, it is required to 

use a derivative controller (D-controller) to increase the stability of the system by adding a 

“zero” at the numerator of each system and a very small (I-controller) action to remove 

steady state errors. For this project, tuning PID gains was done experimentally until achieving 

non-oscillatory response with acceptable rise time.  

 

Figure 2.12. Root locus plot for roll, pitch, and yaw systems 

Similar to translational system, from equations (2.13) and (2.4), the desired rolling, 

pitching and yawing torques in the body frame can be calculated as: 
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 [

𝑢2 
𝑢3

𝑢4

] = [

𝐼𝑥𝑥 0 0
0 𝐼𝑦𝑦 0

0 0  𝐼𝑧𝑧

]𝑻𝑖𝑛𝑒𝑟𝑡𝑖𝑎𝑙
𝑏𝑜𝑑𝑦

[

𝜑̈𝑑

𝜃̈𝑑

𝛹̈𝑑

] (2.26) 

With the desired angular accelerations being the output of the attitude PID 

controllers and are calculated using equations (2.27) and (2.28).  

 

Figure 2.13 shows the attitude PID controller with “torque conversion” block 

implemented in Simulink. 

 

Figure 2.13. Attitude controller implemented in Simulink 

 

𝑒𝜑 = 𝜑𝑑 − 𝜑𝑎𝑐𝑡𝑢𝑎𝑙 

𝑒𝜃 = 𝜃𝑑 − 𝜃𝑎𝑐𝑡𝑢𝑎𝑙 

𝑒𝜓 = 𝜓𝑑 − 𝜓𝑎𝑐𝑡𝑢𝑎𝑙 

(2.27) 

 [

𝜑̈𝑑

𝜃̈𝑑

𝛹̈𝑑

] = 𝑘𝑝𝑎𝑛𝑔𝑙𝑒
[

𝑒𝜑

𝑒𝜃

𝑒𝜓

] + 𝑘𝑖𝑎𝑛𝑔𝑙𝑒

[
 
 
 
 
 ∫ 𝑒𝜑𝑑𝑡

∫𝑒𝜃 𝑑𝑡

∫𝑒𝜓 𝑑𝑡
]
 
 
 
 
 

+ 𝑘𝑑𝑎𝑛𝑔𝑙𝑒
[

𝑒𝜑

𝑒𝜃̇

𝑒𝜓̇

̇

] (2.28) 
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The responses for roll, pitch and yaw systems subject to step input are shown in 

Figure 2.14 and Figure 2.15. The tuned PID parameters were [𝑘𝑝𝑎𝑛𝑔𝑙𝑒
, 𝑘𝑖𝑎𝑛𝑔𝑙𝑒

, 𝑘𝑑𝑎𝑛𝑔𝑙𝑒
] =

[5.3, 0.8, 28]. It is clear that these systems are stable with rise time of approximately 0.05 

seconds and 0% overshoot with very small and acceptable steady state error. 

 

Figure 2.14. Roll and pitch response to step angle of 25 degrees 

 

Figure 2.15. Yaw response to step angle of 90 degrees 

2.6.5. Formation Controller 

After designing independent controllers for each quadcopter, a formation algorithm, 

which keeps the formation of the swarm in shape, is presented. From Figure 2.16, (𝜆𝑥 𝑜𝑟 Δ𝑥) 
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and (𝜆𝑦 𝑜𝑟 Δ𝑦) represent the x and y components of the desired separation distance 𝜆 in the 

leader’s body frame and can be calculated as: 

 

Δ𝑥 = −(𝑥𝐿 − 𝑥𝐹) cos(𝜓𝐿) − (𝑦𝐿 − 𝑦𝐹) sin(𝜓𝐿) 

Δ𝑦 = (𝑥𝐿 − 𝑥𝐹) sin(𝜓𝐿) − (𝑦𝐿 − 𝑦𝐹) cos(𝜓𝐿) 
(2.29) 

 

Figure 2.16. Formation in 2D 

Where (𝑥𝐿 , 𝑦𝐿) and (𝑥𝐹, 𝑦𝐹) represent the leader’s and followers’ position in inertial 

frame respectively. From equation (2.29), the desired followers’ position in inertial frame can 

be calculated as: 

 

𝑥𝐹 = 𝑥𝐿 + Δ𝑥 cos(𝜓𝐿) − Δ𝑦 sin(𝜓𝐿) 

𝑦𝐹 = 𝑦𝐿 + Δ𝑥 sin(𝜓𝐿) + Δ𝑦 cos(𝜓𝐿) 
(2.30) 

 

Figure 2.17. L-F formation control Simulink model 
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The simulation was set to 200 seconds. Position initial conditions are set to [0,0,0] 

for leader quadcopter and [−5,0,0], [5,0,0] for followers 1 and 2 respectively. The trajectory 

generator was set to produce the following setpoints: 

 𝒓𝒅 = {

𝑥𝑑 = 0,   𝑦𝑑 = 0,   𝑧𝑑 = 10,                  𝑖𝑓 𝑡 < 30 
𝑥𝑑 = 40,   𝑦𝑑 = 0,   𝑧𝑑 = 10,   𝑖𝑓 30 < 𝑡 < 120 
𝑥𝑑 = 80,   𝑦𝑑 = 80,   𝑧𝑑 = 10,           𝑖𝑓 𝑡 > 120 

 (2.31) 

 Since these quadcopters are responsible for flying over forest regions, the required 

tracking speed is chosen to be low (≤ 5
𝑚

𝑠
). So, the best tuned PID position constants, 

repulsive force constant, and distance of influence 𝑑0 for obstacle avoidance are found to be: 

Table 2.2. PID position constants 

 
Leader Followers 

𝒌𝒑 𝒌𝒊 𝒌𝒅 𝒌𝒑 𝒌𝒊 𝒌𝒅 

5 0 20 15 0 20 

𝒌𝒓𝒆𝒑 
20 

𝒅𝟎 
2 𝑚 

 

This difference between leader’s and followers’ 𝑘𝑝 gains has been established by 

trial and error. It is required that the followers follow the leader instantaneously when 

leader’s position changes quickly from one point to another. For this reason, tracking speed 

for followers should be at least 2 times the tracking speed of leader.  
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Figure 2.18. 3D and 2D path-tracking without obstacles 

 

Figure 2.19. X and Y leader's position with respect to time 

From Figure 2.19, it can be seen that the position tracking speed is approximately 

4
𝑚

𝑠
 which is in the limit of the desired speed for this thesis. Other scenarios with an obstacle 

located at (10,0,10), (10,5,10), and (10,−5,10), and a goal location at (30,0,10) are 

presented in Figure 2.20.  
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Figure 2.20. 2D Position tracking with obstacle avoidance 

As a result, it can be seen that every quadcopter in the team can avoid obstacles 

interrupting its way. However, after multiple experiments, the repulsive forces generated 

from APF did not act directly and resulting in an instantaneous crash. Thus, solving this 

required to give the repulsive forces more weight than attractive ones using complementary 

filter, and therefore equation (2.24) can be updated to: 

 

𝑥̈𝑑 =  𝑐 𝑥̈𝑑
𝑃𝐼𝐷 + (1 − 𝑐) 𝑥̈𝑑

𝑅𝑒𝑝 

𝑦̈𝑑 =  𝑐 𝑦̈𝑑
𝑃𝐼𝐷 + (1 − 𝑐) 𝑦̈𝑑

𝑅𝑒𝑝 

(2.32) 

Where c is scaling factor weighing one quantity over other. If 𝑐 < 0.5, repulsive 

accelerations have more weight than attractive and it was tuned to 𝑐 = 0.3 in this thesis.  
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2.7. CONCLUSION 

This chapter presented the modeling, simulation, and control of a quadcopter. A 

PID-based attitude, altitude, and position controllers with APF repulsive forces as obstacle 

avoidance controller were proposed. Then, a formation controller is used to coordinate 

between a leader quadcopter and 2 followers. The simulation gave satisfactory results when 

using L-F scheme, however, this method lacks independence (i.e., in case of leader’s failure, 

followers will have no position setpoints). On the other hand, the obstacle avoidance 

algorithm, APF repulsive forces, was able to guide the quadcopters away from obstacles 

efficiently. However, a main drawback of APF repulsive fields is the necessity of obstacles 

location pre-knowledge.  
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CHAPTER 3. PROJECT SPECIFICATIONS 

3.1. INTRODUCTION 

In This chapter, all quadcopters’ components used in this thesis and their 

specifications will be presented. In addition, the functionality, role, and the reason of 

choosing of each component will be presented. Additionally, for the part of fire detection, 

hardware and software requirements will be demonstrated. Figure 3.1 illustrates the main 

parts used in this project. The system components can be divided into 4 main parts: 

quadcopter, vision, communication and central PC.  

 

Figure 3.1. Project main parts 
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3.2. SYSTEM AND EQUIPMENT 

The proposed swarm system is composed of three quadcopters: one leader and two 

followers. The hardware equipment that used to achieve this swarm system is presented in 

Table 3.1. 

Table 3.1. Hardware equipment used in the system 

Component Quantity 

Quadcopter frame 
3 

Brushless DC motor 
12 

Propeller 
12 

Electronic Speed Controller 
12 

Flight controller with Inertial Measurement 

Unit 

3 

Power Distribution Board 
3 

Battery 
3 

GPS sensor 
2 

Onboard computer 
1 

Onboard camera sensor 
1 

Gimbal 
1 

 

In this work, three different quadcopters will be selected to maintain a predefined 

swarm shape during flight. The first quadcopter (the leader) is composed of MULTIWII 
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flight controller, Arduino Mega microcontroller, and sensors fixed on the frame. The first 

follower quadcopter uses NAZA-M V2 as flight controller, in addition to a different type of 

quadcopter frame. The second follower quadcopter is a Parrot AR Drone with 1280×720 HD 

camera that supports live stream and image capturing. This quadcopter will be controlled by 

MATLAB software on personal computer (PC). 

3.3. MULTIWII FLIGHT CONTROLLER 

The MULTIWII SE V2.0 flight controller, shown in Figure 3.2, is an open-source 

circuit board developed by Oscar Liang in 2013. The flight controller aims to control the 

RPM of motors of any multi-rotor aircraft, in response to inputs such as desired altitude, and 

desired position. Moreover, these inputs will be transformed to 6 degrees of freedom needed 

to control any quadrotor. MULTIWII is based on Arduino board and uses gyro / 

accelerometer sensors to sense quantities relative to quadcopter body frame. Moreover, this 

controller is totally open source and very flexible system. Table 3.2 presents the 

specifications of MULTIWII SE V2.0. Moreover, this flight controller supports scalable 

options with full programmability. The selection of MULTIWII was according to its ability to 

tackle tasks assigned to it, and in accordance to market availability and low-cost benefits. 

 

Figure 3.2. MULTIWII SE V2.0 
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Table 3.2. MULTIWII SE V2.0 features and specifications 

Features/Specifications Description 

Motor output Up to 8-axis 

Servos output 2 for PITCH and ROLL gimbal system 

Dimension 40x12x40mm 

Weight 9.6g 

Serial cables FTDI/UART TTL 

Voltage regulator 3.3V and 5V LDO 

Microcontroller ATMega 328P 

MPU6050 

Gyro Full Scale Range: 

± 250 ± 500 ± 1000 ± 2000 

Gyro Sensitivity: 

131 / 65.5 / 32.8 / 16.4 

Gyro Rate Noise: 

0.005 / 0.005 / 0.005 / 0.005 

Accel Full Scale Range: 

±2 ±4 ±8 ±16 

Accel Sensitivity: 

16384 / 8192 / 4096 / 2048 

HMC5883L 

3-axis digital magnetometer 

Full scale range: ± 8 gauss 

Sensitivity: 230~ 1370 LSb/gauss 

Cross-Axis Sensitivity: ± 0.2 %FS/gauss 

BMP085 (barometric pressure sensor) 
Pressure range: 300~1100 hPa 

Absolute accuracy pressure: ± 2.5 hPa 

Display 
I2C LCD/OLED or CRIUS I2c-GPS 

NAV board 

The block diagram presented by Figure 3.3 shows how MULTIWII and Arduino 

Mega communicate with each other. The autonomous tasks are handled by a high-level 

controller (Arduino Mega) that is responsible for position and altitude control and 

communicates with the low-level controller (MULTIWII) that is responsible for attitude 

control. These two communicate with each other serially through Tx and Rx pins. Arduino 

Mega takes data form MULTIWII like IMU and GPS data, etc. then, provides control 

commands based on a given navigation algorithm in the form of PWM signals for 

MULTIWII. 
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Figure 3.3. Data exchange between MULTIWII and Arduino mega 

3.4. NAZA FLIGHT CONTROLLER 

NAZA-M V2 shown in Figure 3.4 is a closed source powerful flight controller. This 

flight controller is selected as a second flight controller according its market availability and 

its specifications, shown in Table 3.3, that meets the tasks assigned to it. NAZA-M V2 

receives the flight commands from a higher-level position controller presented by Arduino 

Mega. 

 

Figure 3.4. NAZA_M V2 flight controller 

Table 3.3. NAZA-M V2 Specifications 

Specifications Value 

Weight 95g 
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Dimensions 45.5 × 32.5 × 18.5𝑚𝑚 

Power Consumption 
Max: 1.5W (0.3A@5V) 

Normal: 0.6W (0.12A@5V) 

Working Voltage Range 

MC:4.8V~5.5V 

VU input: 7.4V~16.0V 

Output: 3A@5V 

Max Yaw Angular Velocity 200 ◦/s 

Max Tilt Angle 35◦ 

The block diagram presented in Figure 3.5 shows NAZA-M V2 receiving the 

position commands from a higher-level position controller. The autonomous tasks are 

handled by the high-level controller (Arduino Mega) that is responsible for position and 

altitude control, and communicates via PWM signals with the low-level controller (NAZA-M 

V2) that is responsible for the attitude control. 

 

Figure 3.5. Data exchange between NAZA-M V2 and Arduino mega 

3.5. PARROT AR DRONE 

The AR Drone shown in Figure 3.6 is a quadcopter which combines numerous of 

the new and advanced technologies in radio-controlled flight that receives position 

information via WIFI. AR Drone can be controlled through MATLAB Simulink via 

computer. MATLAB expresses the whole control system for AR Drone (high- and low-level 
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control systems), and through flight commands of MATLAB, AR Drone moves. AR Drone is 

selected based on its specifications presented by Table 3.4 and its market availability. 

 

Figure 3.6. Parrot AR Drone 

 Table 3.4. AR Drone specifications 

 

 

 

 

 

 

 

Specifications Value 

Dimensions  23x23x5 inches 

weight 4.62 pounds 

Battery  Lithium Metal Batteries 

RAM 1024 MB 

Wireless communication technologies WIFI 

Camera  720 HD camera records video at 30 fps  

Processor 32-bit ARM Cortex A8 1GHz 
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3.6. QUADCOPTER FRAMES 

All components of the first quadcopter (using MULTIWII) will be fixed together on 

a “Turnigy Heavy Aerial Lift” frame shown in Figure 3.7 (type A). On the other hand, all 

components of the NAZA-M V2 controlled quadcopter will be fixed together on “DJI F450” 

frame presented in Figure 3.7 (type B). These two frames are selected based on their 

specifications, shown in Table 3.5, which are low prices, and market availability. 

 

Figure 3.7. Quadcopter frames chosen for the project 

Table 3.5. Turnigy Heavy Aerial Lift and DJI F450 Specifications 

 Turnigy Heavy Aerial Lift DJI F450 

Specifications Value 

Weight 614 g 282 g 

Width 585mm 450 mm 

Stator Size 28 x 35 mm 23 x 12 mm 
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3.7. BRUSHLESS DC MOTORS 

A Brushless DC motor (BLDC) transforms electrical energy into mechanical 

rotational energy. The BLDC is a good choice for quadcopter applications because of its 

efficiency that rises up to 90% and its long operational life. In addition, its large speed range 

that vary according to the Pulse Width Modulation (PWM) signals that is also an appealing 

feature. 

The brushless motors selected, are the PROPDRIVE V2 2826 1200KV (type A) for 

the leader and A2212/13T (type B) for the follower, shown in Figure 3.8. The motors 

selection was based on their specifications presented by Table 3.6, market availability, and 

low-cost benefits. 

 

Figure 3.8. PROPDRIVEV2 and A2212/13T motors 

Table 3.6. BLDC motors specifications 

 PROPDRIVE V2 2826 A2212/13T 

Specification Value 

Model 
PROPDRIVE v2 2826 

1200kv 
A2212 1400KV 

KV (
𝑅𝑃𝑀

𝑉
) ratio 1200 KV 1000KV 

Max current 15 A 20 A 

ESC 20~30 A 20~30A 
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Cell Count 3s~4s Lipoly 2s~4s 

Pole Count 12 14 

Max Power 
215W @12v (3S) 

/286W@15v(4s) 
220/3 W 

Shaft 3.175mm 3.17 mm 

Weight 59 g 62 g 

3.8. PROPELLERS 

The Propellers are used to convert the rotational speed generated by the BLDC into 

a lift force. Propellers are chosen by their pitch angle that can describe the travel distance of 

one propellers rotation, and their length that are the diameter of a circle the propellers makes 

when it is spinning. The Propellers selected (shown in Figure 3.9Figure 3.9) have 10 inches 

as length and 4.5 degrees as pitch angle, two CW rotation, and two CCW rotating propellers. 

This selection is according to market availability and project needs. 

 

Figure 3.9. 1045 Propellers 

3.9. ELECTRONIC SPEED CONTROLLER (ESC) 

The ESC is an electronic device used to control the speed of a BLDC motor by 

activating and disactivating the appropriate MOSFETS. The ESCs used in this thesis, shown 
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in Figure 3.10, are characterized by their maximum current rating (A) and their duty cycle 

and frequency range. ECSs (type A) are used into the leader, and the others (type B) are used 

into the first follower. ECSs should be selected upon the maximum current needed by motor 

and other specifications mentioned in Table 3.7. 

 

Figure 3.10. ECSs chosen for the project 

Table 3.7. ESCs Specifications 

 AFRO ESC 30A Ready To Fly 30A 

Specifications Value 

Current 30 A (continuous) ~25A (continuous) 

Voltage Range 2s~4s (1s = 4.2V) 3s~4s 

Frequency Up to 1 KHZ Up to 600 Hz 

weight 26.5g 28g (with bullets) 

3.10. BATTERY 

Leader (used MULTIWII) and follower 1 (used NAZA-M) quadcopters are 

connected to a DC power source presented by a Lithium Polymer (LiPo) “HRB 5000mAh 
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11.1v 50C” battery shown in Figure 3.11 (Type A). It can be calculated using the following 

formula:  

𝑓𝑙𝑖𝑔ℎ𝑡 𝑡𝑖𝑚𝑒 (𝑖𝑛 𝑚𝑖𝑛𝑢𝑡𝑒𝑠) =
𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 (𝐴ℎ) × 0.8

𝑇𝑜𝑡𝑎𝑙 𝑙𝑜𝑎𝑑 (𝐴)
× 60 (3.1) 

Where the battery capacity is expressed in Ampere hours (Ah), 0.8 is the efficiency of 

the LiPo battery (80%) and the total load consumption is expressed in Amperes (A) which 

can be obtained by adding all current consumption of each component and is approximated to 

be 60A. This total load cannot be checked during flight, however it is assumed to be constant. 

For this project, a 5000 mAh LiPo battery was chosen. In the other hand. AR Drone is 

connected to another type of battery, as shown in Figure 3.11 (Type B), called “Parrot AR 

Drone 2.0 1500mAh High Density”. These batteries have many advantages such as quick 

recharging, high efficiency, etc. that are selected referring to them, and to its specifications 

presented in Table 3.8. 

 

Figure 3.11. Batteries chosen for the project 



66 

 

Table 3.8. HRB and AR Drone battery specifications 

 HRB 5000mAh 11.1v 

50C 

Parrot AR Drone 2.0 

1500mAh  

Specifications Value 

Voltage 11.1V 11.1V 

Capacity 5000 mAh 1500mAh 

Weight 376g 100g 

Battery Cell Type Lithium Polymer Lithium Polymer 

Dimensions (𝐿 × 𝑊 × 𝐻)  155 × 48 × 24𝑚𝑚 104.1 × 68.5 × 25.4𝑚𝑚 

Balancer Connector Type JST-XHR JST-XH 

3.11. GPS SENSOR 

The Global Positioning System (GPS), shown in Figure 3.12, is used to determine 

the geographical location of the quadcopter. The GPS is a device that communicates with 30+ 

navigation satellites around the Earth. The satellites’ locations are known through the 

continuous signals sent out of them. Then, GPS receives these signals and calculates its 

distance from several GPS satellites. Hence, the GPS receiver can figure out its latitude and 

longitude positions. The GPS selected is the Ublox Neo 6m based on market availability and 

its specifications are shown in Table 3.9. 

 

Figure 3.12. Ublox Neo 6m GPS 
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Table 3.9. Ublox Neo 6m GPS specifications 

Specification Value 

Supply 2.7-3.6V 

interface UART/USB/SPI/DDC(I2C compliant) 

Navigation Up to 5 Hz 

Accuracy 
Position: 2.5 m CEP 
SBAS: 2.0 m CEP 

Tracking Sensitivity 161 dBm 

3.12. POWER DISTRIBUTION BOARD 

The Power distribution board or panelboard shown in Figure 3.13 (Type A), is used 

in the leader to distribute the voltage over the 4 motors, plus, the whole system fixed on the 

quadcopter. In the other hand, type B shown in Figure 3.13 is built-in power distribution 

board in frame “DJI F450” that used for the follower 1. Power distribution boards (type A) 

are selected based on their specifications presented in Table 3.10. 

 

Figure 3.13. Power distribution board 

Table 3.10. Power distribution board (type A) Specifications 

Specifications Value 

Current 4 × 20𝐴 (MAX) 

Power input XT60 with 12AWG wire 
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Motor output 4 ×  3.5𝑚𝑚 Female bullet plug 

Aux output 2 pin JST compatible 

Weight 27.3g (including wires) 

3.13. ARDUINO MEGA 2560 

The Arduino Mega 2560 is a development board based on ATmega2560 

microcontroller. The main role of Arduino mega in this project is to tackle the high-level 

control such as position and altitude control for the leader and follower 1. In the other hand, 

AR Drone will be used as navigation controller. 

3.14. GIMBAL  

The camera gimbal is a device used to control the movement smoothly without 

producing vibrations. It is mounted on the quadcopter to provide smooth video output from 

the camera (vibration-free) and is driven by 3 brushless motors to stabilize the camera’s 

position in 3 directions (roll, pitch and yaw). The selected gimbal is shown in Figure 3.14 and 

has the specs listed in Table 3.11. 

 

Figure 3.14. Gidy camera gimbal 
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Table 3.11. Gidy camera gimbal specs 

Parameter Value 

Pitch -90o to+30o 

Roll 0o or 90o (horizontally and vertically) 

Stabilization  3 axes (pitch, roll, yaw) 

Weight 158.757 g 

  

Now, going specifically to the fire detection implememtation requirements, it needs the 

following devices to be implemented and completed.  

3.15. VISION 

The appropriate selection of vision system, or camera is very crucial for NN 

application. There are several camera factors that will affect the performance of fire detection 

algorithm which are frame rate, camera resolution, field of view, and ISO range. Fps drop 

depends on the PC used, filters applied, and number of objects detected in a single frame. The 

camera selected for this project is built-in with the gimbal device shown in Figure 3.14 and 

its specs are listed in Table 3.12. 

Table 3.12. Camera specs 

Parameter 
Value 

Sensor 
1/2.3’’ (CMOS), 12.35 MP 

ISO range 
Video: 100-3200 

Photo: 100-1600 

Image size  
4K – 4000×3000 

 

 

 

Video recording modes 

C4K: 4096×2160 24p 

4K: 3840×2160 24/25/30p 

2.7K: 2720x1530 24/25/30p 

FHD: 1920×1080 24/25/30/48/50/60/96p 
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HD: 1280×720 24/25/30/48/50/60/120p 

3.16. COMMUNICATION  

The communication system includes the video transmitting and receiving units. This 

unit is responsible to transmit live video streams from quadcopter and receive them on the 

central PC in order for these frames to be processed. These devices are chosen according to 

their Radio Frequency (RF) bandwidth, power consumption, sending rate, and sending range. 

For this project, it is desired to have a video-stream transmission within 1.5 to 2 km. Thus, 

the selected communication system is shown in Figure 3.15 and its specs are listed in Table 

3.13. 

 

Figure 3.15. AKK video transmission system 

Table 3.13. Communication system specs 

Parameter  Value 

Sending range 2000 m and ≥3000 m in open areas 

Number of channels 40 covering bands A, b, E, F, r 

Operating voltage 7-16V 

Power consumption 0.22/0.65A: non-transmitting/transmitting 

@12V 

Video format NTSC/PAL 

Weight  85 g 
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3.17. CENTRAL PC 

This is the most important component in this thesis. The central PC is responsible 

for all fire detection process. It will receive raw images from the quadcopter flying over a 

forest region, then it will process these incoming frames and detect fires using Artificial 

Neural Networks (ANN). Fire detection was done on a central computer since ANN are 

power-greedy and will noticeably reduce the flight time if calculated onboard. Choosing the 

right PC for this application is a bit expensive.  

3.17.1. Hardware Requirements  

The chosen PC is based on CPU not GPU and all fire detection scripts will be run 

by, which causes significant frames per second (fps) drop when detecting fires in frame. GPU 

has very small fps drop when running fire detection scripts on, since it can handle more 

graphical information than CPU but it is very expensive. However, CPU-based PC was 

selected upon its availability, cheapness and is shown in Figure 3.16 with its specs listed in 

Table 3.14. 

 

Figure 3.16. HP laptop 15-da1xx 
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Table 3.14. HP laptop specs 

Parameter Value 

Processor Intel® core™ i5-8265U 

Ram 8 GB 

System type 64-bit Operating System (OS) 

Windows 10 

As mentioned before, the training will be held over “Google Collabs”, which is a 

python development environment that runs in any browser, because it offers a GPU rather 

than CPU which is way better to train a network over. Training a NN over a CPU would take 

approximately 4-5 times more time than training it over a GPU, according to Buber et al. 

[38].  “Google Collabs” uses the hardware specs listed in Table 3.15. 

Table 3.15. Google Collabs hardware specs 

Parameter 
Value 

GPU 
Nividia k80/T4 

GPU memory 
12GB/16GB 

GPU memory clock 
0.82GHz/1.59GHz 

Performance 
4.1 TFlops/8.1 TFlops 

Number of CPU cores 
2 

Available RAM 
12GB (upgradeable to 26.75GB) 

Disk space 
358GB 

3.17.2. Software Requirements 

This section will show the necessary software applications to be installed on the 

central laptop in order to setup and run all required files to detect fires in video frames. There 

are mainly 2 required software applications that must be installed (all installation procedure is 

shown in Appendix section). 
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3.17.2.1. Python 

Python is a high-level and general-purpose programming language which is getting 

more popular over time. It is widely used in Machine Learning (ML) applications because it 

offers very easy and ready-to-use libraries. It includes a very famous computer vision library 

(OpenCV) that provides a very large image processing functions. For this project, the 

required libraries to run the fire detection code are: “OpenCV” and “Numpy”. 

 

Figure 3.17. Python logo 

3.17.2.2. LabelImg  

LabelImg is an interactive image annotation tool written in python. It will be used to 

label fire regions in the training data set (1000 images). LabelImg is one of many image 

annotations tools but it is selected for its simplicity and “YOLOv3” network friendly. The 

procedure of using this software application and setting up training set will be explained in 

chapter 4. 

 

Figure 3.18. LabelImg logo 
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3.18. CONCLUSION 

As we mentioned before, the equipment used in our project is defined by three quadcopters, the 

leader use MULTIWII and two followers which are AR drone and quadcopter that used NAZA-M. All 

data, role, and specifications for the equipment was presented in this chapter. Additionally, all 

hardware and software requirements to build an early fire detection system using NN were 

shown. Python scripts for detecting fires will be handled by a CPU-based PC but training NN 

will be held by a GPU-based hardware offered from “Google Collabs”. 

  



75 

 

CHAPTER 4. PROJECT DESIGN 

4.1. INTRODUCTION 

In this chapter, hardware implementation process of 3 quadcopters flying in formation having 

different platforms will be presented. The implementation phase is divided into 3 

subcategories; unit testing, integration testing and project validation. Unit testing focuses on 

testing each individual component to ensure its functionality. Integration testing aims to 

combine multiple platforms and test their functionality together. In addition, a Kalman Filter 

(KF) will be implemented to better estimate position. Also, the procedure to train a neural 

network using YoloV3 models to detect forest fires will be demonstrated. A brief 

introduction for Neural Networks (NN) will be presented and the necessary parameters that 

have to be tuned during training will be highlighted. 

4.2. METHODOLOGY 

In order to coordinate between 3 quadcopters (1 leader and 2 followers), the leader 

is responsible for sending the high-level commands along with its position. These commands 

are sent from a RC controller held by the operator and received by the leader which is valid 

up to 2 Km of direct distance. Communication between the leader and the followers is 

obtained by radio frequency modules (2.4 GHz). The high-level commands as states can be 

summarized by the state diagram shown below.  

  Taking off: All quadcopters will take off to approximately 2 meters above ground.  

• Ascending/Descending: All quadcopters will ascend/descend to a specific altitude 

determined by the leader.  
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• Position holding: All quadcopters will hold their current position.  

• Navigating: Followers will follow the leader with a specified separation distance. 

 

Figure 4.1. Autonomous State Diagram 

4.3. NAZA CONTROLLER-BASED QUADCOPTER (LEADER) 

The Naza controller, as mentioned earlier, is a standalone autopilot system 

consisting of several features. The quadcopter which is equipped with the Naza controller is 

configured as the leader. The leader is responsible for sending the high order commands (via 

radio frequency module: nrf24) received from a ground operator via a remote control. To 

access these signals from the RC operator, an Arduino uno is mounted over the Naza to 

handle the high order commands; reading and decoding RC and GPS signals, sending the 

leader’s position and commands to the followers and calculate the desired attitude in order for 

the leader to follow the specified waypoints. Figure 4.2 shows the physical connections 

between Arduino uno and Naza flight controller and Figure 4.3 illustrates the circuit diagram. 

The Arduino will control the Naza via the TX inputs (as if it is the RC transmitter). Naza 

flight controller has several features that can help during flight, and are summarized in the 

below table [39].  
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Table 4.1. Naza Features 

Feature Description Command 

Automatic takeoff The drone will takeoff 

and hold its altitude at 

approximately 2.5 

meters 

Throttle stick at middle 

position (> 1500 us). 

Manual Mode This mode is for 

acrobatics or racing 

(not used in this 

project) 

Control mode switch at 

upper position (1100 us) 

Attitude Mode Will keep the drone 

leveled when roll and 

pitch sticks are at their 

center position.   

Control mode switch at 

middle position (1500 us) 

Attitude GPS Mode  Will hold the 

quadcopter in place.  

Control mode switch at 

lower position (1800 us) 

 

Fortunately, Naza flight controller is easy to deal with. It is just required to know 

when and where to give a certain command in order for the Naza to operate properly. 

However, the complex part is configuring the Arduino to operate exactly as a remote-control 

transmitter and decode Naza’s GPS/Magnetometer signals. The following subsections will 

discuss the decoding processes in details.  
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Figure 4.2. Arduino-Naza Physical Connections 

 

Figure 4.3. Arduino-Naza Circuit Diagram 
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4.3.1. RC Transmitter Signal Decoding 

Traditional RC transmitters work with Pulse Width Modulation (PWM) signals. The 

amount of on-time (T-ON) of the signal or the duty cycle determines the required action. 

Generally, the refresh rate of a RC transmitter signal is 50 Hz which means 20 ms period 

which is a standard communication signal between RC transmitters and flight controllers. 

The duty cycle is varied between 1 and 2 ms which are the low-most and up-most commands 

respectively. As mentioned before, the Arduino is responsible to read and decode these 

signals from the transmitter which are 5 channels (throttling, rolling, pitching, yawing and the 

auxiliary switch). Each channel of these has a varying duty cycle between 1000 and 2000 us 

over a period of 20 ms and 5 V amplitude as shown below in Figure 4.4.   

 

Figure 4.4. RC Transmitter Signal 

The algorithm to read these signals must be to verify 5 digital pins as inputs and 

continuously check if one of these inputs has changed its state (1 to 0 or 0 to1) then calculate 

the time between these transitions. Fortunately, Arduino has Pin-Change Interrupt (PCINT) 

feature over three groups of pins (in this project, PCINT group 1 is used: Pins A0 till A5) 

which automatically stimulates an interrupt subroutine if one of these inputs has changed its 
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state. By doing this, the loop time of the code would take a much fewer time (several 

microseconds) than continuously checking input pins (hundreds of milliseconds). The below 

flowchart (Figure 4.5) describes how PCINT group 1 behaves if one of its inputs is changed. 

 

Figure 4.5. PCINT Subroutine 

The subroutine, when called, will save the current time in microseconds and start 

checking the pins one by one (pins A0 till A4 refer to channel 1 till 5) to verify which pin has 

changed its state. RC1:5 refer to the final measured time in us of the desired 5 channels which 

will be used later to decide what commands to send and execute. The Arduino will write the 

desired PWM signal in us to the RC receiver pins of the Naza. The code is attached in the 

appendix and for further information about PCINT, the reader is directed to [40].  

4.3.2. Naza GPS/Compass Decoding 

In order for executing autonomous tasks, it is a must to know the current location of 

the quadcopter. Most GPS devices in the market use the NMEA protocol when sending 
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position and time information [41] over normal serial communication bus. Naza GPS uses 

CAN bus communication to transmit data over a serial bus. Figure 4.6 shows the Naza GPS 

pinout diagram where only one serial pin is taken (TX pin) to receive its data.  

 

Figure 4.6. Naza GPS Pinout 

When connecting the GPS’s TX pin to Arduino’s RX pin, the following message is 

shown using 115200 baud-rate [42]: 

 55 𝐴𝐴 𝑋𝑋 𝑌𝑌 < 𝑃𝑎𝑦𝑙𝑜𝑎𝑑 > 𝑍𝑍 𝑍𝑍 (4.1) 

Where, 𝑋𝑋 is the length of the message, 𝑌𝑌 is the message ID, 𝑃𝑎𝑦𝑙𝑜𝑎𝑑 is the 

message content, and 𝑍𝑍 𝑍𝑍 is the checksum. Where ID 10 contains GPS data like 3D 

position, number of satellites, fix type, time, horizontal and vertical accuracy and are sent 

every 250 ms. ID 20 contains raw compass data and are sent every 30 ms. And ID 30 

contains module version numbers which is sent every 2 seconds. For the best accuracy, it is 

required to have at least 4 satellites seeing the GPS and a 3D fix type.   

4.4. MULTIWII CONTROLLER-BASED QUADCOPTER (FOLLOWER) 

Multiwii is also a standalone flight controller but with more complex tuning 

parameters than Naza flight controller. However, Multiwii is an open source and can be 
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adjusted. As mentioned before, Multiwii consists of 3-axis gyroscope, 3-axis accelerometer, 

3-axis magnetometer, and an altimeter. It uses a complementary filter to calculate the attitude 

variables (𝜑 𝑎𝑛𝑑 𝜃) and the heading angle relative to north pole 𝜓 is obtained from the 

magnetometer corrected with angular rate measurements. In the same manner of Naza 

controller, an Arduino mega is attached as a high-level controller responsible for receiving 

attitude and position information from Multiwii, applying the swarm navigation algorithms, 

and controlling the behavior of the quadcopter over the RC receiver pins. Figure 4.7 shows 

the connections between Arduino mega and Multiwii flight controller. The Multiwii sends 

attitude data at 100 Hz refresh rate and position was configured via CFG messages [43] to 

send data at 10 Hz.  

 

Figure 4.7. Arduino-Multiwii Circuit Diagram 
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Figure 4.8. Multiwii GUI 

 

Figure 4.9. Multiwii-Arduino Physical Connections 
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The Arduino mega will receive the leader’s position and high order commands from 

the leader (Naza-controlled quadcopter) via radio frequency modules (nrf24) and will operate 

accordingly. The procedure discussed in section 2.6.1 was followed to tune attitude PID gains 

in Multiwii GUI (Figure 4.8) and the best attitude parameters are summarized in the Table 

4.2.  

Table 4.2. Multiwii Attitude PID Tuned Gains 

 𝑘𝑝 𝑘𝑖 𝑘𝑑 

Roll 2.2 0.002 5 

Pitch 2.2 0.001 5 

Yaw 2.0 0.003 0 

 Altitude and position control were a bit challenging due to the malfunctioning 

altimeter and GPS commands in Multiwii respectively. Thus, a standalone altitude and 

position controllers is to be redesigned using the high-level Arduino mega controller.  

4.4.1. Altitude Control 

To bypass the problem of the malfunctioning altimeter, an ultrasonic sensor was 

used to obtain the altitude of the quadcopter. This sensor will work well only up to 4 meters. 

The ultrasonic sensor transmits an ultrasound wave (via its trigger pin) at the speed of light 

and receive it back (via its echo pin) when it hits an obstacle. The measured time between the 

emitting and receiving is to be measured knowing the traveling speed of the wave then the 

estimated distance can be calculated. Coding wise, when transmitting a signal from an 

ultrasonic sensor, it is required to wait until the reflected wave is received. This will result in 

high waiting time (up to 10 ms) which will affect the control negatively. To mitigate this, the 

ultrasonic sensor was connected to an external interrupt pin on Arduino mega (Pin 2) which 

will execute an interrupt subroutine if the echo pin has changed from low to high or from 

high to low (same concept of PCINT). By doing this, there is no wasted time when waiting 
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for ultrasonic sensor received wave and data is requested from the ultrasonic sensor on 50 Hz. 

Figure 4.10 illustrates the practical block diagram of an altitude control PID algorithm.  

 

Figure 4.10. Altitude Control Block Diagram 

The goal of this PID loop is to calculate the best value of U1 in order for the 

quadcopter to reach its desired altitude.   

4.4.1.1. Moving Average and Complimentary Filter 

The feedback sensor (ultrasonic) is noisy and it is required to filter out its readings 

to make more sense of the altitude measurements. Moving average and complimentary filter 

are 2 types of digital filters that act as low-pass filters. The moving average, from its name, 

takes n number of measurements, add them together, and divide them by n and it has the 

following equation: 

 𝑍𝑘 =
1

𝑛
(𝑍𝑘 + 𝑍𝑘−1) (4.2) 

Where, 𝑍𝑘 is the altitude measurement at time k, 𝑍𝑘−1 is the altitude measurement at 

time k-1, and n is the window size. The window size, n, determines the lag between the 
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measured and filtered data. The higher it is, the higher the lag is. The window size in this 

project was selected 30 so that there is no big lag between filtered and measured data. 

The complimentary filter is used as a second-step filtration algorithm for its 

robustness. A complimentary filter takes a portion of a certain variable and add it to the 

complement portion of another variable. It is mainly used to compensate a more accurate 

measurement with noticeably high uncertainty with a less-accurate measurement but with 

very low uncertainty. A major drawback of complimentary filter is its lag between filtered 

and measured quantities. It has the following discrete domain equation: 

 𝑍𝑘 = 𝛼. 𝑍𝑘 + (1 −  𝛼). 𝑍𝑘−1 (4.3) 

 Where, 𝛼 is a weighing factor between 0 and 1.  

 𝑍𝐶𝐹 = 𝛼. 𝑍𝐶𝐹 + (1 −  𝛼). 𝑍𝑀𝐴 (4.4) 

Where, 𝑍𝐶𝐹 and 𝑍𝑀𝐴 are the altitude measured from complementary filter and 

moving average respectively. Here, the complimentary filter is used in an iterative manner, 

where its reading from the current time step will be the previous readings of the next time 

step. Increasing 𝛼 means adding reliability to the history data of the complimentary filter and 

decreasing reliability over moving average readings. For the best accuracy and lowest lag,𝛼 

was chosen 0.8 (or 80%). Figure 4.11 below shows the raw altitude measurements (when 

moving the quadcopter randomly up and down) taken from the ultrasonic sensor which have 

integer data type, the moving average, and complimentary filter algorithms. It can be clearly 

seen that the complimentary filter behaves very well with the smoothest form and lowest lag.   
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Figure 4.11. Altitude Measurement of the Multiwii-based Follower. Complimentary Filtering 

in Green, Moving Average in Blue and the Raw Measuremnt From The Ultrasonic Sensor in 

Red 

4.4.1.2. Adaptive PID Controller 

The adaptive PID control has the same structure of an ordinary PID controller but 

with varying proportional gain. As explained before, the throttling input on the Multiwii 

accepts PWM signal with duty cycle varying between 1000 and 2000 us with 1000 us being 

no thrust at all and 2000 us being the maximum throttle. After some experiments, a 50 us-

change in the throttle input causes a noticeable motors’ thrust. So, an adaptive P controller 

was implemented to scale the proportional gain proportionally to the error when far from the 

setpoint and a constant value within a defined range of the setpoint. It is also noteworthy that 

the adaptive PID controller block uses the improved version of D-controller where the 

derivative of the state is fed into the equation and not the error. The adaptive PID block 

receives the error signal between the desired and measured altitudes and also receives the 
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estimated vertical velocity and outputs the desired throttling PWM which will be added to the 

base PWM (PWM at which the quadcopter is hovering). The adaptive controller implemented 

has the following form: 

 

𝑒𝑧 = 𝑍𝑑𝑒𝑠𝑖𝑟𝑒𝑑 − 𝑍𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 

𝑍𝑝𝑖𝑑 = 𝑘𝑝(𝑒𝑧). 𝑒𝑧 + 𝑘𝑖 ∫𝑒𝑧 𝑑𝑡 − 𝑘𝑑 . 𝑍̇𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 

(4.5) 

 Where, 𝑒𝑧 is the error signal, 𝑘𝑝, 𝑘𝑖  𝑎𝑛𝑑 𝑘𝑑 are the PID gains. The derivative term 

𝑘𝑑 . 𝑍̇𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 acts as a damping system, if the speed increases (quadcopter is accelerating 

up), this term increases negatively and slows down the vertical acceleration and vice versa. It 

is also noticed that 𝑘𝑝 is as a function of the error signal. The 𝑘𝑝 was chosen in a way to 

increase linearly with the error if the error is outside a certain range from the setpoint and has 

the following form: 

 𝑘𝑝(𝑒𝑧) = {

1.4                                       𝑖𝑓 |𝑒𝑧| < 10

1.4 +
|𝑒𝑧| − 10

20
                  𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒

 (4.6) 

Where, 1.4 is the base kp which was tuned by trial and error, and 
|𝑒𝑧|−10

20
 is the 

adaptive kp factor.  

4.4.1.3. Battery Compensation  

Another factor to take into consideration when designing an altitude hold controller 

is the battery voltage. As the voltage goes down, motors’ thrust goes down too. Imagine the 

quadcopter is required to maintain an altitude of 1.5 meters. If an error exists, the PID 

calculates the required PWM which will be added to the hovering base throttle (scientifically 

known as mg which is the weight of the quadcopter) in order to maintain the quadcopter at 

the desired altitude. However, after a short period, an oscillatory behavior will definitely 
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appear no matter how good the PID is. This is caused by the voltage drop of the battery 

which affects the hovering throttle and the urge to compensate for this drop is a must. The 

used LiPo battery used has voltage of 12.6 volts when fully-charged and 11 volts when empty 

while the Arduino mega’s analog pins can withstand maximum voltage up to 5 volts. So, a 

simple voltage divider circuit was designed to minimize the voltage level. Figure 4.12 shows 

the designed voltage divider network. The values of R1 and R2 was chosen by fixing R1 to 

10 kOhms and selecting R2 via equation (4.7).  

 𝑉𝑎𝑛𝑎𝑙𝑜𝑔 =
𝑅1

𝑅1 + 𝑅2
. 𝑉𝐵𝑎𝑡𝑡𝑒𝑟𝑦 (4.7) 

 

Figure 4.12. Voltage Divider Circuit 

Where, 𝑉𝑎𝑛𝑎𝑙𝑜𝑔 is the input to Arduino’s analog pin. By substituting 5 V to 𝑉𝑎𝑛𝑎𝑙𝑜𝑔 

and 12.6 V to 𝑉𝐵𝑎𝑡𝑡𝑒𝑟𝑦, one can compute the value of R2. But by doing this, there is no safe 

margin considered to protect the analog pin. If the battery voltage gets a bit higher than 12.6 

V, then the analog pin will read voltage higher than 5 V and gets damaged. So, 𝑉𝐵𝑎𝑡𝑡𝑒𝑟𝑦 is 

taken to be 21 V and R2 value is selected accordingly.  

The second step was to determine experimentally the required amount of hovering 

PWM for different battery voltages. Figure 4.13 below shows the required hovering throttle 

(in blue) for different battery voltages from complete charge to complete discharge. When the 

battery is full, the required hovering throttle was 1480 us while when fully discharged the 
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required hovering throttle goes up to 1520 us. The battery compensation was assumed to be a 

linear function (Figure 4.13: red line) and has the form of equation (4.8). When the voltage 

drops to 11 V, the compensation PWM goes up to 40 and is added to the base hovering 

throttle of 1480 us.  

 𝐶𝑜𝑚𝑝𝑒𝑛𝑠𝑎𝑡𝑖𝑜𝑛𝑢𝑠 = (12.6 − 𝑉𝑏𝑎𝑡𝑡𝑒𝑟𝑦) . 25 (4.8) 

 

Figure 4.13. Battery Compensation PWM and The Required Hovering PWM vs. Battery 

Voltage 

The final form of the throttling control input U1 is then realized to be: 

 𝑈1 = 𝑇ℎ𝑟𝑜𝑡𝑡𝑙𝑒𝐵𝑎𝑠𝑒 + 𝑃𝐼𝐷𝑍 + 𝐶𝑜𝑚𝑝𝑒𝑛𝑠𝑎𝑡𝑖𝑜𝑛𝑉𝑏𝑎𝑡𝑡 (4.9) 

4.5. KALMAN FILTER 

Kalman Filter (KF) is an optimal estimation algorithm which is intended to estimate 

a state x at time k by using linear stochastic difference equation with the assumption of the 

state x at time k is evolved from the previous state x-
 at k-1 and can be written as: 
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 𝒙𝒌 = 𝑨𝒙𝒌−𝟏 + 𝑩𝒖𝒌−𝟏 + 𝒘𝒌−𝟏 (4.10) 

Where, 𝑨 is the state transition matrix (aka state evolution matrix), 𝑩 is the input 

matrix relating the input to the state and 𝒘 is known as process noise and is considered 

normally distributed with 0 mean and Q covariance. The state equation has always to be 

coupled with a measurement model which clarifies the relation between the state and the 

measured quantity. The measurement model, declared by the matrix z, can be written as: 

 𝒛𝒌 = 𝑯𝒙𝒌 + 𝒗𝒌 (4.11) 

Where, 𝑯 is a transformation matrix which transforms the state into measurement 

domain, and 𝒗𝒌 is the measurement noise vector and is also considered Gaussian with 0 mean 

and covariance R.  

 

 Kalman filtering has many advantages in autonomous systems design. They can be 

summarized as: 

• It filters out noisy measurements and makes sensor data clean and more 

understandable. 

• It updates the state based on a system kinematic model so it can predict states without 

directly measuring them by a sensor. 

• It increases the refresh rate of some control-critical states (e.g., position).  

The Kalman filter equations are divided into 2 groups; time update (aka predictor) 

and measurement update (aka corrector). The time update equations are responsible for 

projecting forward the current state and error covariance matrices to give a priori knowledge 

over the states for the next step. This step answers the question of where should the system be 
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next? The measurement update is responsible to correct the prediction phase by a reliable 

measurement from a sensor (e.g., a GPS). Kalman filter predictor equations can be written as: 

 

𝒙̂𝒌+𝟏 = 𝑨𝒙̂𝒌 + 𝑩𝒖𝒌−𝟏  

𝑷̂𝒌+𝟏 = 𝑨𝑷̂𝒌𝑨
𝑻 + 𝑸 

(4.12) 

Where, the hat symbol denotes that the variable is estimated and 𝑷̂𝒌+𝟏 is the 

estimated error covariance matrix. The corrector equations can be written as: 

 

𝑲𝒌 = 𝑷̂𝒌+𝟏𝑯
𝑻(𝑯𝑷̂𝒌+𝟏𝑯

𝑻 + 𝑹)
−𝟏

 

𝒙̂𝒌 = 𝒙̂𝒌+𝟏 + 𝑲𝒌(𝒛𝒌 − 𝑯𝒙̂𝒌+𝟏) 

𝑷𝒌 = (𝑰 − 𝑲𝒌𝑯)𝑷̂𝒌+𝟏 

(4.13) 

Where, 𝑲𝒌 is the Kalman gain. It is well noticed that when the estimated error 

covariance P is large, the Kalman gain becomes less and the updated state relies more on the 

previous estimated state. The Kalman gain is optimally tuned by itself and will settle to a 

constant value after a short period (or maybe more depending on the states’ and error 

covariance’s initial values) of time since the error covariances (R and Q) are considered to be 

constants. 

4.6. POSITION CONTROLLER 

Initially, it is necessary to understand the frame in which the quadcopter will fly in. 

In chapter 2, 2 frames were presented (body-fixed and inertial frames) where the body-fixed 

frame follows a North-East-Down (NED) (where North refers to positive x-axis, East to 

positive y-axis and down to positive z-axis) configuration and is attached to each 

quadcopter’s center of mass while the inertial frame also has a NED configuration but it is 

fixed and tangent to the earth’s curvature as shown in Figure 4.14 with the z-axis pointing 

towards the center of the earth. 
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Figure 4.14. ECEF and Inertial Frames 

Quadcopters will navigate in the inertial frame, so it is necessary to transform 

attitude actions from body to inertial frame. The GPS sends its position data in inertial frame 

at slow refresh rates (up to 10 Hz). The latitude and longitude information received from GPS 

are expressed in degrees as shown below in Figure 4.15.  

 

Figure 4.15. Latitude and Longitude of Earth 

To transform these coordinates into a local navigation frame, it can be estimated that 

each latitude (x-axis in local navigation frame) and longitude (y-axis in local navigation 
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frame) degree is equal to 111 Km. Another factor to take into consideration is the longitude 

shrinking where it can be clearly seen from the image above that the distance between 2 

consecutive longitude lines shrinks at the poles. The transformation from inertial frame to a 

local navigation frame relative to a start position can be written as equation (4.14): 

 

 

𝑥(𝑚) = (𝑙𝑎𝑡0 − 𝑙𝑎𝑡) × (
𝜋

180
) × (

𝑅𝑒𝑎𝑟𝑡ℎ

10000000
) 

𝑦(𝑚) = (𝑙𝑜𝑛0 − 𝑙𝑜𝑛) × (
𝜋

180
) × (

𝑅𝑒𝑎𝑟𝑡ℎ × 𝑐𝑜𝑠𝐿𝑎𝑡0
10000000

) 

(4.14) 

Where, 𝑙𝑎𝑡0 and 𝑙𝑜𝑛0 are the initial latitude and longitude degrees or the coordinates 

at where the quadcopter started, 𝑙𝑎𝑡 and 𝑙𝑜𝑛 are the current coordinates in degrees, 𝑅𝑒𝑎𝑟𝑡ℎ is 

the radius of the earth and it is approximated to be 6378137 Km, and 𝑐𝑜𝑠𝐿𝑎𝑡0 is the longitude 

shrinking factor which depends on the current latitude position. This shrinking factor is 

required to be calculated only 1 time since quadcopters’ battery life do not allow them to 

travel 1 latitude or longitude degree (or 111 km). To control the position of the quadcopters, 

with translating the body-frame motion to inertial frame, an improved version of PD 

controller is used which has the form of equation (4.15).  

 

𝑥𝑒 = 𝑥𝑟𝑒𝑓 − 𝑥𝑎𝑐𝑡𝑢𝑎𝑙 

𝑦𝑒 = 𝑦𝑟𝑒𝑓 − 𝑦𝑎𝑐𝑡𝑢𝑎𝑙 

𝑥̈𝑑 = 𝑘𝑝. 𝑥𝑒 − 𝑘𝑑𝑥̇ 

𝑦̈𝑑 = 𝑘𝑝. 𝑦𝑒 − 𝑘𝑑𝑦̇ 

𝑟𝑜𝑙𝑙𝑎𝑑𝑗𝑢𝑠𝑡 = 𝑦̈𝑑 cos(𝜓) − 𝑥̈𝑑sin (𝜓) 

𝑝𝑖𝑡𝑐ℎ𝑎𝑑𝑗𝑢𝑠𝑡 = 𝑥̈𝑑 cos(𝜓) + 𝑦̈𝑑sin (𝜓) 

(4.15) 

And finally, the roll and pitch control inputs, respectively, can be written as: 
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𝑈2 = 𝑈2𝑏𝑎𝑠𝑒
+ 𝑟𝑜𝑙𝑙𝑎𝑑𝑗𝑢𝑠𝑡 + 𝑈2𝑚𝑎𝑛𝑢𝑎𝑙

 

𝑈3 = 𝑈3𝑏𝑎𝑠𝑒
+ 𝑝𝑖𝑡𝑐ℎ𝑎𝑑𝑗𝑢𝑠𝑡 + 𝑈3𝑚𝑎𝑛𝑢𝑎𝑙

 

(4.16) 

 

4.7. CONVOLUTIONAL NEURAL NETWORKS 

A Convolutional Neural Network (CNN), which is also known as Multi-Layer 

Perception (MLP), is a class of deep neural networks for learning frame works. The first 

known CNN was introduced by LeCun in 1990 and is called LeNet [44]. CNNs, unlike 

feedforward Networks, are used for image recognition and classification. Image classification 

based on CNNs can optimally and automatically learn to extract image features effectively. 

Figure 4.16 illustrates the flow of CNN-based fire detection algorithms. The detection CNN 

has region proposals, feature extraction, and image classification functions. The first step 

consists of the CNN accepting an image as an input and outputs region-based proposals by 2 

main layers; convolution and pooling. Then, it is the turn of region-based fire detection CNN 

to decide whether there is fire or not in proposal regions through convolutional, pooling, 

fully-connected layers. 

 

Figure 4.16. Convolutional Neural Network architecture 
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The convolutional layer is the most essential part in any CNN. Ordinary Neural 

Networks (NN) use connection weights, biases and weighted sums while convolutional layer 

is equipped with image transform filters also known as convolutional kernel in order to 

generate feature map of the original image. So, a convolutional layer is nothing but a set of 

convolutional kernels. The kernel slides over the whole image and computes a new pixel by 

some sort of weighted sum of the pixel which is floating over, in order to generate a full 

feature map. Equation (4.17) shows the main calculation formula of the convolutional layer. 

 𝑦 =  ∑∑𝑤𝑖𝑗 .  𝑥𝑚+1,𝑛+𝑗 . +𝑏, (0 ≤ 𝑚 ≤ 𝑀, 0 ≤ 𝑛 ≤ 𝑁) 

𝐼−1

𝑖=0

𝐽−1

𝑗=0

 (4.17) 

Where x is the input image of size 𝑊 × 𝐻, w is defined as a convolutional kernel of 

size 𝐽 × 𝐼, b is a bias value and y is the output of the feature maps. Practically speaking, w 

and b values are determined optimally through training process. Pooling layer samples the 

feature map acquired from the convolutional layer attempting to significantly reduce the 

overfitting, the number of parameters, and the computation in a CNN. Lastly, the fully-

connected layer produces the final classification vector. It is connected to every single neuron 

in the layer before it decides the existence of possible matching between combination of 

features found and class labels.  

4.8. YOLO V3 

You Only Look Once Version 3 (YOLO V3) is an object detection network which is 

used after a feature extraction network to detect classify images with fires and smoke created 

by Joseph Redmon and Ali Farhadi in 2018 [45]. The feature extraction layer uses Darknet-

53 network. YOLO V3 refers the idea of residual network to improve the accuracy of object 

detection. In addition, this network performs perfectly on detection speed for it uses a one -
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stage strategy. Figure 4.17 shows the detailed architecture of YOLO V3 network. The feature 

extraction network, or Darknet-53, generates a small-scale feature map which 32 times 

smaller than the original sampled images. Typically, YOLO V3 network accepts input images 

with dimensions of 416 ×416 so the size of the feature map extracted from the Darknet-53 

becomes roughly 13 × 13. The goal of this small feature map is to detect large objects. Then, 

YOLO V3 network generates a large-scale feature map by enlarging the small-scale feature 

map got from the feature extraction network (Darknet-53) and concatenating with an earlier 

layer-feature map.  

The large-scale feature map includes information of previous layers and other 

complex features from deeper layers which are used to detect small objects. Practically, there 

are 3 scales of feature maps; 8, 12 and 32 time smaller from the original image.  

 

Figure 4.17. Yolo v3 Architecture 

In the above figure (Figure 4.17), N in ResN clarifies that there are N number of Res 

units connected in series. Whereas, Concat refers to the concatenation operation which 

expands the dimension of the feature maps. It noteworthy that concatenation process is 

different than an ordinary addition operation, the normal addition does not change the 

dimension of the feature maps. YOLO V3 uses a sigmoid activation function to predict and 
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detect multilabel classifications per one bounding box. The sigmoid function has the form as 

in equation (4.18) and Figure 4.18. 

 𝜎(𝑧) =
1

1 + 𝑒−𝑧
 (4.18) 

The main advantage of sigmoid function is that it is a smooth version of an ordinary 

step function. In other words, it has a derivative everywhere. This is very important in neural 

networks since the fully-connected layer in a CNN computes the gradients through 

backpropagation to update the weights.  

 

Figure 4.18. Sigmoid Activation Function 

So, a YOLO V3 network can be trained to detect multiple objects in on frame. For 

this thesis, it was trained to detect fires and smoke in a single frame image.  

4.9. TRAINING AND TESTING 

Training the CNN-based algorithm requires a huge amount of data. Therefore, in 

this thesis, 1200 fire and smoke images were collected from different internet sources for 

training and 200 for testing. Using LabelImg image annotation tool, each image in the dataset 

is annotated with a bounding box around fire and smoke. Figure 4.19 shows the training 
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images setup procedure. Around 4500 fires were annotated in these 1000 images and 3265 

smokes.  

 

Figure 4.19. LabelImg Annotation Tool 

4.10. GIMBAL CONTROL 

This part will deal with designing an appropriate control method to drive the gimbal, 

holding the camera, towards the fire and smoke region. In other words, the camera mounted 

on the quadcopter will always concentrate on the center of the fire and smoke. The gimbal is 

driven by 2 servo motors; to control the yaw and the roll angles. Fortunately, a built-in 

feedback control system is already built inside each servo motor, thus it is enough to feed 

through the desired rotation angle to the servos. The control methodology is illustrated in 

Figure 4.20, gimbal design is shown in Figure 4.21, and the circuit diagram in Figure 4.22. In 

short, the central PC will detect the presence of fire in video frames received from the 

quadcopter and create bounding boxes around all fires and smokes in the frame. The center of 

each bounding box has 2D coordinates (x or w: width, y or h: height) in the image frame 

expressed in Pixels (px).  
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Figure 4.20. Gimbal Control Strategy 

If there are multiple bounding boxes in the frame, it is required to calculate a central 

position between all these bounding boxes. Thus, center of interest 2D coordinates are 

calculated by equation (4.19): 

 

𝑤𝑐 =
1

𝑛
∑𝑤𝑖

𝑛

𝑖=1

 

ℎ𝑐 =
1

𝑛
∑ℎ𝑖

𝑛

𝑖=1

 

(4.19) 

Where, 𝑤𝑖 and ℎ𝑖 are respectively the width and height of bounding box center i and 

n is the number of bounding boxes in the frame. In a control system manner, and as 

mentioned before, it is required to keep the camera focusing on the center of interest so this 

variable is the setpoint of the system which will continuously be compare with the center 

coordinates of the frame (wf and hf). The error signal undergoes a simple P-controller (gain 

K) to scale it and finally a mapping function is used to convert Pixels (px) into the desired 
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servo angle deviations to be sent back to the gimbal controller (Arduino Uno) mounted on the 

quadcopter. Servo deviations calculation, restrained between 0o and 180o in yawing and 0o 

and 65o in rolling, are shown in equation (4.20). 

 

∆𝜓 = 𝑚𝑎𝑝(𝐾 × (𝑤𝑐 − 𝑤𝑓), 0, 180) 

∆𝜑 = 𝑚𝑎𝑝(𝐾 × (ℎ𝑐 − ℎ𝑓), 0, 65) 

(4.20) 

And on the Arduino side, the required yawing and rolling is calculated through 

equation (4.21): 

 

𝜓 = 𝜓𝑐𝑢𝑟𝑟𝑒𝑛𝑡 + ∆𝜓 

𝜑 =  𝜑𝑐𝑢𝑟𝑟𝑒𝑛𝑡 + ∆𝜑 

(4.21) 

 

Figure 4.21. Gimbal Designed 3D and Physical Models 
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Figure 4.22. Servo Motor Control Circuit Connections 

 

4.11. CONCLUSION 

 

This chapter presented the hardware design of the leader and followers quadcopters. In 

addition, it briefly discussed the Kalman filter and position control implementation. Also, 

training a neural network model of a fire detection system via a feature extraction deep 

network (Darknet-53) and image recognition (YOLO V3) models was explained. And, a P-

control-driven gimbal controller was designed 
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CHAPTER 5. NON-TECHNICAL ASPECTS 

5.1. INTRODUCTION 

In this chapter, all components of each quadcopter will be presented with their cost 

in Local/Global markets in addition to the approved method of management in this work. The 

last part will cover the ethical, social, and environmental effect on society, as well as the 

sustainability will be covered. 

5.2. ECONOMICAL/FINANCIAL 

The thesis is composed of 3 quadcopters (Leader, follower 1, follower 2), as 

mentioned before. Table 5.1 lists the chosen items for each quadcopter and their cost 

according to Local/Global markets. On the other hand, Table 5.2 shows the Engineering staff 

costs. 
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Table 5.1. Material Cost 

item price/ 

piece 

LEADER follower 1 follower2  

Turnigy Heavy Aerial 

Lift frame 

$40.84  1 0 0  

DJI F450 Frame $69.99  0 1 0  

PROPDRIVE V2 2826 

motor 

$15.44  0 4 0  

A2212/13T motor $8.86 4 0 0  

Propeller $2.99  2 2 0  

Ready To Fly 30A $10.00  0 4 0  

AFRO ESC 30A $13.50  4 0 0  

MULTIWII Flight 

controller 

$22.95  1 0 0  

NAZA Flight 

Controller 

$209  0 1 0  

PARROT AR Drone $180.00  0 0 1  

Power Distribution 

Board 

$5.91  1 0 0  

Parrot AR Drone 2.0 

1500mAh 

$21.98  0 0 1  

HRB 5000mAh 11.1v 

50C 

$69.99  1 0 0  

Ublox Neo 6m GPS $15.00  1 1 1  

Ultrasonic Sensor 

HC-SR04 

$0.66  1 0 0 Costs all in 

all 

$1601.99 

Arduino Mega 2560 $40.30  1 0 0 X 1.3(with 

overhead) 

$2082.587 

 

Arduino Uno $33.24 0 0 1 

FCONEGY 5500mAh $39.97  0 1 0 

Tools $10.00 1 0 0 

Camera with Gimbal  $609.00 1 0 0  

Total ($) 
 

910.07 441.7 250.22  

 

 

 

https://hobbyking.com/en_us/turnigy-h-a-l-heavy-aerial-lift-quadcopter-frame-585mm.html?___store=en_us
https://www.amazon.com/Flame-Wheel-Basic-Quadcopter-Drone/dp/B00HNMVQHY
https://hobbyking.com/en_us/propdrive-v2-2826-1000kv-brushless-outrunner-motor.html?___store=en_us
https://www.aliexpress.com/item/4000601796488.html?spm=a2g0o.productlist.0.0.11a94b17LTUjiA&algo_pvid=db8265fd-aa43-4aad-a679-71901c5bc4c2&algo_expid=db8265fd-aa43-4aad-a679-71901c5bc4c2-7&btsid=0bb0623116142583856635636e5847&ws_ab_test=searchweb0_0,searchweb201602_,searchweb201603_
https://www.readytoflyquads.com/f-30a-fire-red-normal-esc-with-rapidesc-fw-for-multirotor
https://www.ebay.com/c/1031470364
https://www.thanksbuyer.com/crius-mwc-multiwii-se-v2-0-standard-development-board-flight-control-module-for-mini-multicopter-46077
https://store.dji.com/product/naza-m-v2?from=buy_now
https://dronerush.com/product/parrot-ar-drone-2-0/
https://hobbyking.com/en_us/hobby-king-quadcopter-power-distribution-board.html
https://www.amazon.com/Parrot-Drone-1500mAh-Replacement-Battery/dp/B00JUAQKLY
https://www.amazon.com/HRB-5000mAh-50C-100C-Compatible-Brushless/dp/B088QX4BMN/ref=pd_lpo_21_img_2/146-7218414-3109527?_encoding=UTF8&pd_rd_i=B088QX4BMN&pd_rd_r=d737e870-4436-415f-971c-b4673dd1c840&pd_rd_w=vZjoh&pd_rd_wg=ZIBXD&pf_rd_p=16b28406-aa34-451d-8a2e-b3930ada000c&pf_rd_r=6B0NRFCN795NE2RV4Q9P&psc=1&refRID=6B0NRFCN795NE2RV4Q9P
https://makersportal.com/shop/neo-6m-gps-module
https://www.aliexpress.com/item/1005001621997017.html?spm=a2g0o.search0302.0.0.56821158XUGE84&algo_pvid=279f70ee-4c21-40a5-a122-4c765083bbf2&algo_expid=279f70ee-4c21-40a5-a122-4c765083bbf2-0&btsid=0b0a556a16150313877287645e40c3&ws_ab_test=searchweb0_0,searchweb201602_,searchweb201603_
https://store.arduino.cc/usa/mega-2560-r3
https://www.amazon.com/stores/page/E111B456-C987-4951-A6EE-0F914AF1239E
https://www.ebay.com/itm/FCONEGY-5500mAh-11-1v-3-cell-40c-Lipo-Battery-RC-Racing-Pack-See-Details-/143860060831
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Table 5.2. Engineering Staff Cost 

Task 
MM Qualification Salary/MM Total Salary 

Assembling quadcopters 
0.25 Eng. $1000 $250 

Control system (Hardware 

and Software development) 

1 Eng. $1000 $1000 

Testing quadcopters 
0.5 Eng. $1000 $500 

Integration quadcopters 

process 

0.5 Eng. $1000 $500 

Swarm Quadcopter Testing 
0.5 Eng. $1000 $500 

Project Management 
1 Eng. $1000 $1000 

Programming (training) 
5 Eng. $500 $2500 

Testing  
1 Eng. $500 $500 

Total Man Power Costs 
   $6750 

5.3. PROJECT MANAGEMENT 

The thesis is divided into 3 main phases: Gathering Data, Simulation, and 

implementation. Thesis started by gathering data and literature surveys. This phase started in 

July 27 until Aug 24, in other words, it took 20 days. After that, the simulation phase started 

by modeling and designing the High/Low level control of quadcopters. The Simulation took 

60 days, from Aug 24 to Nov 13. Finally, the implementation phase covers all hardware, 

testing, and system validation processes. The period of this phase extended from Feb 28 to 

Aug 24, in a total of 86 days. All phases and tasks are presented in Figure 5.1 below. 

 

Figure 5.1. Thesis Gantt chart 
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Whereas the fire detection system is also divided into 3 main phases: Gathering 

Data, Simulation, and Software. Thesis started by gathering data and literature surveys. This 

phase started in July 27 until 16 Oct, in other words, it took 60 days. Then, the simulation 

phase started by modeling and designing the High/Low level control of quadcopters. The 

Simulation took 20 days, from Aug 24 to Sep 18. At the end, the Software phase covers 

programming, Training, and testing processes. The period of this phase extended from Sep 18 

to Jun 2, in a total of 184 days. All phases and tasks are presented in Figure 5.2. 

 

Figure 5.2. Thesis Gantt Chart 

 

5.4. ETHICAL AND SOCIAL 

Ethics on definition are the moral values that guide the performance of an action or 

administer a person’s behavior.  

5.4.1. Quadcopter  

All types of drones face different ethical issues that vary depending on the drone’s category 

(Recreational, Civilian and Commercial, and Military) [46]. This thesis’ quadcopters are 

categorized as civil and commercial aiming for fire foreign surveillance. The use of drones 
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for this aim raises ethical problems related to the collection of citizen’s data located inside or 

nearby the forest. This issue leads to an invasion of privacy. This adds to the noise of the 

operating drone problem. Also, having too many quadcopters used for surveillance purpose in 

a limited space might be challenging. 

5.4.2. Camera 

Taking photographs or live stream via camera mounted on a drone for a diverse 

purpose, may not have an ethical issue related to them. However, if a person accidentally 

takes a picture of another person, it can be an invasion of privacy. Hence, photography can 

only be evaluated based upon the action, intention, and the consequence of the actions 

intended by the photographer [47]. 

5.4.3. Neural Networks 

Due to the hidden and complex implementation of algorithm elements or the 

intermediate layer of statistically trained ‘neurons’, there is a topic that proposes a cognitive 

dilemma and brings related ethical issues for deep learning (neural networks) [48]. 

Otherwise, computer scientists and software engineer themselves are increasingly worried 

about the lack of transparency of AI and deep learning [49]. This opacity of algorithmic black 

boxes poses a direct and long-term challenge to lawmakers and policymakers. At the end, in 

Thilo Hagendorf’s (2020) review of twenty-two recommendations on the ethical guidelines 

of AI by governments and NGO’s, transparency (in general, AI systems) is second only to 

privacy, fairness, and accountability. In other word, it is the fourth important theme of 22 

themes [50]. 

 



108 

 

5.5. ENVIRONMENTAL AND SUSTAINABILITY 

Quadcopter is an environmentally friendly electric machine, that is widely used as 

an alternative of polluting ones. For instance, a study conducted in 2018, compared ten 

environmental impact categories (listed in Table 5.3) as well as the number of particulates 

produced during 1 Kilometer of delivery between Drone (used as delivery), and motorcycle 

(gasoline and electric motorcycle) in Korea [51]. The study showed that the traditional 

motorcycle (gasoline motorcycle) had the highest Global Warming Potential (GWP) followed 

by the electric motorcycle, while, drones had the lowest GWP. Therefore, electric 

motorcycles produced more particulates than gasoline and drone, as shown in  Figure 5.3 

below: 

 

Figure 5.3. GWP and particulates of 1 Kilometer delivery by electric motorcycle, gasolian 

motorcylce, and drone. (a) GWP of  1 Km delivery; (b) PM2.5 of 1 Km delivery 

 

 

Table 5.3. Environmental Impact of Selected Categories 

                                            Impact Category Unit 

ADP Abiotic Depletion Potential 1/year 

AP Acidification Potential kg SO2-eq 

EP Eutrophication Potential kg PO4
3−-eq 
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FAETP Freshwater Aquatic Ecotoxicity 

Potential 

kg 1,4 DCB-eq. 

GWP Global Warming Potential kg CO2-eq. 

HTP Human Toxicity Potential kg 1,4 DCB-eq. 

MAETP Marine Aquatic Ecotoxicity Potential kg 1,4 DCB-eq. 

ODP Ozone Depletion Potential kg CFC11-eq. 

POCP Photochemical Oxidants Creation 

Potential 

kg ethylene-eq. 

TETP Terrestrial Ecotoxicity Potential kg 1,4 DCB-eq. 

PM2.5 Particulates Matter kg PM2.5-eq. 

Finally, the results show that the environmental improvement effect would be higher 

with the use of drones.  

5.6. STANDARDS 

5.6.1. Quadcopter Standards 

According to Lebanese Regulations and Laws, there is no drone laws issued. 

However, it does not mean that you can take flight wherever you like. In fact, it is possible 

that legislators will oppose the use of drones in general. To avoid any problem or have the 

drone taken away, contacting the Lebanese Directorate General of Civil Aviation (DGCA) 

will be recommended. In the other hand, the U.S.’s Federal Aviation Administration’s has 

some rules for drone usage. We list here some of them in  Table 5.4 below: 

 

Table 5.4. FAA’s Model Aircraft Rules 

Nb. Rules 

1 
Avoid flying within five miles of an airport 

2 
Keep the drone within visual line-of-sight 

3 
Fly at or below 400 feet  
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Particularly, UAVs are regulated by several standards and laws around the world. 

According to them, quadcopters are dispersed into classes, categories, and labels. One of the 

most famous regulations are Eu’s number 2019/947 and 2019/945 standards from European 

Union Aviation Agency (EASA) [52] [53]. According to them, quadcopters used in this 

thesis are classified as “Open-A3”. 

Plus, there are several developed UAVs standards (i.e., ISO 21384-1, ISO 21384-2, 

ISO 21384-3, ISO 21384-4), and other incomplete so far (i.e., ISO/IEC AWI 22460-2, 

ISO/IEC AWI 4005-1, etc.) [54]. 

5.6.2. Neural Networks Standards  

In general, there are many standards that define and classify Artificial intelligence, 

machine learning, deep learning, and Neural network. Some of them are approved and other 

still under study. Table 5.5 lists some of IEEE Standards related to Neural Networks 

(completed and incomplete) [55]. 

Table 5.5. IEEE Standards Related to Neural Networks 

ID Title 

IEEE 3333.1.1-2015 Standard for Operator Interfaces of Artificial Intelligence 

IEEE 3333.1.2-2017 
Standard for the Perceptual Quality Assessment of Three-

Dimensional (3D) and Ultra-High-Definition (UHD) Contents 

4 
Fly during daylight or civil twilight 

5 
Fly at or under 100 mph 

6 
Yield right of way to manned aircraft 

7 
Do not fly directly over people 

8 
Do not fly from a moving vehicle, unless in a sparsely populated area 

https://standards.ieee.org/standard/3333_1_1-2015.html
https://standards.ieee.org/standard/3333_1_2-2017.html
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P3333.1.3 
Standard for the Deep Learning-Based Assessment of Visual 

Experience Based on Human Factors 

P3333.1.1 

Standard for Quality of Experience (QoE) and Visual-Comfort 

Assessments of Three-Dimensional (3D) Contents Based on 

Psychophysical Studies 

P2941.1 Standard for Operator Interfaces of Artificial Intelligence 

 

 

5.7. CONCLUSION 

As mentioned before, all components used in each quadcopter were presented with 

their cost in local/global markets in addition to the approved method of management in this 

work. Finally, the ethical, social, and environmental effects on society, and the sustainability 

were presented in this chapter. 

  

https://standards.ieee.org/project/3333_1_3.html
https://standards.ieee.org/project/3333_1_1.html
https://standards.ieee.org/project/2941_1.html
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CHAPTER 6. RESULTS 

6.1. INTRODUCTION 

This chapter will present the results associated with hardware design. Multiple scenarios were done 

to test and validate the efficiency of individual and swarm controllers. Also, the NN training and 

testing results will be shown as well. 

Training accuracy, training losses and training precision percentages will be plotted. 

In addition, the servo motor-controlled angles will be plotted vs. fires and smoke 

frames in a video stream. 

6.2. KALMAN FILTER 

The Kalman filter was able to significantly reduce the noise of the GPS readings 

with also estimating the velocity of the quadcopter. The first test was done to figure out the 

values of the process noise Q and measurement noise R. In fact, these variables are tuned via 

trial and error with small reference to the GPS’s datasheet. Figure 6.1 below shows 2 

scenarios, stationary and moving quadcopter. It can be seen that when the quadcopter is 

stationary, the GPS has, in its best cases, a 3.5 meters deviation in the latitude direction and 

approximately 2 meters deviation in the longitude direction. According to the GPS’s 

datasheet, the standard deviation of the used module is 5 meters. Thus, the measurement 

covariance is taken for 3.5 meters in both directions. The process noise was chosen in a way 

that the estimated position follows the measured one quickly with the least noise. Increasing 

Q increases the lag between the estimated and measured variables. This, Q was chosen 0.001 

for latitude and longitude.  
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Figure 6.1. Kalman Filter Algorithm. Stationary Quadcopter (Left), a Small Quadcopter Tour 

(Right) 

Another test was done to validate the estimated speed. The quadcopter was put in a 

car which is moving at known speeds between 0 and 40 Km/h or 0 to 11 m/s with several 

accelerations and decelerations. Figure 6.2 below shows the estimated speed of the 

quadcopter when it was moving at an average speed of 20 Km/h or 5.5 m/s.  

 

Figure 6.2. Estimated Quadcopter Speed 

6.3. NAZA-BASED QUADCOPTER  

As mentioned before, the leader quadcopter is equipped with a Naza flight controller 

and GPS/compass modules. The scenario here was to test if the leader quadcopter can 
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individually track a setpoint with adjusting its bearing. The setpoint was set, relative to its 

first position, to (-18 m, -18 m) or approximately 25 m of direct distance.  The leader was 

able to adjust its heading and reach the desired waypoint in around 12 seconds. However, a 

slight deviation from the desired goal position can be noticed and it can be neglected.  

 

Figure 6.3. Calculated Heading (Left), Actual Path (Right) 

6.4. AR-DRONE 

The goal was to control the AR Drone using AR Drone Simulink Development-Kit 

V1.1 (by David Escobar Sanabria) on MATLAB (version 2014). AR Drone has been able to 

receive just two high-level commands (takeoff and land), in addition to waypoint tracking via 

the serial monitor of Arduino UNO. But many problems have been encountered, such as 

unexpected information loss and malfunctioned software (caused by limited capability of 

available PC). The AR drone kit did not meet the need for video extraction to detect fire 

through its camera. To solve this problem, Python is adopted instead of MATLAB. Via 

Python, full control was achieved with accessing the AR Drone Camera, thus, real video 

stream and image capturing. But the libraries do not support the extraction of sensors’ data 

(e.g., accelerometer, magnetometer, etc.), thus, no full access to data for extraction. Finally, 



115 

 

to solve this problem, NodeJS was adopted instead of Python. Via NodeJS, full control and 

data extraction were achieved. However, flying according to leader data was not achieved 

yet. All this work has been done with ruined battery (maximum flight time does exceed 1 

min). 

To eliminate this issue, AR Drone was connected directly to a power supply with a 

cable of 1.5 mm2 thickness and length of 10 m. But this method failed due to completely 

unknown reasons, even if the length of the cable was decreased or the voltage was increased 

to avoid the voltage drop and other consequences.  

6.5. SWARMING 

After a lot of unsuccessful trials to coordinate between the leader and the followers 

because of hardware issues, the expected trajectory of the 2 followers was simulated and is 

shown in Figure 6.4.  

 

Figure 6.4. Quadcopter Swarm Following a Desired Setpoint 
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6.6. NEURAL NETWORKS  

Training the Neural Network model to detect fires and smoke in a live video stream 

was done by iterating 30000 times. Figure 6.5 shows the essential training parameters. 

Training losses and average training losses should be as low as possible and if the average 

training losses becomes less than 0.0607, the training can be stopped and best results are 

acquired. The fire and smoke detection accuracy graphs shows that the detection accuracy 

after approximately 1000 iterations becomes 20% and after 30000 iterations, it settles at 

approximately 98% for fire and 95% for smoke. The precision percentage is the ratio of true 

positive images (images containing fire and smoke) to the total number of positive 

predictions. Intersection over Union (IoU) percentage is the accuracy of the detection 

algorithm given a dataset. The F1-score is the model’s accuracy over a give dataset. It is a 

combination between the precision percentage and recall percentage of the model. And 

finally, the mean average precision percentage from its name, is the average of the training 

precision percentage.  
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Figure 6.5. Training Losses (a), Detection Accuracy (b), Training Precision Percentage (c), 

Average Intersection Over Union (d), F1 Score (e), and Mean Training Precision (f) 
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Figure 6.6. Detected Fires and Smokes in a Video Frame 

6.7. GIMBAL 

The gimbal is receiving its commands from python which calculates the desired 

servo deviation angles based on the fires and smoke center coordinates. The gimbal’s center 

position is at (roll = 30o, yaw = 30o). Table 6.1 below shows the desired rolling and yawing 

gimbal angles calculated from the central x and y coordinates and Figure 6.7 shows the 

gimbal desired angles received from python.  
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Table 6.1. Gimbal Roll and Yaw Data Associated to the frame coordinates 

X Y Roll Yaw 
0 

42 

50 

47 

42 

23 

54 

61 

53 

49 

39 

48 

50 

50 

47 

61 

51 

33 

70 

60 

61 

48 

38 

32 

53 

42 

38 

50 

0 

47 

50 

52 

32 

50 

46 

59 

70 

37 

45 

54 

62 

50 

52 

59 

74 

43 

35 

47 

50 

40 

48 

47 

70 

43 

44 

39 

30 

32 

32 

30 

42 

42 

45 

38 

24 

33 

36 

33 

24 

24 

22 

15 

70 

75 

85 

87 

87 

94 

95 

97 

80 

85 

89 

96 

30 

44 

44 

49 

63 

111 

103 

83 

77 

79 

99 

102 

102 

102 

107 

87 

13 

43 

7 

-11 

-30 

-26 

-4 

28 

22 

36 

57 

57 
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Figure 6.7. Gimbal Input Controlled from PC 

 

6.8. CONCLUSION 

This chapter presented the hardware results of individual and swarming tests done. The leader 

was expected to calculate its bearing and follow a predefined setpoint then the followers were 

expected to follow it with keeping a safe distance between them. The training showed 

satisfactory results in terms of fire and smoke detection with accuracy up to 98%. 
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CHAPTER 7. CONCLUSION 

7.1. GENERAL CONCLUSION 

This thesis presented the design and implementation of an autonomous swarm of 3 

quadcopters. The first stage covered the simulation via Simulink of the quadcopters flying 

with triangular shape and following a predefined path along with an offline obstacle 

avoidance algorithm based on artificial potential fields. The second part covered the hardware 

and software implementation of 3 system-different quadcopters where each has its own 

functions. However, this project gave unsatisfactory results in terms of swarming but with 

good enough individual controllers. Dealing with different systems was the main interrupting 

factor that led to coordination errors. Hence, it was more feasible to fully deploy the system 

on 1 drone only and then generalize it on 2 other drones. All the work done in this thesis can 

be summed by:  

• A successful coordination between the leader (Naza-based) and 1 follower 

(MultiWii-based) quadcopters was done. The 2 drones were able to arm together and 

receive high order commands such as takeoff or land. Hence, the first part 

(communication between drones) to achieving a functional swarm of quadcopters is 

done. 

• A sudden ESC failure in the MultiWii-based follower occurred which prevented the 

continuity of the cooperative control. Where, all the used parts in this project were 

borrowed and any replacement part cannot be bought because of the economic crisis 

in Lebanon.  
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• Sudden sensor failures occur in the MultiWii board and a calibration is needed every 

2 consecutive power ONs. This can be because the MultiWii flight controller has 

been settled unused for approximately 4 years which resulted in sensor malfunctions.  

• The plan from the beginning was to use a ready-to-use flight controllers and focus 

only on the swarming part. However, the position and altitude controller functions in 

the MultiWii flight controller were malfunctioned which was a very time-consuming 

to redesign a new altitude and position controllers.   

• Besides the very good results obtained from Kalman filter when filtering GPS data 

only, it was very difficult to increase the position refresh rate by fusing the 

accelerometer measurements with GPS ones. This depends on the accelerometer 

quality which was not that good at all.  

For the fire detection system, the project implementation of a forest fire and smoke 

detection system based on Darknet-53 and YOLO v3 object detection networks. A camera 

was mounted on a quadcopter, which was not shown intact, that will transmit back a live 

video stream of the target forest in order for the detection system to calculate the desired 

gimbal deviations to maintain the video stream back at the middle of the fires and smoke. 

Training the neural network model was held on Google Colab’s GPU while the detection was 

performed on a CPU-based processor. The system was able to detect fires and smoke in a 

video stream successfully. Through analyzing and validating the output results, it can be 

concluded that: 

• Running the fire and smoke detection system on a GPU is 7 times faster than 

running it on a CPU. A significant fps drop resulted from running the system on 

CPU.  

• Training YOLO v3 models is much flexible compared to other types of models 

such as RCNN, faster RCNN etc. 
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• Training the model on 5000 iterations gave significantly unsatisfactory detection 

accuracy of 55% for smoke and 65% for fires. The model needed to be trained at 

a minimum number of 11,000 iterations to exceed the 90% accuracy line.  

7.2. FUTURE WORK 

From the valuable experience gained from this project, a complete drone-based fire 

detection system will be designed focusing only on 1 drone and by adding the work from the 

fire detection algorithms using neural networks group. In addition, by providing accurate 

drone position and heading in case of fire presence, it is possible to coordinate with a survey 

engineering team unit to precisely locate the fire on a map and take the necessary actions.  

And the fire detection system can be further developed in many ways. The propagation speed 

of the fires can be estimated for extra monitoring information that can help locals to better 

take decisions. In addition, the system can be trained to detect humans in video frames and 

send special kind of alert to the stakeholders. 
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APPENDIX A.  

A.1. PARAMETERS ESTIMATION 

In this section, physical parameters estimation is handled.  

A.1.1. Thrust and Drag Coefficients 

Thrust and drag constants are calculated according to the propellers used. UIUC 

university provides a datasheet for different types of propellers. In this work, GWS 1045 

propellers are used (10 inches in length and 4.5 inches pitch). 

𝑡ℎ𝑟𝑢𝑠𝑡 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 = 𝑏 =
𝐶𝑇 × 𝜌𝑎𝑖𝑟 × 𝑅4

4𝜋2
 

𝑑𝑟𝑎𝑔 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 = 𝑑 =
𝐶𝐻 × 𝜌𝑎𝑖𝑟 × 𝑅5

4𝜋2
 

With: 

𝐶_𝑇: 𝑇ℎ𝑟𝑢𝑠𝑡 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 =  0.137 

𝐶_𝐻: 𝐷𝑟𝑎𝑔 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 =  0.0092 

𝜌𝑎𝑖𝑟: 𝐴𝑖𝑟 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 = 1.135
𝑘𝑔

𝑚3
 

𝑅: 𝑅𝑜𝑡𝑜𝑟 𝑅𝑎𝑑𝑖𝑢𝑠 = 5 𝑖𝑛𝑐ℎ𝑒𝑠 = 0.127 𝑚 

A.1.2. Drag Force 

𝑘𝑓𝑥 = 𝑘𝑓𝑦 = 𝑘𝑓𝑧 =
1

2
𝐶𝐷𝜌𝑎𝑖𝑟𝑆 

𝐶𝐷: 𝐷𝑟𝑎𝑔 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 = 0.63 

𝑆: 𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑎𝑟𝑒𝑎, 𝑘𝑛𝑜𝑤𝑛 𝑎𝑠 𝑜𝑟𝑡ℎ𝑜𝑔𝑟𝑎𝑝ℎ𝑖𝑐 𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 = 0.006 𝑚2 
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A.1.3. Moment of Inertia 

The quadcopter is assumed to be symmetrical. It can be seen as a main sphere with 

its center coincides with the center of mass connected into 4 smaller spheres (motors) through 

rectangle rods. The inertia around each axis can be calculated as: 

𝐼𝑥𝑥 = 𝐼𝑦𝑦 =
2

5
× 𝑀 × 𝑅2 + 2 × 𝑚𝑚𝑜𝑡𝑜𝑟 × 𝑙2 

𝐼𝑧𝑧 =
2

5
× 𝑀 × 𝑅2 + 4 × 𝑚𝑚𝑜𝑡𝑜𝑟 × 𝑙2 

Where: 

𝑅: 𝑅𝑎𝑑𝑖𝑢𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑚𝑎𝑖𝑛 𝑠𝑝ℎ𝑒𝑟𝑒 (𝑚) 

𝑙: 𝑄𝑢𝑎𝑑𝑐𝑜𝑝𝑡𝑒𝑟 𝑎𝑟𝑚 𝑙𝑒𝑛𝑔𝑡ℎ 

𝑀:𝑀𝑎𝑠𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑚𝑎𝑖𝑛 𝑠𝑝ℎ𝑒𝑟𝑒 (𝑘𝑔) 

𝑚𝑚𝑜𝑡𝑜𝑟:𝑀𝑎𝑠𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑚𝑜𝑡𝑜𝑟𝑠 (𝑘𝑔) 
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