

Karlsruhe/Heidelberg, Germany Karlsruhe/Heidelberg, Germany

Final Report for TEMOLeb-Mintad/VaEf-Airship

(1999 - 2020)

1. Development of a flight control system for an airship (System Development and Hardware Development)

(1999-2006)

2. Development of a communication system (2013) / Communication System with HarckRF (2020)

3. Aerodynamic Investigations for a High-Altitude Airship (Platform) (2017)

4. Building of a small prototype of an airship (2017)

5. Development of a GCS (Ground Control System) (Software Development and System Integration) (2018)

6. Development of a FCS (Flight Control System) (Software Development and System Integration)

(2018/2019)

7. Marketing Concept (2017-2019)

Last Update: 31.07.2020 02:42

Project Manager: Dr. Samir Mourad

Based on following research reports:

 Mourad S., Forstmann S., Subhan M., E.J., Farkh R., Abdelhaq N., Faquir M., Mikou M.Y., Ammar

A., Flight Control System for an Wind Data Measuring Airship (Project Report for 2000 - 2006),

Karlsruhe, 2006

 Zohby, Mourad; Emergency Communication System for IAP-SAT, Jan 2014

 Mourad S, Bakri S, Shaker A, Mourad A, TEMO-Leb Airship Report 2017

 MMJZ, TEMO-Leb Airship FCS, 2018

 MMJZ, TEMO-Leb Airship GCS, 2018/9

@AECENAR 2020 - Heidelberg/Germany

http://aecenar.com/180413alternativeLotteAirship_ProjectReport2000-2006.htm
http://aecenar.com/180413alternativeLotteAirship_ProjectReport2000-2006.htm
http://aecenar.com/180413alternativeLotteAirship_ProjectReport2000-2006.htm
http://aecenar.com/index.php/downloads/send/10-iap/244-iap-ecs-dez2013-a3
http://aecenar.com/index.php/downloads/send/13-temo-space-communication/324-250117temolebanon-businessplanairshipbasedcommplatform-2017-2018
http://aecenar.com/index.php/downloads/send/13-temo-space-communication/324-250117temolebanon-businessplanairshipbasedcommplatform-2017-2018

Content in Short

PROJECT MANAGEMENT .. 1

1 SYSTEM REQUIREMENTS ANALYSIS (المنظومة متطلبات تحليل) ... 2

2 POSTERS ... 5

DEVELOPMENT OF A FLIGHT CONTROL SYSTEM FOR AN AIRSHIP (1999-2006) ..11

ABSTRACT ..26

3 INTRODUCTION ...28

4 PROJECT MANAGEMENT ...29

5 FLIGHT CONTROL SYSTEM OF AN AIRSHIP ...30

6 OPTIMIZATION OF THE FLIGHT CONTROL SYSTEM ARCHITECTURE ..62

7 DEVELOPMENT OF THE EREIGNISDIENSTES FOR THE MIDDLEWARE OSA+ ..79

8 INERTIAL MEASUREMENT UNIT ... 128

LITERATURE ... 171

9 ACTUATOR BOARD .. 173

LITERATURE ... 236

10 COMMUNICATION AND USER INTERFACE ... 249

FEATURES .. 296

OR THE BOARD USED TO EQUIPS THE STD-402 IS THE MB-STD-RS232, SO THE THIS MODE (AUTO MODE OPERATION

GUIDE FOR CPU INTERFACE) IS USED LIKE MODE OF THE STD-402 TRANSCEIVER. ... 322

11 SOME REPAIRS ON THE SENSOR CARD AND FIRST STEP INTEGRATION ... 376

12 INTEGRATION .. 410

13 INTEGRATION CODE IN C ... 489

DEVELOPMENT OF A COMMUNICATION SYSTEM (2013) ... 497

ABBREVATIONS ... 501

14 ABSTRACT ... 503

15 PROJECT MANAGEMENT ... 505

16 BASICS ... 507

FIGURE 6.6: STD-402 TRANSCEIVER – CIRCUIT DESIGN .. 546

OR THE MB-STD-RS232 EQUIPS STD-402 TRANSCEIVER MODULE AND PERFORMS PACKET COMMUNICATION USING

CPU INTERFACE MODE OF THE TRANSCEIVER. ... 547

17 SPECIFICATION .. 551

18 SYSTEM DESIGN .. 553

19 MECHANICS ... 557

20 SCS-SMS .. 559

21 AES ENCRYPTION ... 583

22 HARDWARE OF ECS DEMO SYSTEM ... 599

Content in Short

III

23 FURTHER WORK: SYSTEM INTEGRATION AND INTEGRATION TEST OF ECS DEMO SYSTEM.............................. 611

APPENDIX A: ALTERNATIVE PROJECT PLANS .. 612

APPENDIX B: ALL ABOUT HACKRF .. 616

APPENDIX C: ALTERNATIVE SYSTEM DESIGNS .. 624

LITERATURE ... 625

COMMUNICATION SYSTEM WITH HARCKRF (FROM IAP-SAT, 6TH PROJECT REPORT) (2020) 626

24 TELEMETRY SYSTEM WITH HARCKRF ... 627

AERODYNAMIC INVESTIGATIONS FOR A HIGH-ALTITUDE AIRSHIP (PLATFORM) (2017) ... 644

25 BASICS ... 645

26 AERODYNAMIC INVESTIGATION OF A HIGH ALTITUDE AIRSHIP... 667

27 REFERENCES .. 692

APPENDIX A: CONTACT DATA OF SPECIALISTS (معلم), WORKERS, 694

APPENDIX B: FOR AERODYNAMIC INVESTIGATION .. 695

BUILDING OF THE FRAME INCLUDING ACTUATORS FOR A SMALL PROTOTYPE OF AN AIRSHIP (2017)..................... 697

28 BASICS CONCERNING ACTUATORS USED IN AEROSPACE ... 698

29 ACTUATOR SYSTEM OF TEMOLEB-MINTAD ... 716

30 PROTOTYPE CONSTRUCTION ... 735

APPENDIX C: FOR ACTUATOR SYSTEM ... 741

APPENDIX D: FOR PROTOTYPE CONSTRUCTION .. 743

DEVELOPMENT OF A GCS (GROUND CONTROL SYSTEM) (2018) ... 745

CONTENTS ... 746

31 APP STRUCTURE: ... 747

32 WIDGET: .. 750

33 CONFIGURATION PAGE: .. 753

34 CONTROLLERS ... 758

35 USER CONTROL CODE SUMMARY: ... 759

36 REFERENCES: ... 764

DEVELOPMENT OF A FCS (FLIGHT CONTROL SYSTEM) (2018) ... 765

37 SYSTEM ARCHITECTURE .. 768

38 SERVO ACTUATOR SYSTEM ... 769

39 REALIZATION OF INERTIAL MEASUREMENT UNIT (IMU) .. 778

40 WIFI COMMUNICATION WITH NRF24L01 .. 788

41 SOFTWARE DEVELOPMENT ON ARDUINO SIDE WITH THE ARDUINO INTEGRATED DEVELOPMENT

ENVIRONMENT (IDE) ... 792

42 ASSEMBLY ... 808

43 FINAL IMPLEMENTATION .. 816

44 MINTAD PROTOTYPE TEST RIG QUICK GUIDE .. 817

MARKETING CONCEPT (2017-2019) ... 818

LITERATURE ... 820

V

Content

PROJECT MANAGEMENT .. 1

1 SYSTEM REQUIREMENTS ANALYSIS (المنظومة متطلبات تحليل) ... 2

 2 .. 81.2.2.81 في للمشروع اولي نشر 1.1

 3 ... (Calculation) التكلفة حساب 1.1.1

 3 ... القبيسي مسجد في 11.1.1.11 في OGERO مدير الايوبي، باسل الاستاذ مع لقاء 1.1.1

 3 ... (SYSTEM REQUIREMENTS)المنظومة متطلبات 1.2

 4 ... (TEMOLEB-MINTAD/MECHANICS) المنطاد وتصنيع تصميم 1.3

 4 ... (TEMOLEB-MINTAD/ELECTRONICS) المنطاد في ايلكترونيك 8.4

2 POSTERS ... 5

DEVELOPMENT OF A FLIGHT CONTROL SYSTEM FOR AN AIRSHIP (1999-2006) ..11

ABSTRACT ..26

3 INTRODUCTION ...28

3.1 THE LOTTE PROJECT AND THE “ALTERNATIVE LOTTE” ... 28

4 PROJECT MANAGEMENT ...29

4.1 COSTS .. 29

5 FLIGHT CONTROL SYSTEM OF AN AIRSHIP ...30

5.1 BLOCK DIAGRAM OF THE CONTROL LOOPS ... 61

6 OPTIMIZATION OF THE FLIGHT CONTROL SYSTEM ARCHITECTURE ..62

6.1 THE ARCHITECTURE OF THE FLIGHT CONTROL SYSTEM AND ITS SIMULATION ON THE MIDDLEWARE OSA+ RUNNING ON THE

OPERATING SYSTEM WINDOWS .. 62

6.2 RESULTS ... 63
6.2.1.1 System Architecture of Airship Flight Control System ...71
6.2.1.2 Simulation Code (in programming language C) ...71
6.2.1.3 Simulation results ..71

7 DEVELOPMENT OF THE EREIGNISDIENSTES FOR THE MIDDLEWARE OSA+ ..79

7.1 ABRIDGED VERSION .. 82

7.2 THE NATURE OF THE TASK .. 82

7.3 THE OSA+ ARCHITECTURE ... 82

7.3.1 Introduction .. 83

7.3.2 The components of OSA+ .. 84
7.3.2.1 The Platform ..84
7.3.2.2 Generic Services...85

7.4 COMPONENTS OF THE OSA EVENTING SERVICE .. 86

7.4.1 The time functions .. 86
7.4.1.1 The handling of the time..86
7.4.1.2 Initialization ...87
7.4.1.3 Functions for time management ...89

7.4.2 The event service ... 90
7.4.2.1 General Information ..90
7.4.2.2 The initialization of the Event Service ..92
7.4.2.3 Features of the Ereignisdienstes ..92

Content

VI

7.5 SHORT OVERVIEW .. 94

7.5.1 Time functions/variables ... 94

7.5.2 Features of the Event Service (Ereignisdienst) .. 94

7.6 CONFIGURATION .. 94

7.7 THEORY OF OPERATION ... 96

7.7.1 Osagettime() ... 96

7.7.2 Osasettime(int,int) .. 96

7.7.3 Osaaddtime(int,int) ... 98

7.7.4 Char * osaPrintTime(int, int) ... 98

7.7.5 Osainitevents() .. 99

7.7.6 Int osaAddEvent(uint,uint, uint, uint,uint, uint,uint, uint, function) ... 99

7.7.7 Int osaDelEvent(uint,uint,uint,UINT) ... 101

7.7.8 OSA_Error osaGetEventResult(uint,UINT) ... 101

7.7.9 Internal functions of the Ereignisdienstes ... 102

7.8 PROGRAMMING EXAMPLES .. 102

7.8.1 For example: Changing the Time .. 102

7.8.2 Example: Add an Event ... 103
7.8.2.1 Start a function at a specified time ..103
7.8.2.2 Repeated start a function ..105

7.8.3 Queries of results .. 106

7.8.4 Delete a Events.. 106

7.9 TEST RUNS .. 107

7.9.1 Deliver-Test ... 109

7.9.2 Test run of a cyclical events with open ... 110

7.9.3 Test the maximum temporal resolution on different systems .. 113
7.9.3.1 System 1 ..113
7.9.3.2 System 2 ..116
7.9.3.3 System 3 ..118

7.9.4 Stability tests ... 121
7.9.4.1 Exceeding the maximum acceptable number of Events ..121
7.9.4.2 Exceeding the maximum acceptable number of events per unit time ..122
7.9.4.3 Overrun of the events per unit time through Zeituberschneidung ...123

7.10 RESULTS AND OUTLOOK .. 126

7.11 ANNEX ... 127

7.11.1 List of all Windows specific functions ... 127

7.12 LITERATURE ... 127

8 INERTIAL MEASUREMENT UNIT ... 128

8.1 INTRODUCTION .. 133

8.1.1 Task ... 133

8.1.2 Overview ... 134

8.2 BASICS ... 135

8.2.1 Coordinate System .. 136

8.2.2 Calculation of the current position .. 137

8.2.3 Compass .. 138

8.3 ARCHITECTURE DESIGN OF THE IMU .. 139

8.3.1 Measurement Data Collection (Meßdatenaufnahme) .. 139

8.3.2 Measurement Data Processing (Meßdatenaufbereitung) .. 139

8.4 DEVELOPMENT ENVIRONMENT .. 141

8.4.1 Hardware-Entwicklungsumgebung ... 141

Content

VII

8.4.2 Software Development Environment .. 142

8.5 REALIZATION OF THE IMU ... 143

8.5.1 Meßdatenaufnahme ... 143
8.5.1.1 Circuit Design for the Meßdatenaufnahme ...143
8.5.1.2 Reference Voltage ...150

8.5.2 Board layout design for the Meßdatenaufnahme (Measurement data collection) 151

8.5.3 Meßdatenaufbereitung ... 153
8.5.3.1 Circuit Design for the Meßdatenaufbereitung ...153

8.5.4 Board layout design for the Meßdatenaufbereitung .. 155
8.5.4.1 The software for the Meßdatenaufbereitung ..157
8.5.4.2 User Interface ..161

8.6 TEST RESULTS .. 165

8.6.1 Hardware-Test .. 165

8.7 TEST OF THE OVERALL SYSTEM WITH THE MICROCONTROLLER (C167) ... 166

8.7.1 Gesamtsystem-Test 1 .. 166

8.7.2 Gesamtsystem-Test 2 .. 168

8.7.3 Gesamtsystem-Test 3 .. 168

8.8 SUMMARY AND OUTLOOK .. 170

LITERATURE ... 171

9 ACTUATOR BOARD .. 173

9.1 INTRODUCTION .. 181

9.1.1 The Solarluftschiff Lotte .. 181

9.1.2 Task ... 182

9.1.3 Overview ... 182

9.2 BASICS ... 183

9.2.1 Real-time systems ... 183

9.2.2 Hardware .. 183
9.2.2.1 Components and classifications...183
9.2.2.2 The microcontroller family C166 ...184
9.2.2.3 The C167 microcontroller family ...185
9.2.2.4 The memory organization of the C167) ...186
9.2.2.5 The interrupt system of the C167) ...188
9.2.2.6 The Timereinheiten ...190
9.2.2.7 Capture Compare Unit (Capcom) ...191
9.2.2.8 The PWM Pulsweiten-Einheit ..193
9.2.2.9 Analog Digital Converter (ADC) ..194

9.2.3 Control of servo motors .. 195

9.3 ARCHITECTURE DESIGN OF THE AKTORIK-ANSTEUERUNGSEINHEIT (ENGL, ACTUATOR CONTROL UNIT (ACU) 197

9.3.1 Voltage regulation .. 197

9.3.2 Betriebsspannungsuberwachung .. 198

9.3.3 Basisbetriebszustands-Einstellung .. 198

9.3.4 Steuersignal-Erzeugung .. 198

9.3.5 Notsteuerungsbaugruppe ... 199

9.3.6 Operating conditions of the ACU .. 200

9.3.7 Modularity of the ACU .. 200

9.4 DEVELOPMENT ENVIRONMENT .. 202

9.4.1 Hardware-Entwicklungsumgebung ... 202

9.4.2 Software Development Environment .. 203

9.5 REALIZATION OF THE ACU ... 204

Content

VIII

9.5.1 Versorgungsspannungs-Stabilisierung .. 204
9.5.1.1 Circuit Design for the Versorgungsspannungs-Stabilisierung ..205

9.5.2 Betriebsspannungsuberwachung .. 207

9.5.3 Basisbetriebszustands-Einstellung .. 208
9.5.3.1 Circuit Design for the Basisbetriebszustands-Einstellung ..211

9.5.4 Steuersignal-Erzeugung .. 212
9.5.4.1 The hardware of the Steuersignal-Erzeugung ..214
9.5.4.2 The monitoring and the forwarding of the PWM-signals from the remote control (normal operation (B).......214
9.5.4.3 Level 1 Notsteuersignal-Erzeugung ...219

9.5.5 Notsteuerungsbaugruppe ... 222
9.5.5.1 Circuit Design for the monitoring of the control signals on the output of the ACU and the channel5-output of

the Fernsteuerempfangers ...222
9.5.5.2 Circuit Design for the Notsteuerungsbaugruppe ...223
9.5.5.3 Circuit Design for the forwarding of the PWM-signals from Fernsteuerungsempfanger (Luftschiff-Startphasen -

operation) 224

9.5.6 Layout design of board 1 ("Voltage regulation", " Basisbetriebszustands-Einstellung " and "

Notsteuerungs-Baugruppe ") ... 224

9.5.7 The circuit boards of the ACU.. 225

9.6 EXPERIMENTAL RESULTS .. 227

9.6.1 Structure of the Testplatzes .. 227

9.6.2 Experiments and test sequence... 228

9.6.3 The series of tests .. 228
9.6.3.1 Test 1 ...229
9.6.3.2 Test 2 ...230
9.6.3.3 TEST3. ..231
9.6.3.4 Test 4 ...232
9.6.3.5 Test 5 ...233

9.7 SUMMARY AND OUTLOOK .. 235

LITERATURE ... 236

9.8 APPENDIX A: CIRCUIT DESIGN FOR THE STABILIZATION OF POWER SUPPLY VOLTAGE 237

9.9 ANNEX B: TEST PROGRAM 1.. 240

10 COMMUNICATION AND USER INTERFACE ... 249

10.1 INTRODUCTION .. 249

10.1.1 The LOTTE project and the “alternative Lotte” ... 249

10.1.2 Development method ... 250

10.1.3 Working task and realization approach ... 250

10.1.4 Overview ... 250

10.2 BASICS ... 251

10.2.1 The V-Model ... 251

10.2.2 Structured Analysis (SA) / Structured Design (SD) .. 252

10.2.3 Transceivers .. 254

10.3 REQUIREMENTS SPECIFICATION ... 254

10.3.1 The Graphical User Interface (GUI) ... 254
10.3.1.1 Software Requirements Specification ..255

10.3.2 Specifications for the transceiver.. 259

10.3.3 Communication Protocol for User Data .. 259

10.3.4 Handshaking ... 261

10.4 ARCHITECTURE DESIGN ... 261

10.5 DEVELOPMENT ENVIRONMENTS .. 263

Content

IX

10.6 DESIGN AND IMPLEMENTATION ... 263

10.6.1 SA / SD and Implementation for the base station program ... 263
10.6.1.1 SA (Structured Analysis) ...263
10.6.1.2 SD (Structured Design) ...267
10.6.1.3 Implementation ...270

10.6.2 Communication part on the board system on the airship .. 273
10.6.2.1 The tranceiver ..273
10.6.2.2 The communication software on the embedded board computer ...278

10.7 COMPONENT TESTS .. 279

10.7.1 Transceiver test .. 279

10.7.2 User interface laboratory test with two PCs ... 282

10.7.3 Test of the user interface on the target system .. 284

10.8 ANNEX A .. 285

10.9 ANNEX B .. 295

10.9.1 Block diagram of the STD-402 transceiver in Direct Mode ... 309

10.10 ANNEX C .. 310

 STD-402TR [Auto Mode Operation Guide] ..310

10.10.1 General ... 310

10.10.2 Features .. 311

10.10.3 Application Examples.. 311

10.10.4 Configuration .. 311

10.11 REGISTRATION OF ID .. 315

10.11.1 diagram of the STD-402 transceiver in Auto Mode .. 321

10.12 ANNEX D ... 322

10.13 COMMUNICATION PROTOCOL .. 326

10.13.1 STD-402 Data Format ... 326

10.13.2 Transmitter : Initial setting flow chart .. 328
10.13.2.1 Receiver : Initial setting flow chart ...329

10.13.3 Receiver: Flow chart at power ON .. 334

10.14 ANNEX E: VISUAL BASIC CODE FOR THE USER INTERFACE PROGRAM ... 341

10.15 ANNEX F: C PROGRAM CODE .. 368

10.16 ANNEX G ... 372

11 SOME REPAIRS ON THE SENSOR CARD AND FIRST STEP INTEGRATION ... 376

12 INTEGRATION .. 410

12.1 ABSTRACT ... 410

12.2 INTRODUCTION .. 414

12.2.1 The Lotte-Projekt and the "alternative Lotte" .. 414

12.3 DEVELOPMENT ENVIRONMENT .. 416

12.4 ARCHITECTURE DESIGN AND IMPLEMENTATION .. 417

12.5 LITERATURE ... 487

13 INTEGRATION CODE IN C ... 489

DEVELOPMENT OF A COMMUNICATION SYSTEM (2013) ... 497

ABBREVATIONS ... 501

14 ABSTRACT ... 503

15 PROJECT MANAGEMENT ... 505

15.1 PROJECT DEFINITION HISTORY .. 505

Content

X

15.2 SYSTEM BUDGET (TIME AND COST) FOR DEMO SYSTEM .. 505

15.3 AT 21 JAN STILL OPEN TASKS FOR IAP ECS DEMO SYSTEM WHEN USING (ONLY INTEGRATION) ... 505

16 BASICS ... 507

16.1 COMMUNICATION BASICS .. 507

16.1.1 Transmitter design from http://en.wikibooks.org/wiki/Electronics/Transmitter_design 519
16.1.1.1 Frequency synthesis and frequency multiplication ...520
16.1.1.2 Frequency mixing and Modulation ..521
16.1.1.3 RF power amplifiers ...527
16.1.1.4 Linking the transmitter to the aerial ..527
16.1.1.5 EMC matters ..528

16.2 RECEIVER DESIGN FROM HTTP://EN.WIKIPEDIA.ORG/WIKI/TUNER_(ELECTRONICS) ... 533

16.3 ANTENNA ... 534

16.4 SOFTWARE DEFINED RADIO (SDR) .. 536

16.5 HDSDR (HIGH DEFINITION SOFTWARE DEFINED RADIO) ... 536

16.6 EXTIO.DLL .. 537

16.7 HOW DO I DEVELOP AN EXTIO.DLL ? .. 537

16.8 VISUAL C++ 2008 EXPRESS ... 537

16.9 QT .. 537

16.10 RF HARDWARE (USB STICK) .. 537

16.10.1 TERRATEC ran T stick DVB-T/DAB/DAB + Stick USB 2.0 ... 537

16.10.2 Hackrf (an-open-source-SDR-platform) ... 538

16.11 RF OVERVIEW ... 538

16.12 RF FREQUENCIES POLICIES ... 539

16.13 RF MODULES .. 543

16.13.1 STD-402 .. 543
16.13.1.1 Special for MB-STD-RS232 ..543
16.13.1.2 Special for STD-402 (Transceiver) ...545

16.13.2 RFM42B-RFM31B 433MHz ... 547

16.13.3 BOWITZ W.T. .. 549

16.13.4 Comparison between modules ... 549

17 SPECIFICATION .. 551

17.1 SYSTEM REQUIREMENTS .. 551

17.2 HARDWARE REQUIREMENTS ... 551

17.3 SOFTWARE REQUIREMENTS .. 551

18 SYSTEM DESIGN .. 553

18.1 SYSTEM OVERVIEW... 553

18.2 CENTRAL STATION .. 553

18.2.1 Architecture .. 553

18.2.2 SDR development side .. 553

18.2.3 Graphical User Interface ... 554

18.3 MOBILE STATIONS .. 555

19 MECHANICS ... 557

19.1 MECHANICAL DESIGN ... 557

19.2 PROTOTYPE WITHOUT COVER .. 557

20 SCS-SMS .. 559

20.1 ABSTRACT OF SCS-SMS .. 559

Content

XI

20.2 SYSTEM DESIGN ... 559

20.3 ARCHITECTURES ... 560

20.4 PIC SOFTWARE .. 566

20.5 TEST .. 579

21 AES ENCRYPTION ... 583

21.1 INTRODUCTION .. 583

21.2 AES ALGORITHM ... 583

21.3 CODING ... 586

22 HARDWARE OF ECS DEMO SYSTEM ... 599

22.1 REALIZATION OF RF MODULE ... 599

22.1.1 Using STD-402 .. 599

22.1.2 Realization of RF Module Using RFM42B-RFM31B – 433MHz ... 603
22.1.2.1 Serial Periferal interface (SPI) ..603
22.1.2.2 The new hardware design..603
22.1.2.3 MSSP module to establishing (SPI) ..605

23 FURTHER WORK: SYSTEM INTEGRATION AND INTEGRATION TEST OF ECS DEMO SYSTEM.............................. 611

APPENDIX A: ALTERNATIVE PROJECT PLANS .. 612

APPENDIX B: ALL ABOUT HACKRF .. 616

B.1 HackRF overview .. 616

B.2 Jawbreaker ... 618

B.3 Jellybean .. 618

B.4 Lemondrop ... 619

APPENDIX C: ALTERNATIVE SYSTEM DESIGNS .. 624

LITERATURE ... 625

COMMUNICATION SYSTEM WITH HARCKRF (FROM IAP-SAT, 6TH PROJECT REPORT) (2020) 626

24 TELEMETRY SYSTEM WITH HARCKRF ... 627

24.1 TIME PLAN .. 627

24.2 INTRODUCTION .. 628

24.2.1 Links and references: .. 630

24.2.2 SDR (Software defined radio): .. 631

24.2.3 HDSDR: ... 631

24.2.4 SDRSharp: ... 632

24.2.5 GnuRadio: ... 634
24.2.5.1 Links: ..635

24.3 GETTING STARTED .. 635

24.3.1 Getting Started with HackRF and GNU Radio ... 637

24.3.2 HackRF with Raspberry PI: .. 638

24.4 SYSTEM 1 ... 641

24.5 SYSTEM 2 ... 643

24.2 SYSTEM 3 ... 643

AERODYNAMIC INVESTIGATIONS FOR A HIGH-ALTITUDE AIRSHIP (PLATFORM) (2017) ... 644

25 BASICS ... 645

Content

XII

25.1 HISTORY OF AIRSHIPS .. 645

25.2 EVOLUTION OF AIRSHIP .. 653

25.2.1 Hot air balloons .. 653

25.2.2 Dirigible or Airship .. 656

25.3 EVOLUTION OF THE AIRSHIP INDUSTRY .. 658

25.4 THE END OF AIRSHIP .. 658

25.5 RETURN OF AIRSHIP .. 659

25.6 ARCHIMEDES PRINCIPLE ... 660

25.7 TYPES OF AIRSHIPS .. 660

25.7.1 Non-rigid Airship ... 660

25.7.2 Semi-rigid airship .. 661

25.7.3 Rigid Airship .. 662

25.8 HOW DO RIGID AIRSHIP WORK? ... 663

25.9 WHY DO WE USE HELIUM NOT HYDROGEN? .. 664

25.10 CONTROL OF AIRSHIPS ... 664

26 AERODYNAMIC INVESTIGATION OF A HIGH ALTITUDE AIRSHIP... 667

26.1 AEROSTATIC OF AIRSHIP ... 667

26.1.1 Bouncy force ... 667

26.1.2 The relation between altitude and density ... 668

26.1.3 The relation between altitude and pressure ... 668

26.1.4 The relation between altitude and temperature .. 669

26.1.5 Pressure Altitude... 670

26.1.6 Influence of pressure, temperature, density and volume on the airship during its rise 670

26.1.7 Sizing the airship hull .. 671

26.2 TEMO-LEB AIRSHIP ... 672

26.2.1 Design of “TEMO-Leb Airship” .. 674
 Propeller ..675
 Rudder and Elevator ..675
 Frame of the airship ..676
 Outer shell of the airship ...677
 Airship with the internal gasbags ..678
 Airship with balloons ...679

26.2.2 Mass of framework ... 680

26.2.3 Mass of gasbags ... 682

26.2.4 Mass of external fabric ... 683

26.3 LOW ALTITUDE TEST TEMO-LEB AIRSHIP .. 684

26.3.1 New design with new dimensions of the Low altitude test TEMO-Leb Airship 684

26.3.2 Materials of the test device for the Low altitude test TEMO-Leb Airship in Lebanese market 685
1) Balloons filled with Helium ..685
2) Plexiglas ...686
3) External envelope ..686

26.4 RESULTS OF THEORETICAL STUDY ... 687

26.4.1 Results of “MATLAB” .. 687
1) Variation of the density with altitude..687
2) Variation of pressure with altitude..687
3) Variation of temperature with altitude ...689

4.1.2. V TEMOLeb Airship and the Vmax .. 689

4.1.3. Positive results .. 690

27 REFERENCES .. 692

Content

XIII

27.1 REFERENCES FOR CHAPTERS 1... 692

27.2 REFERENCES FOR SECTIONS 2.1, 2.10-2.15 AND CHAPTER 4 ... 692

27.3 REFERENCES FOR SECTIONS 2.2-2.9 AND CHAPTER 3 ... 693

APPENDIX A: CONTACT DATA OF SPECIALISTS (معلم), WORKERS, 694

APPENDIX B: FOR AERODYNAMIC INVESTIGATION .. 695

INITIAL WORKING PACKAGES ... 695

ESTIMATION FOR COSTS OF LOGGING SENSORS DURING FLIGHT ... 696

BUILDING OF THE FRAME INCLUDING ACTUATORS FOR A SMALL PROTOTYPE OF AN AIRSHIP (2017)..................... 697

28 BASICS CONCERNING ACTUATORS USED IN AEROSPACE ... 698

28.1 WHAT’S AN ACTUATOR? .. 698

28.2 TYPES OF ACTUATORS .. 699

28.2.1 Air Motors ... 699

28.2.2 Clutch/Brake: .. 700

28.2.3 Stepping Motors: .. 700

28.2.4 AC Induction Motors ... 701

28.2.5 Hydraulic motors: ... 702

28.2.6 Servomotors .. 703

28.3 TECHNOLOGY COMPARISONS .. 704

28.4 FIRST ACTUATOR CHOSEN: HYDRAULIC ACTUATOR ... 705

28.4.1 Applications of Hydraulic Motors ... 705

28.4.2 Types of hydraulic motors... 705
28.4.2.1 Gear motor ..706
28.4.2.2 Vane Motor ..707
28.4.2.3 Piston type motor ..708

28.4.3 Details about axial piston hydraulic motor: .. 709

28.4.4 Motor Installation Considerations: ... 709

28.5 SECOND ACTUATOR CHOSEN: SERVO ACTUATOR ... 711

28.5.1 Reason for choose of servo actuator: ... 711

28.5.2 General information about servo: .. 711

28.5.3 Types of servo motors ... 713

29 ACTUATOR SYSTEM OF TEMOLEB-MINTAD ... 716

29.1 HYDRAULIC ACTUATOR SYSTEM ... 716

29.1.1 Work principal for hydraulic motor .. 716

29.1.2 FreeCAD design proposal .. 717

29.2 SERVO ACTUATOR SYSTEM.. 719

29.2.1 Adopted Motor (Figure 28) ... 719

29.2.2 Basic parts of the servo (Figure 29) .. 719

29.2.3 Servo motor block diagram (Figure 30) .. 720
29.2.3.1 Control computer: ...720
29.2.3.2 Electronic control system: ...720
29.2.3.3 Motor: ..720
29.2.3.4 Gear train: ..720
29.2.3.5 Position sensor: ...721
29.2.3.6 Servo output: ...721

29.2.4 Design of servo actuator system (FreeCAD) ... 721

29.2.5 Motor Controller and Interfaces ... 721
29.2.5.1 Mobile App: ...722

Content

XIV

29.2.5.2 Bluetooth Module: (BLE Link -A Bluetooth 4.0 module for Arduino) ...722

29.2.6 Power Management: Polymer Lithium Ion Battery - 1000mah 7.4v .. 726

29.3 SOFTWARE DEVELOPMENT ON ARDUINO SIDE WITH THE ARDUINO INTEGRATED DEVELOPMENT ENVIRONMENT (IDE) 727

29.3.1 Architecture of the program on the Arduino .. 727

29.3.2 Bluetooth_Blimp_Control: Code and explication .. 728

29.4 FINAL ASSEMBLY .. 731

29.5 TESTING THE INTEGRATED ACTUATOR ... 733

30 PROTOTYPE CONSTRUCTION ... 735

APPENDIX C: FOR ACTUATOR SYSTEM ... 741

INITIAL WORKING PACKAGES ... 741

QUOTATION FOR ARDUINO BASED ACTUATOR SYSTEM .. 742

APPENDIX D: FOR PROTOTYPE CONSTRUCTION .. 743

INITIAL WORKING PACKAGES ... 743

DEVELOPMENT OF A GCS (GROUND CONTROL SYSTEM) (2018) ... 745

31 APP STRUCTURE: ... 747

31.1 HEADLINE WIDGET CONTAIN: ... 747

31.2 MAIN AREA: ... 748

31.3 LEFT NAVIGATION PANEL CONTAIN: .. 748

31.4 RIGHT NAVIGATION PANEL CONTAIN: ... 749

31.5 FOOTER WIDGET CONTAIN: ... 749

32 WIDGET: .. 750

32.1 HOME WIDGET: ... 750

32.2 ASI WIDGET: .. 750

32.3 MAP WIDGET:... 751

32.4 CAMERA WIDGET: .. 751

32.5 CONTROLLER WIDGET: .. 752

33 CONFIGURATION PAGE: .. 753

33.1 GENERAL INFO CONFIGURATION: .. 753

33.2 CONNECTION CONFIGURATION: .. 754

33.3 KNOBS CONFIGURATION: ... 754

33.4 PFD CONFIGURATION: .. 755

33.5 MAP CONFIGURATION: ... 755

33.6 ROUTE CONFIGURATION: ... 756

33.7 TASK CONFIGURATION: ... 757

34 CONTROLLERS ... 758

34.1 SIGNAL STRENGTH .. 758

34.2 KNOBS CONTROLLER ... 758

35 USER CONTROL CODE SUMMARY: ... 759

35.1 CONFIGURATION: ... 759

35.2 CONTROLLER: .. 759

35.3 FOOTERWIDGET: ... 759

35.4 HEADLINEWIDGET: ... 760

35.5 HOMEWIDGET: ... 760

Content

XV

35.6 MAPWIDGET: ... 760

35.7 PFDWIDGET: .. 760

35.8 MAINMENU: .. 761

35.9 APPCONFIG: ... 762

35.10 LIBRARIES: .. 763

36 REFERENCES: ... 764

DEVELOPMENT OF A FCS (FLIGHT CONTROL SYSTEM) (2018) ... 765

37 SYSTEM ARCHITECTURE .. 768

38 SERVO ACTUATOR SYSTEM ... 769

38.1 ADOPTED MOTOR .. 769

38.2 BASIC PARTS OF THE SERVO .. 769

38.3 SERVO MOTOR BLOCK DIAGRAM .. 770

38.3.1 Control computer: ... 770

38.3.2 Electronic control system: ... 770

38.3.3 Motor: ... 770

38.3.4 Gear train: .. 771

38.3.5 Position sensor: ... 771

38.3.6 Servo output: .. 771

38.4 DESIGN OF SERVO ACTUATOR SYSTEM (FREECAD) .. 771

38.5 MOTOR CONTROLLER AND INTERFACES .. 771

38.5.1 Mobile App: .. 772

38.5.2 Bluetooth Module: (BLE Link -A Bluetooth 4.0 module for Arduino) .. 772

38.5.3 Arduino controller: Romeo V2-All in one Controller-motor drive built in ... 773

38.5.4 Motor drive: HR 2 channel dc motordrive dual h bridge stepmotor reversing PWM speed control mini

L298N 775

38.6 POWER MANAGEMENT: POLYMER LITHIUM ION BATTERY - 1000MAH 7.4V ... 776

39 REALIZATION OF INERTIAL MEASUREMENT UNIT (IMU) .. 778

39.1 IMU-SENSOR: LSM9DS0 ... 779

39.2 LSM9DS0 HOOKUP GUIDE ... 780

39.2.1 Covered In This Tutorial .. 780

39.2.2 About the LSM9DS0 .. 780

39.2.3 Choose Your Own Adventure: SPI or I
2
C .. 781

39.2.4 Breakout Overview ... 782
39.2.4.1 The Pinout..782

1) Basic Arduino Example .. 785
2) Download and Install the Library...785
3) Simple Hardware Hookup (I

2
C) ..785

4) Open the LSM9DS0_Simple Example ..786

39.2.5 Resources and Going Further.. 787

40 WIFI COMMUNICATION WITH NRF24L01 .. 788

40.1 ARDUINO LIBRARY .. 789

41 SOFTWARE DEVELOPMENT ON ARDUINO SIDE WITH THE ARDUINO INTEGRATED DEVELOPMENT

ENVIRONMENT (IDE) ... 792

41.1 ARCHITECTURE OF THE PROGRAM ON THE ARDUINO .. 792

41.2 BLUETOOTH_BLIMP_CONTROL CODE .. 792

Content

XVI

41.3 IMU SENSOR LSM9DS0 CODE .. 795

41.4 CONTROL LOOP ... 797

41.5 WIFI COMMUNICATION CODE ... 797

41.6 FULL CODE .. 800

42 ASSEMBLY ... 808

42.1 ACTUATOR ASSEMBLY ... 808

42.2 IMU ASSEMBLY ... 814

42.3 WIFI MODULE ASSEMBLY .. 814

42.4 FULL ASSEMBLY ... 815

43 FINAL IMPLEMENTATION .. 816

43.1 MIGRATED TO SMALL PROTOTYPE .. 816

44 MINTAD PROTOTYPE TEST RIG QUICK GUIDE .. 817

MARKETING CONCEPT (2017-2019) ... 818

LITERATURE ... 820

1

Project Management

The project had the following phases:

1. Development of a flight control system for an airship (1999-2006)

2. Development of a communication system (uplink and downlink) (2013)

3. Aerodynamic Investigations for a High-Altitude Airship (Platform) (2017)

4. Building of a small prototype of an airship (2017)

5. Development of a FCS and GCS (Ground Control System) (2018)

Project Management

2

1 System Requirements Analysis (تحليل متطلبات المنظومة)

 11.2.2.11نشر اولي للمشروع في 1.1

Initial Project (published 18.2.2017, talked to investors)

Project Management

3

 (Calculation)حساب التكلفة 1.1.1

The concept is to take a fast internet bundel from OGERO and to distribute it.

OGERO من

عدد المستهلكين

 الاجمالي

معدل الاستهلاك الشهري

]GB[

بيع الخدمة

للمستهلك)ل.ل.(

GB 100الرسمم الشهري ل

)ل.ل.(3000 20 LBP 30.000

LBP 100.000

 ADSL More

than 8Mbps

عدد المستهلكين تسعهم

الpackage من

OGERO

5

الربح الاجمالي في الشهر packageالربح علي ال

LBP 30.000.000 LBP 50.000

الربح السنوي)$(

$240.000

الربح هنا هو الدخل السنوي لمشروع المنطاد
 في مسجد القبيسي 11.2.2.11في OGEROلقاء مع الاستاذ باسل الايوبي، مدير 1.1.2

 :نتيجة

 ولكن عن طريق الجامعة . الدولة اللبنيانية اصبحت لا تعطي رخص لشركات خاصة لبث الانترنت
 .ممكن ان شاء الله

 ما تفعلهgoogle كم وهذا خارج الاجواء 02 ن فوقهو ان يكون لديها مناطيد لبث الانترنت م
 .الدولة التي تحت هذا المنطاد واصبحت اخواء دولية مثل البحر البعيد عن الشاطىء

 (System Requirements)متطلبات المنظومة 1.2

[Sys 10]
 المنطاد يجب ان يكون

 كم 2في علو -أ

Project Management

4

 (البنانية اي خارج نطاق اجواء الدولة)كم 22في علو -ب

[Sys 20]

سم المنطاد مثبت بأضلع ج

 (TEMOLeb-Mintad/Mechanics)تصميم وتصنيع المنطاد 1.1

TEMOLeb-Mintad/Mechanics: Construction and Manufactoring of Airship

Master Thesises

Title Keywords, additional

information

Preferred Faculty/

Student Profile

Project

Conctruction of a solar

powered high altitude airship

Mechanics, FEM analysis,

airship, photovoltaics

Energetics TEMOLeb-

Mintad

Aerodynamic investigation for

high-altitude airship

Aerodynamics analysis,

airship

Energetics TEMOLeb-

Mintad

Mechanical constructing and

testing of an actuator system

for a high-altitude

CAD, actuator system,

airship

Energetics TEMOLeb-

Mintad

 (TEMOLeb-Mintad/Electronics)ايلكترونيك في المنطاد 1.1

Master Thesises

Title Keywords, additional

information

Preferred Faculty/

Student Profile

Project

Telemetry system for a high-

altitude airship

Remote control, automotive

control, sensor integration

Electronics/Control TEMOLeb-

Mintad

Satellite based internet

communication through a high-

altitude platform

Satellite communication,

transponder, antenna

control

Telecommunication/

Electronics

TEMOLeb-

Mintad

Project Management

5

2 Posters

Project Management

6

Project Management

7

For details see IAP-SAT Final Report (2012-2020)

Project Management

8

Project Management

9

Project Management

10

11

Development of a flight control system for an airship (1999-2006)

Association for Alternative Energy Research e.V.,

www.aecenar.com/c_institutes/vaef

TEMO Soft-, Hardware & Consulting e.K.

www.temo-ek.de

XIII

VaEf Airship project "alternative Lotte": Project Report (August

2000 – July 2006)

Development of a Flight Control System for a airship for measuring wind data

Based on student research works of

Samir Mourad, Sven Forstmann, Jamal E., Muhammad Subhan, Rabih al-Farkh, Nasih Abdelhaqq, Yaser Mikou,

Abdelfattah Ammar

Project Manager: Samir Mourad, Dipl.-Ing. Dipl.-Inform. (MS Sc. Computer Science, MS Sc. Electrical Engineering)

Mourad et. al.:

Karlsruhe, July 2006

Veröffentlicht von:

Verein für alternative Energieforschung e.V.

XV

CONTENT IN SHORT

PROJECT MANAGEMENT .. 1

) المنظومة متطلبات تحليل 1 SYSTEM REQUIREMENTS ANALYSIS) .. 2

2 POSTERS ... 5

DEVELOPMENT OF A FLIGHT CONTROL SYSTEM FOR AN AIRSHIP (1999-2006) ..11

ABSTRACT ..26

3 INTRODUCTION ...28

4 PROJECT MANAGEMENT ...29

5 FLIGHT CONTROL SYSTEM OF AN AIRSHIP ...30

6 OPTIMIZATION OF THE FLIGHT CONTROL SYSTEM ARCHITECTURE ..62

7 DEVELOPMENT OF THE EREIGNISDIENSTES FOR THE MIDDLEWARE OSA+ ..79

8 INERTIAL MEASUREMENT UNIT ... 128

TABLE OF CONTENTS ... 128

LIST OF FIGURES: ... 130

LIST OF TABLES .. 132

LITERATURE ... 171

9 ACTUATOR BOARD .. 173

TABLE OF CONTENTS ... 175

LIST OF FIGURES: ... 177

LITERATURE ... 236

APPENDIX A ... 237

ANNEX B .. 240

10 COMMUNICATION AND USER INTERFACE ... 249

FIGURE 6.6: STD-402 TRANSCEIVER – CIRCUIT DESIGN .. 276

ACK AUTO RESPONSE SETTING .. 293

FEATURES .. 296

 REGISTRATION OF ID ... 315

11 ANNEX D ... 322

OR THE BOARD USED TO EQUIPS THE STD-402 IS THE MB-STD-RS232, SO THE THIS MODE (AUTO MODE OPERATION

GUIDE FOR CPU INTERFACE) IS USED LIKE MODE OF THE STD-402 TRANSCEIVER. ... 322

12 SOME REPAIRS ON THE SENSOR CARD AND FIRST STEP INTEGRATION ... 376

13 INTEGRATION .. 410

14 INTEGRATION CODE IN C ... 489

DEVELOPMENT OF A COMMUNICATION SYSTEM (2013) ... 497

ABBREVATIONS ... 501

XVI

15 ABSTRACT ... 503

16 PROJECT MANAGEMENT ... 505

17 BASICS ... 507

FIGURE 6.6: STD-402 TRANSCEIVER – CIRCUIT DESIGN .. 546

OR THE MB-STD-RS232 EQUIPS STD-402 TRANSCEIVER MODULE AND PERFORMS PACKET COMMUNICATION USING

CPU INTERFACE MODE OF THE TRANSCEIVER. ... 547

18 SPECIFICATION .. 551

19 SYSTEM DESIGN .. 553

20 MECHANICS ... 557

21 SCS-SMS .. 559

22 AES ENCRYPTION ... 583

23 HARDWARE OF ECS DEMO SYSTEM ... 599

24 FURTHER WORK: SYSTEM INTEGRATION AND INTEGRATION TEST OF ECS DEMO SYSTEM.............................. 611

APPENDIX A: ALTERNATIVE PROJECT PLANS .. 612

APPENDIX B: ALL ABOUT HACKRF .. 616

APPENDIX C: ALTERNATIVE SYSTEM DESIGNS .. 624

LITERATURE ... 625

COMMUNICATION SYSTEM WITH HARCKRF (FROM IAP-SAT, 6TH PROJECT REPORT) (2020) 626

25 TELEMETRY SYSTEM WITH HARCKRF ... 627

AERODYNAMIC INVESTIGATIONS FOR A HIGH-ALTITUDE AIRSHIP (PLATFORM) (2017) ... 644

BUILDING OF A SMALL PROTOTYPE OF AN AIRSHIP (2017) .. 697

DEVELOPMENT OF A FCS (FLIGHT CONTROL SYSTEM) AND GCS (GROUND CONTROL SYSTEM) (2018) 745

MARKETING CONCEPT (2017-2019) ... 765

LITERATURVERZEICHNIS .. 820

Content

XVII

Content

PROJECT MANAGEMENT .. 1

 2 (SYSTEM REQUIREMENTS ANALYSIS) المنظومة متطلبات تحليل 1

 2 .. 81.2.2.81 في للمشروع اولي نشر 1.1

 3 ... (Calculation) التكلفة حساب 1.1.1

 3 ... القبيسي مسجد في 11.1.1.11 في OGERO مدير الايوبي، باسل الاستاذ مع لقاء 1.1.1

 3 ... (SYSTEM REQUIREMENTS)المنظومة متطلبات 1.2

 4 ... (TEMOLEB-MINTAD/MECHANICS) المنطاد وتصنيع تصميم 1.3

 4 ... (TEMOLEB-MINTAD/ELECTRONICS) المنطاد في ايلكترونيك 8.4

2 POSTERS ... 5

DEVELOPMENT OF A FLIGHT CONTROL SYSTEM FOR AN AIRSHIP (1999-2006) ..11

ABSTRACT ..26

3 INTRODUCTION ...28

3.1 THE LOTTE PROJECT AND THE “ALTERNATIVE LOTTE” ... 28

4 PROJECT MANAGEMENT ...29

4.1 COSTS .. 29

5 FLIGHT CONTROL SYSTEM OF AN AIRSHIP ...30

5.1 BLOCK DIAGRAM OF THE CONTROL LOOPS ... 61

6 OPTIMIZATION OF THE FLIGHT CONTROL SYSTEM ARCHITECTURE ..62

6.1 THE ARCHITECTURE OF THE FLIGHT CONTROL SYSTEM AND ITS SIMULATION ON THE MIDDLEWARE OSA+ RUNNING ON THE

OPERATING SYSTEM WINDOWS .. 62

6.2 RESULTS ... 63
6.2.1.1 System Architecture of Airship Flight Control System ...71
6.2.1.2 Simulation Code (in programming language C) ...71
6.2.1.3 Simulation results ..71

7 DEVELOPMENT OF THE EREIGNISDIENSTES FOR THE MIDDLEWARE OSA+ ..79

7.1 ABRIDGED VERSION .. 82

7.2 THE NATURE OF THE TASK .. 82

7.3 THE OSA+ ARCHITECTURE ... 82

7.3.1 Introduction .. 83

7.3.2 The components of OSA+ .. 84
7.3.2.1 The Platform ..84
7.3.2.2 Generic Services...85

7.4 COMPONENTS OF THE OSA EVENTING SERVICE .. 86

7.4.1 The time functions .. 86
7.4.1.1 The handling of the time..86
7.4.1.2 Initialization ...87
7.4.1.3 Functions for time management ...89

7.4.2 The event service ... 90
7.4.2.1 General Information ..90
7.4.2.2 The initialization of the Event Service ..92

XVIII

7.4.2.3 Features of the Ereignisdienstes ..92

7.5 SHORT OVERVIEW .. 94

7.5.1 Time functions/variables ... 94

7.5.2 Features of the Event Service (Ereignisdienst) .. 94

7.6 CONFIGURATION .. 94

7.7 THEORY OF OPERATION ... 96

7.7.1 Osagettime() ... 96

7.7.2 Osasettime(int,int) .. 96

7.7.3 Osaaddtime(int,int) ... 98

7.7.4 Char * osaPrintTime(int, int) ... 98

7.7.5 Osainitevents() .. 99

7.7.6 Int osaAddEvent(uint,uint, uint, uint,uint, uint,uint, uint, function) ... 99

7.7.7 Int osaDelEvent(uint,uint,uint,UINT) ... 101

7.7.8 OSA_Error osaGetEventResult(uint,UINT) ... 101

7.7.9 Internal functions of the Ereignisdienstes ... 102

7.8 PROGRAMMING EXAMPLES .. 102

7.8.1 For example: Changing the Time .. 102

7.8.2 Example: Add an Event ... 103
7.8.2.1 Start a function at a specified time ..103
7.8.2.2 Repeated start a function ..105

7.8.3 Queries of results .. 106

7.8.4 Delete a Events.. 106

7.9 TEST RUNS .. 107

7.9.1 Deliver-Test ... 109

7.9.2 Test run of a cyclical events with open ... 110

7.9.3 Test the maximum temporal resolution on different systems .. 113
7.9.3.1 System 1 ..113
7.9.3.2 System 2 ..116
7.9.3.3 System 3 ..118

7.9.4 Stability tests ... 121
7.9.4.1 Exceeding the maximum acceptable number of Events ..121
7.9.4.2 Exceeding the maximum acceptable number of events per unit time ..122
7.9.4.3 Overrun of the events per unit time through Zeituberschneidung ...123

7.10 RESULTS AND OUTLOOK .. 126

7.11 ANNEX ... 127

7.11.1 List of all Windows specific functions ... 127

7.12 LITERATURE ... 127

8 INERTIAL MEASUREMENT UNIT ... 128

TABLE OF CONTENTS ... 128

LIST OF FIGURES: ... 130

LIST OF TABLES .. 132

8.1 INTRODUCTION .. 133

8.1.1 Task ... 133

8.1.2 Overview ... 134

8.2 BASICS ... 135

8.2.1 Coordinate System .. 136

8.2.2 Calculation of the current position .. 137

8.2.3 Compass .. 138

Content

XIX

8.3 ARCHITECTURE DESIGN OF THE IMU .. 139

8.3.1 Measurement Data Collection (Meßdatenaufnahme) .. 139

8.3.2 Measurement Data Processing (Meßdatenaufbereitung) .. 139

8.4 DEVELOPMENT ENVIRONMENT .. 141

8.4.1 Hardware-Entwicklungsumgebung ... 141

8.4.2 Software Development Environment .. 142

8.5 REALIZATION OF THE IMU ... 143

8.5.1 Meßdatenaufnahme ... 143
8.5.1.1 Circuit Design for the Meßdatenaufnahme ...143
8.5.1.2 Reference Voltage ...150

8.5.2 Board layout design for the Meßdatenaufnahme (Measurement data collection) 151

8.5.3 Meßdatenaufbereitung ... 153
8.5.3.1 Circuit Design for the Meßdatenaufbereitung ...153

8.5.4 Board layout design for the Meßdatenaufbereitung .. 155
8.5.4.1 The software for the Meßdatenaufbereitung ..157
8.5.4.2 User Interface ..161

8.6 TEST RESULTS .. 165

8.6.1 Hardware-Test .. 165

8.7 TEST OF THE OVERALL SYSTEM WITH THE MICROCONTROLLER (C167) ... 166

8.7.1 Gesamtsystem-Test 1 .. 166

8.7.2 Gesamtsystem-Test 2 .. 168

8.7.3 Gesamtsystem-Test 3 .. 168

8.8 SUMMARY AND OUTLOOK .. 170

LITERATURE ... 171

9 ACTUATOR BOARD .. 173

TABLE OF CONTENTS ... 175

LIST OF FIGURES: ... 177

9.1 INTRODUCTION .. 181

9.1.1 The Solarluftschiff Lotte .. 181

9.1.2 Task ... 182

9.1.3 Overview ... 182

9.2 BASICS ... 183

9.2.1 Real-time systems ... 183

9.2.2 Hardware .. 183
9.2.2.1 Components and classifications...183
9.2.2.2 The microcontroller family C166 ...184
9.2.2.3 The C167 microcontroller family ...185
9.2.2.4 The memory organization of the C167) ...186
9.2.2.5 The interrupt system of the C167) ...188
9.2.2.6 The Timereinheiten ...190
9.2.2.7 Capture Compare Unit (Capcom) ...191
9.2.2.8 The PWM Pulsweiten-Einheit ..193
9.2.2.9 Analog Digital Converter (ADC) ..194

9.2.3 Control of servo motors .. 195

9.3 ARCHITECTURE DESIGN OF THE AKTORIK-ANSTEUERUNGSEINHEIT (ENGL, ACTUATOR CONTROL UNIT (ACU) 197

9.3.1 Voltage regulation .. 197

9.3.2 Betriebsspannungsuberwachung .. 198

9.3.3 Basisbetriebszustands-Einstellung .. 198

XX

9.3.4 Steuersignal-Erzeugung .. 198

9.3.5 Notsteuerungsbaugruppe ... 199

9.3.6 Operating conditions of the ACU .. 200

9.3.7 Modularity of the ACU .. 200

9.4 DEVELOPMENT ENVIRONMENT .. 202

9.4.1 Hardware-Entwicklungsumgebung ... 202

9.4.2 Software Development Environment .. 203

9.5 REALIZATION OF THE ACU ... 204

9.5.1 Versorgungsspannungs-Stabilisierung .. 204
9.5.1.1 Circuit Design for the Versorgungsspannungs-Stabilisierung ..205

9.5.2 Betriebsspannungsuberwachung .. 207

9.5.3 Basisbetriebszustands-Einstellung .. 208
9.5.3.1 Circuit Design for the Basisbetriebszustands-Einstellung ..211

9.5.4 Steuersignal-Erzeugung .. 212
9.5.4.1 The hardware of the Steuersignal-Erzeugung ..214
9.5.4.2 The monitoring and the forwarding of the PWM-signals from the remote control (normal operation (B).......214
9.5.4.3 Level 1 Notsteuersignal-Erzeugung ...219

9.5.5 Notsteuerungsbaugruppe ... 222
9.5.5.1 Circuit Design for the monitoring of the control signals on the output of the ACU and the channel5-output of

the Fernsteuerempfangers ...222
9.5.5.2 Circuit Design for the Notsteuerungsbaugruppe ...223
9.5.5.3 Circuit Design for the forwarding of the PWM-signals from Fernsteuerungsempfanger (Luftschiff-Startphasen -

operation) 224

9.5.6 Layout design of board 1 ("Voltage regulation", " Basisbetriebszustands-Einstellung " and "

Notsteuerungs-Baugruppe ") ... 224

9.5.7 The circuit boards of the ACU.. 225

9.6 EXPERIMENTAL RESULTS .. 227

9.6.1 Structure of the Testplatzes .. 227

9.6.2 Experiments and test sequence... 228

9.6.3 The series of tests .. 228
9.6.3.1 Test 1 ...229
9.6.3.2 Test 2 ...230
9.6.3.3 TEST3. ..231
9.6.3.4 Test 4 ...232
9.6.3.5 Test 5 ...233

9.7 SUMMARY AND OUTLOOK .. 235

LITERATURE ... 236

APPENDIX A ... 237

ANNEX B .. 240

10 COMMUNICATION AND USER INTERFACE ... 249

10.1 INTRODUCTION .. 249

10.1.1 The LOTTE project and the “alternative Lotte” ... 249

10.1.2 Development method ... 250

10.1.3 Working task and realization approach ... 250

10.1.4 Overview ... 250

10.2 BASICS ... 251

10.2.1 The V-Model ... 251

10.2.2 Structured Analysis (SA) / Structured Design (SD) .. 252

Content

XXI

10.2.3 Transceivers .. 254

10.3 REQUIREMENTS SPECIFICATION ... 254

10.3.1 The Graphical User Interface (GUI) ... 254
10.3.1.1 Software Requirements Specification ..255

10.3.2 Specifications for the transceiver.. 259

10.3.3 Communication Protocol for User Data .. 259

10.3.4 Handshaking ... 261

10.4 ARCHITECTURE DESIGN ... 261

10.5 DEVELOPMENT ENVIRONMENTS .. 263

10.6 DESIGN AND IMPLEMENTATION ... 263

10.6.1 SA / SD and Implementation for the base station program ... 263
10.6.1.1 SA (Structured Analysis) ...263
10.6.1.2 SD (Structured Design) ...267
10.6.1.3 Implementation ...270

10.6.2 Communication part on the board system on the airship .. 273
10.6.2.1 The tranceiver ..273
10.6.2.2 The communication software on the embedded board computer ...278

10.7 COMPONENT TESTS .. 279

10.7.1 Transceiver test .. 279

10.7.2 User interface laboratory test with two PCs ... 282

10.7.3 Test of the user interface on the target system .. 284

10.8 ANNEX A .. 285

10.9 ANNEX B .. 295

10.9.1 Block diagram of the STD-402 transceiver in Direct Mode ... 309

10.10 ANNEX C .. 310

 STD-402TR [Auto Mode Operation Guide] ..310

10.10.1 General ... 310

10.10.2 Features .. 311

10.10.3 Application Examples.. 311

10.10.4 Configuration .. 311

 REGISTRATION OF ID ... 315

10.10.5 diagram of the STD-402 transceiver in Auto Mode .. 321

11 ANNEX D ... 322

11.1 ... 326

11.2 STD-402 DATA FORMAT .. 326

11.2.1 Transmitter : Initial setting flow chart .. 328

11.2.2 Receiver: Flow chart at power ON .. 334

11.3 ANNEX E: VISUAL BASIC CODE FOR THE USER INTERFACE PROGRAM ... 341

11.4 ANNEX F: C PROGRAM CODE .. 368

11.5 ANNEX G .. 372

12 SOME REPAIRS ON THE SENSOR CARD AND FIRST STEP INTEGRATION ... 376

13 INTEGRATION .. 410

13.1 ABSTRACT ... 410

13.2 INTRODUCTION .. 414

13.2.1 The Lotte-Projekt and the "alternative Lotte" .. 414

13.3 DEVELOPMENT ENVIRONMENT .. 416

13.4 ARCHITECTURE DESIGN AND IMPLEMENTATION .. 417

XXII

13.5 LITERATURE ... 487

14 INTEGRATION CODE IN C ... 489

DEVELOPMENT OF A COMMUNICATION SYSTEM (2013) ... 497

ABBREVATIONS ... 501

15 ABSTRACT ... 503

16 PROJECT MANAGEMENT ... 505

16.1 PROJECT DEFINITION HISTORY .. 505

16.2 SYSTEM BUDGET (TIME AND COST) FOR DEMO SYSTEM .. 505

16.3 AT 21 JAN STILL OPEN TASKS FOR IAP ECS DEMO SYSTEM WHEN USING (ONLY INTEGRATION) ... 505

17 BASICS ... 507

17.1 COMMUNICATION BASICS .. 507

17.1.1 Transmitter design from http://en.wikibooks.org/wiki/Electronics/Transmitter_design 519
17.1.1.1 Frequency synthesis and frequency multiplication ...520
17.1.1.2 Frequency mixing and Modulation ..521
17.1.1.3 RF power amplifiers ...527
17.1.1.4 Linking the transmitter to the aerial ..527
17.1.1.5 EMC matters ..528

17.2 RECEIVER DESIGN FROM HTTP://EN.WIKIPEDIA.ORG/WIKI/TUNER_(ELECTRONICS) ... 533

17.3 ANTENNA ... 534

17.4 SOFTWARE DEFINED RADIO (SDR) .. 536

17.5 HDSDR (HIGH DEFINITION SOFTWARE DEFINED RADIO) ... 536

17.6 EXTIO.DLL .. 537

17.7 HOW DO I DEVELOP AN EXTIO.DLL ? .. 537

17.8 VISUAL C++ 2008 EXPRESS ... 537

17.9 QT .. 537

17.10 RF HARDWARE (USB STICK) .. 537

17.10.1 TERRATEC ran T stick DVB-T/DAB/DAB + Stick USB 2.0 ... 537

17.10.2 Hackrf (an-open-source-SDR-platform) ... 538

17.11 RF OVERVIEW ... 538

17.12 RF FREQUENCIES POLICIES ... 539

17.13 RF MODULES .. 543

17.13.1 STD-402 .. 543
17.13.1.1 Special for MB-STD-RS232 ..543
17.13.1.2 Special for STD-402 (Transceiver) ...545

17.13.2 RFM42B-RFM31B 433MHz ... 547

17.13.3 BOWITZ W.T. .. 549

17.13.4 Comparison between modules ... 549

18 SPECIFICATION .. 551

18.1 SYSTEM REQUIREMENTS .. 551

18.2 HARDWARE REQUIREMENTS ... 551

18.3 SOFTWARE REQUIREMENTS .. 551

19 SYSTEM DESIGN .. 553

19.1 SYSTEM OVERVIEW... 553

19.2 CENTRAL STATION .. 553

19.2.1 Architecture .. 553

Content

XXIII

19.2.2 SDR development side .. 553

19.2.3 Graphical User Interface ... 554

19.3 MOBILE STATIONS .. 555

20 MECHANICS ... 557

20.1 MECHANICAL DESIGN ... 557

20.2 PROTOTYPE WITHOUT COVER .. 557

21 SCS-SMS .. 559

21.1 ABSTRACT OF SCS-SMS .. 559

21.2 SYSTEM DESIGN ... 559

21.3 ARCHITECTURES ... 560

21.4 PIC SOFTWARE .. 566

21.5 TEST .. 579

22 AES ENCRYPTION ... 583

22.1 INTRODUCTION .. 583

22.2 AES ALGORITHM ... 583

22.3 CODING ... 586

23 HARDWARE OF ECS DEMO SYSTEM ... 599

23.1 REALIZATION OF RF MODULE ... 599

23.1.1 Using STD-402 .. 599

23.1.2 Realization of RF Module Using RFM42B-RFM31B – 433MHz ... 603
23.1.2.1 Serial Periferal interface (SPI) ..603
23.1.2.2 The new hardware design..603
23.1.2.3 MSSP module to establishing (SPI) ..605

24 FURTHER WORK: SYSTEM INTEGRATION AND INTEGRATION TEST OF ECS DEMO SYSTEM.............................. 611

APPENDIX A: ALTERNATIVE PROJECT PLANS .. 612

APPENDIX B: ALL ABOUT HACKRF .. 616

B.1 HackRF overview .. 616

B.2 Jawbreaker ... 618

B.3 Jellybean .. 618

B.4 Lemondrop ... 619

APPENDIX C: ALTERNATIVE SYSTEM DESIGNS .. 624

LITERATURE ... 625

COMMUNICATION SYSTEM WITH HARCKRF (FROM IAP-SAT, 6TH PROJECT REPORT) (2020) 626

25 TELEMETRY SYSTEM WITH HARCKRF ... 627

25.1 TIME PLAN .. 627

25.2 INTRODUCTION .. 628

25.2.1 Links and references: .. 630

25.2.2 SDR (Software defined radio): .. 631

25.2.3 HDSDR: ... 631

25.2.4 SDRSharp: ... 632

25.2.5 GnuRadio: ... 634
25.2.5.1 Links: ..635

XXIV

25.3 GETTING STARTED .. 635

25.3.1 Getting Started with HackRF and GNU Radio ... 637

25.3.2 HackRF with Raspberry PI: .. 638

2..4 SYSTEM 1 ... 641

25.5 SYSTEM 2 ... 643

2..2 SYSTEM 3 ... 643

AERODYNAMIC INVESTIGATIONS FOR A HIGH-ALTITUDE AIRSHIP (PLATFORM) (2017) ... 644

BUILDING OF A SMALL PROTOTYPE OF AN AIRSHIP (2017) .. 697

DEVELOPMENT OF A FCS (FLIGHT CONTROL SYSTEM) AND GCS (GROUND CONTROL SYSTEM) (2018) 745

MARKETING CONCEPT (2017-2019) ... 765

LITERATURVERZEICHNIS .. 820

25

25

26

Abstract

In this project report the "alternative Lotte" airship flight control system project and its

results for August 2000 – July 2006 are described. In summer 2006 the project was cancelled.

The alternative Lotte project aimed to improve the flight control system of the solar airship

"Lotte" of University of Stuttgart.

The user interface is the link between the user and

the alternative – LOTTE, a measurement vehicle

for solar radiation and wind power. Its purpose is

allowing the user to control the alternative –

LOTTE from the base station, so by using the User

Interface, the user can set data to the alternative –

LOTTE (new position, new velocity ...) and get

data from the alternative – LOTTE (acceleration,

angular velocity, azimuth, temperature, wind

vector, Solar radiation ...).

The airship can be controlled from the

ground or fly automatically to specified

coordinates.

27

28

3 Introduction

3.1 The LOTTE project and the “alternative Lotte”

Airships are becoming more and more important within the last years. At the

“Institut für Statik und Dynamik der Luft- und Raumfahrtkonstruktion” at the

University of Stuttgart a solar airship was built. In February 1992 the project

“Solarluftboot” was initiated. The purpose of this project was to find new materials,

new construction methods and a new concept for controlling and navigating an

airship run by a solar energy engine.

The “alternative Lotte” – a cooperation project between the universities of Karlsruhe

and Stuttgart and the Fachhochschule Karlsruhe - is planned to be an experimental

airship which can be controlled directly from the ground (first step of

implementation) or (second step of implementation) fly automatically to specified

coordinates. The energy supply is going to be conventional batteries in the first step

but it is planned to switch to solar energy later. With “alternative Lotte”

environmental data are collected during the flight via different sensors which can be

mounted on the airship. In the first step the speed of the wind, the temperature and

the solar radiation are measured. Apart from that flight data such as acceleration,

angular velocity and azimuth angle are measured for navigation purposes.

For the above mentioned Solarluftschiff an alternative flight control system (flight control

system - FCS) is developed, which takes into account modern information technology

methods.

The "alternative LOTTE" project is lead by the association VaEF e.V. As cooperation main

cooperation partners act the Universities of Karlsruhe and Stuttgart. The "alternative LOTTE"

project intends to use an airship for taking wind measurement data.

29

4 Project Management

4.1 Costs

Personal costs: About 3 man years

Material costs: 6000 EUR

Renting rooms, computers etc. 10 000 EUR

The project was undergone through student research works (mostly master thesises).

30

5 Flight Control System of an airship1

This Flight Control System is based on the IFR Control System of the Lotte airship of the

University of Stuttgart / Germany

1Author> Samir Mourad

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

5.1 Block diagram of the Control Loops

62

6 Optimization of the Flight Control System architecture

6.1 The architecture of the Flight Control System and its simulation on the
middleware OSA+ running on the operating system Windows

Based on:

Samir Mourad, Diplomarbeit (Master Thesis)„Anbindung des

Echtzeitbetriebssystems VxWorks an die Middleware OSA+ und Integration

dessen in eine dienstorientierte Test-Echtzeitsystem-Umgebung"

Institut für Mikrorechner und Automation, Univ. Karlsruhe, Supervisor:

Prof. Dr. U. Brinkschulte“, Institut für Prozessrechnentechnik und

Robotik, Faculty of Computer Science, Universität Karlsruhe (TH),

December 2000

Überblick

1. Einleitung

Allgemeingehaltene Einführung in den Aufbau von Echtzeitsystemen.

Anforderungen an heutige Echtzeitsysteme: Rechtzeitigkeit der

Verarbeitung, wiederverwendbarer Aufbau des Gesamtsystems. Mögliche

Lösung: dienstorientierter Aufbau (modular, einfache Erweiterbarkeit des

Echtzeitsystems, gibt natürlich den funktionalen Ablauf bei einem

Echtzeitsystem wieder) mit Middleware (Trennung von Anwendungssoftware

und Betriebssystem bzw. Hardware)

2. Aufgabenstellung und Lösungsansatz

2.1 Aufgabe

Erstellung eines dienstorientierten Test-Echtzeitsystem mit zwei

Rechnern, die mit Funk-Ethernet verbunden sind. Der zweite Rechner hat

einen CAN-Bus, an dem Sensoren und Aktoren hängen. Über Funkethernet gibt

der erste Rechner dem zweiten Rechner Anweisungen bezüglich der Bedienung

der Sensoren und Aktoren. In die andere Richtung werden Meßdaten

übertragen und auf einer Oberfläche des ersten Rechners dargestellt.

2.2 Vorstellung einiger vorhandener Systeme

2.2 Lösungsansatz

dienstorientierter Systemaufbau (siehe entsprechende Abbildung in

Lottefcs_vom_Leptop.doc)

Begründung für die Auswahl von VxWorks: relativ einfache Handhabbarkeit

wegen umfangreicher Entwicklungsumgebung, in der Praxis erprobtes

Standard-RTOS.

3. OSA+

Beschreibung von Prozeßdienst, Ereignisdienst (SA von Sven),

Kommunikationsdienst und Datenhaltungsdienst (Zusammenfassung aus

Institutsbericht)

4. VxWorks

Vorstellung des Basic OS, des I/O System, des lokalen Filesystems und

des Kommunikationssystems (Zusammenfassung aus Programmer's Guide)

63

5. Anpassung von VxWorks an OSA+

5.1 Prozeßdienst

5.2 Ereignisdienst (SA von Sven)

5.3 Kommunikationsdienst

6. Integration ins Gesamtsystem

Beschreibung der Dienste, der Treiber, der HW und des Zusammenspiels des

Gesamtsystem

6.1 Oberfläche des 1. Rechners und zugehörige Dienste

6.2 Kommunikationsdienst zwischen 1. und 2. Rechner

6.3 Meßdienste und Stelldienste auf 2. Rechner

6.4 Treiber für VxWorks bzgl. CAN-Bus (DA von M. Subhan)

(6.5 Sensoren/Aktoren auf dem CAN-Bus)

7. Ausblick

Variierungsmöglickeiten: Ersetzung der Sensoren/Aktoren, Austausch des

VxWorks durch ein anderes RTOS bzw. direkte Anbindung an die HW,

Ersetzung des Funkethernet durch ein anderes Protokoll.

6.2 Results

Entwicklung einer verteilten

Experimentalumgebung fuer die Middleware OSA+

(ESfOSA+)

Diplomarbeit von Samir Mourad

64

(Inhaltsverzeichnis)

1. Aufgabenstellung

Thema der Arbeit ist die Entwicklung eines Experimentalsystems

fuer die OSA+-Anbindung an Windows NT und die die

darauffolgende Durchfuehrung und Dokumentation von Test mit

diesem Experimentalsystem.

Das Experimentalsystem wird im folgenden mit EsfOSA+

(Experimentalsystem fuer OSA+) bezeichnet.

EsfOSA+ soll eine Simaulation eines embedded system werden,

wobei die Hardwarekomponenten wie Aktoren und Sensoren als

digitale Uebertragungsglieder simuliert werden.

]Der Kern von EsfOSA+ ist komplexer Regelkreis, der eine zu

automatisierende Anlage regelt.

Ausgangspunkt war ein der vorliegenden Arbeit ist ein analoger

Regelkreis, welcher digitaliert wurde und in dienstorientierter

Struktur realisiert wurde. Die Dienste sollen auf der Middleware

OSA+ ablaufen.

Es soll getestet warden, ob es Bedingungen gibt, unter denen eine

solche Regelkreisimplementierung unter OSA+/Windows NT

echtzeitfaehig ablaufen kann.

65

2. Digitalisierung des analogen Regelkreises

Bild 1: Der analoge Regelkreis

Bild 2: Der digitale Regelkreis

3. Konstruktion der dienstorientierten Systemstruktur fuer

EsfOSA+

Die Dienste-Architektur des EsfOSA+

Anforderungen an "ideale" Dienste:

* Plattformunabhaengigkeit (-> Portierbarkeit)

*Skalierbar und Konfigurierbar (-> Anpassung an die Anwendung,

Erweiterbarkeit)

* Austauschbar (einfacher Wechsel von Komponenten)

* Kompatibel (->Datenaustausch)

* Testbar (->Fehlehrsuche, Wartung)

* Echtzeitfaehig (Wenn erforderlich)

66

EsfOSA+ soll den in Bild 2.1.1 dargestellten Kaskadierten Regelkreis

implementieren.

4. Die OSA+ Architektur

OSA+ ist eine skalierbare echtzeitfaehige Middleware. Sie erlaubt es,

verteilte Anwendungen zu entwickeln, die echtzeitfaehig ablaufen

und innerhalb eines heterogenen Netzwerks existieren. Die

zugrundeliegende Hardware sowie die Betriebssysteme warden dazu

optimal ausgenutzt.

Der OSA+-Ereignisdienst

Der Ereignisdienst dient dazu, Jobs zu vorgegebenen Zeiten innerhalb

eines festgelegten Intervalls ausfuehren zu lassen. Er besteht aus 2

Teilen: dem eigentlichen Ereignisdienst und den Funktionen fuer

die Uhrzeit.

5. Experimentelle Ergebnisse

5.1 Die Simulationshardware

Die Simulation life auf einem PC mit einem Intel Pentium Prozessor

mit 133 MHz und 32 MB RAM ab.

Sensorik und Aktorik wurden softwaremaessig simuliert. Es war

keinerlei reale Sensorik oder Aktorik angeschlossen.

67

5.2 Die Testreihe

Bei den Tests wurden verschiedene Dienste eingesteckt und das

Zusammenspiel getestet. Dabei wurde so vorgegangen, dass

zunaechst nur die Dienste der inneren Regelschleifen mit den

zugehoerigen Messdiensten und natuerlich der Streckensimulation

und des Stelldienstes eingesteckt wurden. Spaeter wird sukzessive

der ganze kaskadierte Regelkreis von innen nach aussen aufgebaut.

Einstecken von PS, S1_M, S2_M, S, R_In1, R_In2

Test 2.1

Festlegung der max. Antwortzeiten der einzelnen Dienste (durch

den Ereignesdienst)

PS 10ms

R_In1 20ms

R_In2 100ms

Wie schon im vorigen Test warden einige Groessen ueber der Zeit

aufgezeichnet (Graphen von links nach rechts):

y_4, x_1, x_5, x_12, x_8, y_1,, (d.h. der 1. Graph v. l. zeigt y_4, der 2. Graph v.

l. zeigt x_1 usw.)

Im Bild R_In2_KnappeAntwortzeit_1.bmp ist zu sehen, dass die

Dienste nicht vollstaendig ausgefuehrt warden konnten. Im naechsten

Versuch (siehe R_In2_KnappeAntwortzeit_2.bmp) wird daher die

Antwortzeit fuer R_In1 erhoeht.

68

R_In2_KnappeAntwortzeit_1.bmp

Test 2.2

Einstellungen wie bei Test 2.1, nur ist die Antwortzeit fuer R_In1

diesmals 30 ms.

R_In2_KnappeAntwortzeit_2.bmp

69

Einstecken von PS, S1_M, S2_M, S, R_In1, R_In2, MV,_2, R_M, MV_2, R_A

(vollstaendiger Regelkreis)

Test 4.1

Festlegung der max. Antwortzeiten der einzelnen Dienste

(durch den Ereignisdienst)

PS 10 ms

R_In1 30 ms

R_In2 100 ms

MV_1 100 ms

R_M 200 ms

R_A 300 ms

Testdauer: 30 Sekunden

Auf der folgenden Seite ist R_A_KnappeAntwortzeit_1.bmp zu sehen.

(v.l.n.r.: x_12, y_MV1, x_8, y_1, y_4, x_1, x_3, x_5)

70

 6. Bewertung der experimentellen Ergebnisse und

Ausblick

Die Experimente ergaben folgende Erkenntnis: Wird im

Ereignisdienst die Rueckgabezeit eines Dienstes zu klein eingestellt,

dann wird nicht mehr richtig gereglt. Es ergeben sich Bilder wie

"R_In1_zuKleineAntwortzeit.bmp". Dies bedeutet: kommt man bei

einer OSA+-Anpassung an WindowsNT mit den geforderten

Antwortzeiten in den Bereich von ca. 20 ms, ist auch praktisch

gesehen kein rechtzeitiges Antwortverhalten garantiert. Dass die

zugrundeliegende Simulationshardware keinen grossen Einfluss hat,

wird dadurch bestaetigt, dass nahezu die gleichen Tests auf einem

AMD Duron 900 MHz Prozessor mit 256 MB gemacht wurden, und

dort fast die gleichen Ergebnisse herauskamen.

Es waere interessant, OSA+ auf ein Echtzeitbetriebssystem

anzupassen, und dort aehnliche Tests ablaufen zu lassen.

71

6.2.1.1 System Architecture of Airship Flight Control System

6.2.1.2 Simulation Code (in programming language C)

6.2.1.3 Simulation results

72

73

74

75

76

77

78

79

7 Development of the Ereignisdienstes for the middleware OSA+

Based on Entwicklung des Ereignisdienstes für die Middleware OSA+, Studienarbeit von Sven

Forstmann, 2001

Studienarbeit (Bachelor Thesis)

of

Sven Forstmann

27 Sep 2001

Institute for Prozeßrechentechnik and automation, Univ. Karlsruhe

Supervisors:

Samir Mourad

Dipl. -Inform. Jens Riemschneider

Prof. Dr. Uwe Brinkschulte

80

1 ABRIDGED VERSION ...82

2 THE NATURE OF THE TASK ..82

3 THE OSA+ ARCHITECTURE ..82

3.1 INTRODUCTION ... 83

3.2 THE COMPONENTS OF OSA+ ... 84

3.2.1 The Platform ... 84

3.2.2 Generic Services .. 85

4 COMPONENTS OF THE OSA EVENTING SERVICE ...86

4.1 THE TIME FUNCTIONS ... 86

4.1.1 The handling of the time .. 86

4.1.2 Initialization.. 87

4.1.3 Functions for time management .. 89

4.1.3.1 .. Time Continued 89

4.1.3.2 .. Reading Time 89

4.1.3.3 .. Move Time 90

4.1.3.4 ... Spend time in a string 90

4.2 THE EVENT SERVICE .. 90

4.2.1 General Information ... 90

4.2.2 The initialization of the Ereignisdienstes .. 92

4.2.3 Features of the Ereignisdienstes ... 92

4.2.3.1 .. Add an Event 92

4.2.3.2 .. Remove a Events 93

4.2.3.3 .. Reading a result/error codes 93

5 SHORT OVERVIEW ..94

5.1 TIME FUNCTIONS/VARIABLES ... 94

5.2 FEATURES OF THE EREIGNISDIENSTES .. 94

6 CONFIGURATION ..94

7 THEORY OF OPERATION ...96

7.1 OSAGETTIME() ... 96

7.2 OSASETTIME(INT,INT) .. 96

7.3 OSAADDTIME(INT,INT) ... 98

7.4 CHAR * OSAPRINTTIME(INT, INT).. 98

7.5 OSAINITEVENTS() .. 99

7.6 INT OSAADDEVENT(UINT,UINT, UINT, UINT,UINT, UINT,UINT, UINT, FUNCTION) ... 99

7.7 INT OSADELEVENT(UINT,UINT,UINT,UINT) .. 101

7.8 OSA_ERROR OSAGETEVENTRESULT(UINT,UINT) ... 101

7.9 INTERNAL FUNCTIONS OF THE EREIGNISDIENSTES ... 102

8 PROGRAMMING EXAMPLES ... 102

8.1 FOR EXAMPLE: CHANGING THE TIME ... 102

8.2 EXAMPLE: ADD AN EVENT ... 103

8.2.1 Start a function at a specified time .. 103

8.2.2 Repeated start a function ... 105

8.3 QUERIES OF RESULTS .. 106

8.4 DELETE A EVENTS .. 106

81

9 TEST RUNS .. 107

9.1 DELIVER-TEST ... 109

9.2 TEST RUN OF A CYCLICAL EVENTS WITH OPEN .. 110

9.3 TEST THE MAXIMUM TEMPORAL RESOLUTION ON DIFFERENT SYSTEMS ... 113

9.3.1 System 1 ... 113

9.3.2 System 2 ... 116

9.3.3 System 3 ... 118

9.4 STABILITY TESTS .. 121

9.4.1 Exceeding the maximum acceptable number of Events ... 121

9.4.2 Exceeding the maximum acceptable number of events per unit time ... 122

9.4.3 Overrun of the events per unit time through Zeituberschneidung ... 123

10 RESULTS AND OUTLOOK ... 126

11 ANNEX ... 127

11.1 LIST OF ALL WINDOWSSPEZIFISCHEN FUNCTIONS ... 127

12 LITERATURE .. 127

82

Declaration

I hereby declare, Sven Forstmann, that I have carried out this work independently.

Thanksgiving

First of all, I wish to thank Prof. Brinkschulte for the nice assistance and cooperation

and also thank Jens Riemschneider for assistance during the incorporation in OSA+.

Samir Mourad was for the friendly help thanked in advance of the thesis.

7.1 Abridged Version

Middleware systems support the development of real-time systems especially in

heterogeneous environments, in the present work is the event service with all the

details, as well as the Implementationsbeschreibung presented.

The event service extends the existing OSA+ to services for the timed start jobs or

functions, as well as to several functions to manage the time.

What is important is that the Ereignisdienstes the OSA+ now one step closer in the

direction of the real-time capability brings, this is achieved by, inter alia, that when

you start a job / a function also can be specified, in which interval This is to be

started, however, the extent to which this real-time capability achieved will depend

on the respective operating system, and is also by the handling of the time functions

of the same limited.

7.2 The nature of the task

In the framework of a joint project with several industrial partners, the Institute for

Prozeßrechentechnik and Automation the open, scalable, and real-time middleware

platform OSA+ (Open System Architecture Platform for universal services)

developed, today's real-time systems usually operate in environments with many

asynchronous events, and the processing of these events is often complex and may,

by the introduction of a own service established for this purpose will be much easier.

The aim of this thesis is the design of the service, a prototypical implementation and

integration into the OSA+ overall architecture.

7.3 The OSA+ architecture

The content of this chapter is [Brinks et al, 00] taken from the description of the

individual OSA+ -functions from [Brinks et al, 00] are not listed, it can be read there.

83

7.3.1 Introduction

OSA+ is a scalable real-time middleware that allows to develop distributed

applications, the real timable expire and exist within a heterogeneous network. The

underlying hardware, as well as the operating systems to be used optimally.

The architecture of OSA+ is divided by a application in services that communicate

with each other on jobs, this communication is achieved by means of a platform, in

which services in the platform "Plugged in", in this way can inserted into all services

with one another using the Platform communicate.

The platform itself specifically used excellent services, to increase its capabilities,

including generic services, which ensure that the platform independent of the

operating system and the underlying hardware, it is, as well as Erweiterungsdienste,

the specific tasks for the platform provide the platform is, however, also run without

these services.

The following is the detailed architecture described by the OSA+.

1: OSA+ architecture

Dienst

n

Anwen

dung

m

Rechnersystem i

Dienst

1

Dienst

2

Anwen

dung

1

Betriebs-
System

Rechnersystem 1

Betriebs-
System

Kommunikations
System

Lokale Systemplattform Lokale Systemplattform

Kommunikations
System

. . .

Globale virtuelle

Systemplattform

Kommunikations-

medium

84

Dienst

1

An-

wendung

1

 Systemplattform

Dienst

2

Auftrag

Ergebnis

Auftrag

Ergebnis

Server Server/Client Client

. . .

Dienst

n

Dienstdefinition

Dienstzugang

2: Communication of services using job and outcome (=job)

First, it is described as the "naked" platform looks like and what functionality it

provides, so that you will be the base and Erweiterungsdienste explains and the

associated additional possibilities, thus acquires the the platform, and concludes the

interfaces of the platform and the basic and Erweiterungdienste described.

7.3.2 The components of OSA+

7.3.2.1 The Platform

The platform is the component to the user by the OSA+ is visible, it offers a interface,

with whose assistance services in the platform can be inserted and allowed the grant

of orders, which is divided the platform in three basic parts:

 A Service Management: she knows all inserted services and completed the

install and uninstall services, as well as locate of services;

 A job management: Allows the give and expect of orders and the report of results

of this and expect orders;

 A user interface: Is there a clear struktierte the user interface to these two bodies.

85

7.3.2.2 Generic Services

The platform uses the generic services, to an encapsulation of the operating system

functions, which you can use for your tasks are not generic services installed in the

platform, so must the platform without these features and can only get to make, what

as a recognized standard of the underlying implementation language is recognized,

based on the ANSI-Richtlilien for C and C++ or the JDK 1.0 . Beyond functionality of

the generic services must be available in each are this:

 Prozeßdienst: it allows the platform lightweight and/or heavyweight to take

advantage of services, he provides a unified interface to process administration of

the operating system, and the OSA+ -Prozeßdienst allows it, split the control flow

of the customer, so that the contractor and the customer (quasi) in parallel, each

with their Arbeitfortfahren can. This is possible, that of the Prozeßdienst the

platform allowed, with a service to connect a Control Flow, heavyweight

Kontrollflusse are situated in their own space and are in need of a Miniplattform,

on the A Kmmunikationsdienst (IPC-service) is installed.

 Echtzeitspeicherdienst: it allows the realtime access to memory (in particular the

allocation and release), not real-time memory is in the above language

specifications standardized (e.g. malloc in C or new in C++ or Java). The service is

not installed, so the time conditions are checked only a job, but not guaranteed.

 Communications services: serve the platform to the shipping of orders over any

communication media, it is also the Interprocess Communication as a means of

communication.

 Eventing service: is the platform for the monitoring and control of temporal

processes. He provides specific Auftragspezielle jobs to the platform, so this on

certain events can be informed.

86

7.4 Components of the OSA Eventing service

The event service is divided into the services for the management of the time, as well

as in the of the actual Ereignisdienstes. a separation of these two is not impossible,

but awkward, as the event service on the functions of the time is dependent on time,

to all the processes to start.

7.4.1 The time functions

7.4.1.1 The handling of the time

In the event service is managed the time in the UNIX FORMAT, as this is the easiest

to handle, and at the same time the implementation on UNIX/LINUX - systems much

easier.

In this format, the seconds since 1.1.1970 12:00:00 in a 32 (soon, perhaps even 64) bit

- value paid, which means that extra for Sekunde/Minute/Stunde/ ... not a variable is

needed, and also that the invoices are carried out with the time, are now almost

easily.

In the OSA-event Service is the time but now not only in a 32-bit value, since there

often also in real-time applications to a higher accuracy is essential, therefore it is in

addition to the 32-bit variables for the seconds a further variable used for the

milliseconds. This makes it difficult and slows down while the calculation of time

differences, but it is for the time-exactly timed execution of the job is essential.

It could also have been upgrading the CMOS-clock for all of the operations of the

time, as well as to use of the Ereignisdienstes - this had caused some complications,

however, first of all it is not accurate enough, because you only on the time the tenth

stores, since the event service is to be real timable and there you have a accuracy is

promoted in the millisecond range, this is enough and not from, a further difficulty is

that when the time change this change affects the entire system and be influenced by

other programs, then what in these can create incorrect results.

87

osaGetTime osaSetTime osaPrintTime osaAddTime osaInitEvents

System-Uhr

(Uhr + Datum)

System-Zeit

(Millisekunden)

Zeitvariablen:

osatime

osamtime

3: Structure of the time

Zeitver

waltung

Ereignis

dienst

Anwen

dung

1

Betriebs-
System

Rechnersystem

Anwen

dung

2

Systemplattform

Anwen

dung

...

Kommunikations
System

Globale virtuelle

Systemplattform

4: Integration of time management, and in the system of the Ereignisdienstes

7.4.1.2 Initialization

Before the time functions that can be called the initialization must be performed first,

which for the time periods required calculated variables.

This calculation is necessary, because the time with the help of two different

functions is calculated.

With the A is initially read out the time of the system and stored in the time variable, since

the system time but only on the second exactly is returned, only to a Sekundenwechsel must

be serviced to ensure the Millisekundenanteil can be initialized with zero.

Now, the difference to the value of the other function are calculated, which returns

the system time in Millisekundenformat. In this is the number of milliseconds since

the start of the system, since you can get with this 32-bit value but only 2 ^32

88

milliseconds can be used to specify, which corresponds to 49.71 days, you can use

this function only to do this, read the time already with the help of this function to

update, and is now an offset is calculated at the beginning of the system time and

always corresponds to the difference of Millisekundenanteil indicating to system

time.

In addition, the initialization of the time and also the Ereignisdienstes starting values

for the set, in order to save another function call.

Init

Systemuhr (Sekunden seit 1.1.1970)

auslesen und zwischenspeichern

Systemuhr

=

Zwischenspeicher

 ?

Ja

Sekundenwechsel Millisekunden=0

also

osatime = Systemuhr

osamtime = 0

Nein

Systemzeit

(ms seit Rechnerstart)

zwischenspeichern,

um damit dann Zeitdifferenzen

zu messen

Ereignisdienst Initialisieren

Init Ende

5: PAP of the time initialization

89

7.4.1.3 Functions for time management

Time Continued

When you set the time, the global time variable updated for seconds, and

milliseconds. This also takes into account whether Millisekundenanteile have been

specified, the Not in the range 0 to 999. In this case, a carryover for the seconds

portion of is calculated, and the Millisekundenanteil corrected accordingly.

But it is only the time of the OSA+ internally changed - the general CMOS clock of

the computer remains untouched.

The time periods necessary to offset the difference between milliseconds of the

system and the real time, must also be newly set so that it does not come to the

wrong calculations.

Reading Time

When reading the time, the global variable for seconds and milliseconds updated.

For this purpose, the difference in milliseconds since the last time the query with the

help of the system time calculated and added to the current time.

Since the system time to calculate is used, it should in fact not later than 49 days all

the time query be invoked once, but now that the event service is associated with the

time, it can be ausgegeangen that this due to its timer is called more often, in order to

start the events correctly, it must also of course at each time, in the course of which

he is called from the timer, the time queries, which is now the reason for this, that the

time of an application program does not necessarily have to be called regularly.

osamtime = Systemzeit - Zwischenspeicher

osamtime > 999 ?
Ja

Nein

Aktualisierung abgeschlossen

Aktualisierung der Zeitvariablen des OSA

Zwischenspeicher += 1000.

osamtime -= 1000.

osatime += 1

6: PAP of the time

90

Move Time

This function adds to the current time a specified time difference in addition to this,

in principle, this function does not have been necessary, since one with the two above

functions exactly the same thing can reach had - but so is now saved time, and this

may be to match the time on the network can be of use, and the user will work when

calculating the carryover disconnected.

Spend time in a string

This function creates a string in which the current date and time is included with

milliseconds. (This is especially handy in debug output). This is done by first with

the help of the ctime from the current time, in the 32-bit value is stored, generated a

string, the date and time already contains, the only thing missing now is the

Millisekundenanteil, which simply by various Stringkopieraktionen is inserted.

7.4.2 The event service

7.4.2.1 General Information

The event service is responsible for ensuring that jobs at a specified time with a pre-

specified accuracy can be started. He is to guarantee the real-time capability of the

OSA, which but limited by the underlying operating system is, for jobs be started via

the network, must, however, only the clocks of the two systems are synchronized,

this is by a long-term observation of the Pingzeiten possible; as a result of the time

offset can then be calculated by which the current time has to be postponed, an

alternative would be the average of the Pingzeiten to calculate the last few minutes,

and with this to synchronize the clocks.

The event service is from Geschwindigkeitsgunden directly in OSA have been

implemented, it is therefore not directly to a LW/HW-service, but rather a

supplement to the OSA+ features available.

91

globale

Osa Zeitvariablen

Zirkuläre,Sortierte

Liste der Events

Event 1 (15:37Uhr)

Event 2 (15:45Uhr)

Event 3 (17:12Uhr)

...

Osa-Timer

Weckfunktion des Ereignisdienstes
(TimerProc)

Osazeit

>=

Startzeit des

aktuellen

Events

?

Start des Weckers durch

den Multimediatimer

Start des Events

(osajbscdDeliver oder

Funktionsaufruf)

Ende des Weckers

Ja Nein

Ist der Job

innerhalb der

Zeitbeschränkung ?

Ja Nein

Updaten des

aktuellen Events

Falls es ein wiederholender

Job ist, wird

versucht,diesen wieder in

die Eventliste einzutragen

Init Events

Initialisiert den Timer

und leert die Eventliste

Add Event

Fügt in die Liste den

gegebenen Event hinzu,

falls noch Platz ist und

die Startzeit noch nicht

vorüber ist.

Del Event(s)

Entfernt einen oder

mehrere Events aus der

Liste

GetEventResult

Gibt das Ergebnis für den

gewünschten Event

zurück

Liste der Ergebnisse

Event 1

Event 2

Event 3

...

Figure 7: Architecture of the Event Service (Ereignisdienst)

92

7.4.2.2 The initialization of the Event Service

The initialization of the Ereignisdienstes is automatically after the initialization of the

time. This is the first to be the necessary variables for the Eventing service set, the

next step is the timer function of the Ereignisdienstes started, what must be called

upon regularly in order to make it in time to start the jobs, in which intervals this is

to be called, depends on the desired accuracy of the Ereignisdienstes as well as the

speed of the underlying system, try showed that, for example on a Duron 900 even

an interval of one millisecond is possible.

On a Pentium 100 products, on the other hand, only 5-10 ms intervals possible. (but

more about that later in the test runs.

It would also be conceivable, the performance of the Ereignisdienstes to increase that

zeitkirtische functions through the implementation of assembly code are replaced.

7.4.2.3 Features of the Ereignisdienstes

Add an Event

When you add new events there are several possibilities: The job can be either at a

specific time, or with a relative delay be called, and you can also be used to specify

whether the job repeatedly in a certain time interval is to be started (for example, is

for the regular queries of sensors helpful), and whether the result of the delivers to

the later check is to be saved, and also can be a optional to call a function if it

particularly in the short responses to local applications. When you add it can,

however, to get any error messages if the job was already over, the list is full, or too

many jobs at the same time are to be started, and this number in the same time

interval the job to be started is adjustable and should be to the respective system be

adapted to maintain speed and in addition must still be given a timeout, the

constrains the time window in which the job is to be started.

The job is only called after leaving the window, so is he skipped (this happens but

only if it to failures or malfunctions in the system, the calling of the timer function

prevent). If it is a repetitive job, it will be the next time but started again, and can still

be set, if he is as closely as possible to the Zeitgitter oriented, or the delay as precisely

as possible is to be met.

The Add/delete a job may be to delay a few milliseconds, since, as long as the

interrupt routine is active, no operations on the list of job to be started are allowed,

this of course also applies vice versa for the interrupt routine, if you an insert/delete

operation interrupts, this call is ignored, which may of course have the consequence

93

that a(IGE) Event(s) to a few milliseconds late be started - what but only at very slow

computers into the weight cases is expected.

The job that you want to be the Ereignisdienstes in a circular list managed fixed-size,

you can, after you have been added to this list, also again be removed - if you have

not yet been started.

In order to results of the query again later delivers to, is not yet an additional list

managed, in the opened up for each event to an entry exists (the key is the ID of the

job), but for reasons of space is only for each EventID keep the latest result.

If the size of the lists is to be changed, is that in the source code simply by changing

the #defines in the beginning to reach the files.

In addition, it can not - real-time operating systems that have come to the timer not

in time will be called; the result may be that the events do not correctly can be started

and is currently are then to be started up to the point that started events at a time, i.e.

as long as the timeout of the respective jobs is not exceeded.

Another difficulty arises if a cyclic job has been called for, the back is to be added to

the list and an error occurs: a time already past, crowded or list the already too many

events to the desired time be called, in order to solve this problem, is, at the moment

a part installed, the attempts to the event to matureness, later to start dates.

This will be calculated by either, that either the next possible start times will be

taken, or but in the set for the job by increments is attempted, add the job again, the

number of retries can be adjusted - but should not be set too high, otherwise if there

are too many errors the time interval of the timer not longer sufficient, and the next

will be affected, if the rescue but is unsuccessful, the job will no longer be called.

Remove a Events

Back to an event from the table of the job to be started to remove, first waited until

requests on the table are allowed and then occupied the semaphore.

The next step will be for the complete table, and skipped the event you want to

delete, and the remaining are automatically when.

Reading a result/error codes

Now here is the error code returned, which when you start a job is created, it can

here, however, from being purged the last result which emerged only be queried,

and internally to a list of all mitzuloggenden Events kept, in the then at the start of

the event the result will be entered, if there are more events will be logged, as the list

is large, after the FI Fo-Prinzip approach.

94

7.5 Short Overview

7.5.1 Time functions/variables

UINT osatime: Are Using Unixtime in seconds

UINT osamtime: related Millisekundenbruchteil (<1,000)

Osagettime: time reading

Osasettime: Time Set

Osaaddtime: Time-add offset

Osaprinttime: Spend time

7.5.2 Features of the Event Service (Ereignisdienst)

Osainitevents: Initialize event service and Time

Osadelevent: Delete Job

Osaaddevent: Add Job

Osageteventresult: Result of a running job reading

7.6 Configuration

The configuration of the Ereignisdienstes within the source code can be made, and by

modifying the various definitions (#define) at the beginning of the source code:

(Alternatively, these parameters from the source code be relocated in the Makefile.

Variable instantaneous value propositions

Precision 1: determines the accuracy with which the event service is supposed to

work

EVENTSPERTIME 5 : determines the number of bootable events at the same time

TABLENGTH 255: Indicates the size of the Event-Tabelle (must be a 2 ^n-1 number)

ERRORBUFFER 7 : Specifies the size of the Result-Tabelle (must be a 2 ^n-1

number)

RETRYCOUNT 4 : specifies how often should be attempted, a recurring event in

the

95

 List should be entered, if errors occur

OSA_DEBUG: If defined, debug messages are issued, the

 All of the important actions of the Ereignisdienstes describe

To the size of the event, and the table was a 2-he potency as a large selected to the to

accelerate for offset calculation for Tabellenzugriffe. (then can namely an and instead

of a Modulo-Verkupfung be used - this difference is particularly noticeable on older

systems.

96

7.7 Theory of Operation

7.7.1 Osagettime()

Parameters: None

Input integer:NONE

Reads the current time from and updates the global time variable (osatime

and osamtime).

Implementation:

The time is almost to the millisecond, and is calculated from a combination of the

internal clock and the system time, the clock will be at the beginning needed to fix

the start time in seconds, but not the accuracy is sufficient for OSA as a timer, in that,

it not the time to the millisecond that shows exactly, now here comes the system time

in the game, the milliseconds since the start of Windows in a 32-bit value, and if you

now waits until the clock the seconds count up to 1, then you can use it to calculate a

differential value to system time, and with the help of the value they get the missing

milliseconds for the time.

If so now osaGetTime() is invoked, the milliseconds updated, and at a value greater

than 1,000 according to also the seconds, and the difference between this and the

system time.

7.7.2 Osasettime(int,int)

Parameters:Seconds,Milliseconds

Input integer:NONE

97

Sets the time seconds is the time in the Unixformat and milliseconds are the

associated thousandth.

However, this change also directly to the events that are already in the list are

entered, and are to be started; i.e. it quickly in case of major changes can lead to

errors.

Implementation:

Here are the global variables are updated; Millisekundenanteile greater than 999 will

be automatically converted in seconds.

98

7.7.3 Osaaddtime(int,int)

Parameters:Seconds,Milliseconds

Input integer:NONE

Added to the current time in addition to the time difference of the call-up parameters

milliseconds greater than 999 will be converted to the seconds.

(Here are also negative values registered)

Implementation:

This function first reads the time from, and then added the desired time difference,

taking into account a Millisekundenuberlaufs, added.

7.7.4 Char * osaPrintTime(int, int)

Parameters:Seconds and milliseconds of output time

Input integer:String with the date and time.

This function returns a pointer to a string, the current date and time includes, in

debug output is very helpful, since also thousandths of a second to be issued.

Implementation:

The function will access the Function ctime back, which from a 32-bit value (Epoch) a

string with the date and time calculated. This string will then be modified, so that

even milliseconds with be returned.

99

7.7.5 Osainitevents()

Parameters: None

Input integer:NONE

Initializes the table in which the jobs be entered later and sets the time.

Implementation:

All of the entries will be first in the list of events deleted, and the difference between

the internal clock and the system time for osaGetTime determined. The next step is

now set the timer, later also the starts the job, which is the Multimediatimer of

Windows, the a function with a definable accuracy can repeatedly. (image 5)5: PAP of

the time initialization

7.7.6 Int osaAddEvent(uint,uint, uint, uint,uint, uint,uint, uint, function)

Parameters:assigned id1,NUMCOUNT ID 2,Type,start,MSTART, repeat,mRepeat,

timeout, FUNCTION

Input integer:0 =OK, 1 =list already full, 2 =too many events to the same Zeit,3 =time

is already over

Assigned ID1,NUMCOUNT ID 2:ID's of the job that you want to (ID1 is the normal

ID of a job, ID2 is

For the future of applications planned)

Type:Bit 0 =0:Start at the specified time (Start,MSTART)

 Bit 0 =1:Start in Start.MSTART Seconds

 Bit 1 =0:start only once

 Bit 1 =1:repeatedly at intervals of repeat.Start mRepeat

 Bit 2 =0:return value of not logging osajbscdDeliver

Bit 2 =1:return value of osajbscdDeliver log for later queries

(costs a little more time.

 Bit 3 =0:start times will be respected as precisely as

possible

100

Bit 3 =1:time differences are maintained as closely as possible

Bit 4 =0:When Retries try,the job to start at the soonest Time

Bit 4 =1:In retries the job in time intervals of repeat.Try to start

mRepeat

Start,MSTART:Start at/in Start.MSTART Seconds

Repeat,mRepeat:If in type is specified, the event in repeat.mRepeat seconds called

again

TimeoutGibt the size of the time window, in milliseconds, in which the job is to be

launched

FunctionWenn not zero, the specified function (void function()) called -

osajbscdDeliver is not running in the case

Adds a job to be launched to the Event List in addition to this, the function can be

specified the optional, but it is only intended for local use, if short response times are

of importance, this feature is this, that you will be called directly, with the same

priority as the timer function of the Ereignisdienstes started (on Windows, this is the

the highest). You should therefore not be longer than 1-5 ms to use it, as the

subsequent jobs this can be affected in some circumstances, since a while(1); in this

function, e.g. the system leads to Unbedienbarkeit, this option should go directly to a

function can only be used with extreme caution.

Implementation:

In order to prevent the paste that in between the timer function on the Event List is

accessing it, is a simple system with semaphores implemented. This checks at the

beginning of the paste operation, whether the timer function is currently active and

waiting if this is the case, everything is free, the semaphore is occupied, and it can

now be checked whether it is possible to add the event, the list is already full, an

error will be immediately returned.

If not, now is the time for a relative time into an absolute time converted so that can

be compared quickly as possible, whether the job is still is to run, or the time has

101

already passed, the last thing now to check, is the number of jobs, the at this time are

to be started.

Now, if everything is in order, the job is in the Time sorted list is inserted; this

prevents that when starting from the correct position must be sought.

7.7.7 Int osaDelEvent(uint,uint,uint,UINT)

Parameters:assigned id1,NUMCOUNT ID 2,start,MSTART

Input integer:number of the deleted events

Deletes one or more events from the list, or if one of the parameters is 0 (up to the

Millisekundenanteil), it is not compared; i.e. , osaDelEvent(0,0,0,0) Deletes the entire

list, or if the time (start.MSTART) is specified, it is always the absolute time

compared (even if the call the relative is specified.

Implementation:

This function runs through the list of events from the front to the rear, and not to

delete the copied together events to be deleted with the be skipped, and here again is

the system used with semaphores, to avoid conflicts.

7.7.8 OSA_Error osaGetEventResult(uint,UINT)

Parameters:assigned id1, ID2

Input integer:result of the last Delivers

There is the latest result back, at the start of the event with the assigned id1, ID2 has

been created.

If OSA_ERR_SERVICE_NOT_FOUND is returned, the job was either not started yet,

or the result of change is already have been overwritten.

Implementation:

The list is after the first event with the two ID's being sought, and the returned result

of the job in question, and when the event is not found, the function returns

OSA_ERR_SERVICE_NOT_FOUND back.

102

7.7.9 Internal functions of the Ereignisdienstes

Void callback TimerProc(UINT,UINT,DWORD,DWORD,DWORD)

This is the central function of the Ereignisdienstes, which with the Multimediatimer

from the desired accuracy of the Ereignisdienstes regularly is called (default are here

2ms). It is responsible for ensuring that the jobs to be started and repetitive jobs

again be entered in the list.

Implementation:

At the beginning of the function, it first checks whether the semaphore is busy, and if

so, this time interval is skipped; otherwise is now checked, whether the first job

needs to be started.

If yes, the next step is still being examined, whether the timeout has not been

exceeded and whether a function is to be called, or the job is to be delivered (in the

last case, optional, the result will be a list saved).

It is a job to be repeated, again this is in the list, taking into account the different

operating modes, it is registered.

7.8 Programming examples

7.8.1 For example: Changing the Time

There are several ways to do this, but one of the simplest is to set the time

with the help of the function osaSetTime (seconds, milliseconds).

For example, is specified

Osasettime(986604168, 50)

So the clock will be on

103

Friday the 06.April 2001, 4:42:48 PM set and 50 milliseconds.

However, since this is not too comfortable, and most of the time almost is set

correctly, it is often better if the clock is not set to a new, but before or is

adjusted, the function is osaAddTime (seconds, milliseconds) provided.

So causes for example

Osaaddtime (-3600 , 0)

That the clock one hour is reset.

But you need have no concerns that the time of the system of such actions could be affected -

the time is purely OSAintern.

Yet now, in order to check that the Daylight Saving Time was successful, then the time you

can also still with the function osaPrintTime(seconds, milliseconds) output:

 Printf(" Date/Time: %s\n", osaPrintTime(osatime , osamtime));

7.8.2 Example: Add an Event

7.8.2.1 Start a function at a specified time

Now here is the first variant customizationsavailable presented:

A unique feature is intended to be with a delay of 5 seconds will be called, is only required

once the function that should be called; this has, however, fixed call, and with, here's a little

example:

 OSA_Error test (void)

 {

 Printf("Test OK\n");

 Return OSA_ERR_OK;

 }

104

Now, the Eventing service still be communicated, where he finds the function,

and

When he is to call you, and this is done with

 Osaaddevent (1, 0 , // assigned id1, ID2

1 , // type (bit 1 = 1, so start time = delay.

5 , 0 , // start in 5 seconds

0 , 0 ,// time difference when repeats (if set)

1,000 , // 1 second timeout

&Test // Function

);

As the start time is here now a delay of 5 seconds (+ 0 milliseconds) as well as a timeout of a

second is specified at the end of the call must now only the pointer to the function to be

called be specified.

A timeout of 1 second means that the function call to a maximum of 1 second may be

delayed - for larger delays he will no longer run.

Are Normal delays of 0-10 milliseconds; on fast systems (0-1 milliseconds.

The whole sample program could then may then look like the following:

 #Include "osa.h" // necessary include - Files

 #Include "osa_ereignisdienst.h"

 OSA_Error test (void)// function that the event Service is Started

 {

 Printf("Test OK\n"); // as soon as this issue is, the test was successful

 Return OSA_ERR_OK;// everything OK

 }

105

 Main()// Main Function

 {

 // Initialize the Ereignisdienstes

 Osainitevents();

 // Test-Event entries

 Osaaddevent (1.0 , 1, 5.0 , 0.0 , 1000, &test);

 // ... And to the start of the wait dfor

 While(1)sleep(1000);

 }

7.8.2.2 Repeated start a function

The next example shows how to do a job programd, the will be called repeatedly, which is to

the test - function the first time after 5.050 seconds, and then repeatedly at intervals of 1,005

seconds be called, the function is to be called repeatedly, the Eventing service by setting the

the 2, Bits communicated in the display type box. The timeout is as well as in the previous

example 1 second, and in the display type box the bit 3 is not set, attempts of the Eventing

service here, the function exactly as possible to enter the vorherberechneten time - in the

present example : Start Time + 5.05 s + X * 1.005 p.

(If the bit would have been set, he had tried, the delays exactly as possible.

The description for the function here is to be called, you can see from the example above, for

example, here is the actual function call to the event Service:

 Osaaddevent (1, 0 , // assigned id1, ID2

1+2 , // type (delayed start [Bit 1] + repetition [Bit 2])

5 , 50, // Start in 5.050 seconds

1 , 5 ,// repeated Start in 1.005

1,000 , // Timeout = 1,000 milliseconds

&Test // Function

);

106

7.8.3 Queries of results

If a job is started, there is the possibility and subsequently the result query,

which is of the type OSA_Error. It plays no role, whether it is a deliver or a

direct function call has traded.

 Osaaddevent (1.0 , 1+8 VDC , F2.0: , 0.0 ,50 , &test); // event in the list entries

 Sleep(1000);

 Printf("Eventresult of ID 1 : %d\n", osaGetEventResult(1.0 / * ID of the

event * /));

 Sleep(2000);

 Printf("Eventresult of ID 1 : %d\n", osaGetEventResult(1.0 / * ID of the

event * /));

In this example is now the result once before, and the second time after the start of the event

read, and if everything is working properly, it is the first time

OSA_ERR_SERVICE_NOT_FOUND returned, since the results are not yet available, and the

second time then OSA_ERR_OK, what the return value of the test-function corresponds to.

7.8.4 Delete a Events

In the next example will be added first three events, each of which every two seconds will be

called once. After 5 seconds, then two of the three will be removed again. The associated

program code could appear as follows:

 Osaaddevent (1.0 , 1+2), "2, 0, 2.0 ,50, &test1) ;// Add the 1 events.

 Osaaddevent (1.0 , 1+2 ,2,500, 2.0 ,50, &test2) ;// Add the 2 events.

 Osaaddevent (2.0 , 1+2 , 3, 0, 2.0 ,50, &test3) ;// Add the 3 events.

 Sleep(5000); // wait for 5 seconds ...

 Osadelevent (1.0 ,// and all with ID 1, * Delete,

 0.0) ;// without the start times to be taken into account

When the program starts, all three events will be initially launched sequentially. After 5

seconds are then the first two of the three events removed from the list, as in the clearing

107

instructions as the ID 1.0 was specified, what exactly the ID's of the events corresponds to the

start times were not taken into account when you delete, since all passed with 0 fields cannot

be compared.

7.9 Test Runs

Test Environments

System 1:

Hardware:

CPU:AMD Duron 800

Memory:256 MB

Hard Drive:10GB

Graphics:Nvidia Geforce 2

Operating system:

Windows 2000

System 2:

Hardware:

CPU:Cyrix 6x86

Memory:24MB RAM

Hard Drive:0.5GB

Graphics card: Tseng ET6000

Operating system:

108

Windows 98

System 3:

Hardware:

CPU:Intel Celeron 450

Memory:256 MB

Hard Drive:100GB

Graphics:3dfx Voodoo 3000

Operating system:

Windows 2000

Configuration of the Ereignisdienstes (if not otherwise specified):

Precision:2// The Event-Timer is called every 2 milliseconds

EVENTSPERTIME:5// it must not more than 5 events started at the same time

// i.e. there will be maximum 5 events within the 2 ms

started

TABLENGTH:255// Number of entries in the Event-Tabelle (2 ^n-1 must be)

ERRORBUFFER:7// number of jobs, the results keep at the same time

// Should Be (must also be 2 ^n-1)

RETRYCOUNT:4// Number of retrys if repetitive Job does not immediately

return

// CAN BE ADDED

109

7.9.1 Deliver-Test

In this test was done with the built-in local modified Serverfunktionstest. The function this is

not more testsrvFunc immediately, but only with the delay of 1 second will be called, by

using the following changes in the File testsrv.c were made:

If (OSA_ERR_OK= =osajbscdDeliver(jobId))

{

 ... // Wait for confirmation and result Queries

}

Has Been Replaced by the following section

Osaaddevent(/ * ID * / jobId,0,

/ * Type * / 1,

/ * Delay * / 1.0 ,

/ * Repeat * / 0.0 ,

/ * Timeout * /1,000 to

/ * Feature * /NULL);

If(1)

{

 ... // Wait for confirmation and result Queries

}

Now is the result: (with debug mode enabled, to represent the timing of the procedure)

+ +> Added ID: 8524656 delay: 1,000 Start: Sun Apr 08 9:48

PM:41,917

--> Started Event 8524656 with error: 1ms at Sun Apr 08 9:48

PM:41,918

Calculated 1+1

I received a 2!

+ +> Added ID: 8524656 delay: 1,000 Start: Sun Apr 08 9:48

PM:42,920

110

--> Started Event 8524656 with error: 0ms at Sun Apr 08 9:48

PM:42,920

Calculated 2+1

I received a 3!

+ +> Added ID: 8524656 delay: 1,000 Start: Sun Apr 08 9:48

PM:43,920

--> Started Event 8524656 with error: 0ms at Sun Apr 08 9:48

PM:43,920

Calculated 3+1

I received a 4!

As you can see, the test was successful, and also the temporal error that start when you are

born, were within the tolerance: at a set of 2 Accuracy of the Ereignisdienstes milliseconds is

a error of 1ms are allowed or not to be excluded.

7.9.2 Test run of a cyclical events with open

In this test is the response of the Ereignisdienstes on longer breaks in the System tested, and

the duration of the interruption is in this test here in about 10 seconds, is checked, whether

cyclic jobs after this interruption continue to be started correctly. In addition, there will be a

demonstration of how the set/do not set of the 3, affects bits to the time difference.

First Test: Bit 3 = 0

Here is the associated function call:

Osaaddevent(/ * ID * / 1.0 ,

/ * Type * / 1+2,

/ * Delay * / 2.0 ,

/ * Repeat * / 0.10 ,

/ * Timeout * /10,

/ * Feature * / &test);

 And the result after the start:

111

+ +> Added id: 1 delay: 9 Start: Sun Apr 22 12:50 PM:28,290

2001

--> Started Event 1 with error: 1ms at Sun Apr 22 12:50

PM:28,291 2001

Test OK

+ +> Added id: 1 delay: 9 Start: Sun Apr 22 12:50 PM:28,300

2001

--> Started Event 1 with error: 1ms at Sun Apr 22 12:50

PM:28,301 2001

Test OK

+ +> Added id: 1 delay: 9 Start: Sun Apr 22 12:50 PM:28,310

2001

--> Started Event 1 with error: 9804ms at Sun Apr 22 12:50

PM:38,114

 -> Skipped due to timeout

+ +> Added id: 1 delay: 6 Start: Sun Apr 22 12:50 PM:38,120

2001

--> Started Event 1 with error: 0ms at Sun Apr 22 12:50

PM:38,120 2001

Test OK

+ +> Added id: 1 delay: 10 Start: Sun Apr 22 12:50

PM:38,130 2001

--> Started Event 1 with error: 0ms at Sun Apr 22 12:50

PM:38,130 2001

Test OK

+ +> Added id: 1 delay: 10 Start: Sun Apr 22 12:50 PM:38,140

2001

--> Started Event 1 with error: 0ms at Sun Apr 22 12:50

PM:38,140 2001

Test OK

Here you can see now that lasted 10 seconds after the interruption of the job is no longer

started, because of the timeout has been exceeded, the time for the next start is now

calculated so that the 10ms - Zeitgitter is respected.

Second Test: Bit 3 = 1

Here is the associated function call:

112

Osaaddevent(/ * ID * / 1.0 ,

/ * Type * / 1 +2+8,

/ * Delay * / 2.0 ,

/ * Repeat * / 0.10 ,

/ * Timeout * /10,

/ * Feature * / &test);

And the Test Results

+ +> Added id: 1 delay: 10 Start: Sun Apr 22 9:36 PM:26,359

2001

--> Started Event 1 with error: 0ms at Sun Apr 22 9:36

PM:26,359 2001

Test OK

+ +> Added id: 1 delay: 10 Start: Sun Apr 22 9:36 PM:26,369

2001

--> Started Event 1 with error: 1ms at Sun Apr 22 9:36

PM:26,370 2001

Test OK

+ +> Added id: 1 delay: 10 Start: Sun Apr 22 9:36 PM:26,380

2001

--> Started Event 1 with error:. with EN 10204ms at Sun Apr 22

9:36 PM:36,584 2001

 -> Skipped due to timeout

+ +> Added id: 1 delay: 10 Start: Sun Apr 22 9:36 PM:36,594

2001

--> Started Event 1 with error: 0ms at Sun Apr 22 9:36

PM:36,594 2001

Test OK

+ +> Added id: 1 delay: 10 Start: Sun Apr 22 9:36 PM:36,604

2001

--> Started Event 1 with error: 1ms at Sun Apr 22 9:36

PM:36,605 2001

Test OK

+ +> Added id: 1 delay: 10 Start: Sun Apr 22 9:36 PM:36,615

2001

--> Started Event 1 with error: 0ms at Sun Apr 22 9:36

PM:36,615 2001

113

Test OK

In this test is now to see that no Zeitgitter more is present, and after the delay of 10 seconds

no correction is applied, deleted a part of the calculation, so that this variant a little less

processor time.

(However, is expected only on very slow systems make itself felt.

7.9.3 Test the maximum temporal resolution on different systems

7.9.3.1 System 1

Now here is tested in multiple passes, how high the maximum frequency of the

calls on this system may be set, without that it comes to errors or problems.

The set of precision timer Ereignisdienstes: 1 millisecond.

Precision:1// The Event-Timer every millisecond is called

Cycle 1:

Set precision of the Ereignisdienstes :1 millisecond (precision= 1)

Set time difference of the Test-Events :1 millisecond.

Associated function call:

Osaaddevent(/ * ID * / 1.0 ,

/ * Type * / 1+2,

/ * Delay * / 2.0 ,

/ * Repeat * / 0.1 ,

/ * Timeout * /10,

/ * Feature * / &test);

And the result of the test:

...

114

+ +> Added id: 1 delay: 1 Start: Mon Apr 23 12:28 PM:36,643 2001

--> Started Event 1 with error: 1ms at Mon Apr 23 12:28 PM:36,644

2001

Test OK

XX> Event 1 emergency added - Time Over

+ +> Added id: 1 delay: 2 Start: Mon Apr 23 12:28 PM:36,646 2001

--> Started Event 1 with error: 0ms at Mon Apr 23 12:28 PM:36,646

2001

Test OK

+ +> Added id: 1 delay: 1 Start: Mon Apr 23 12:28 PM:36,647 2001

--> Started Event 1 with error: 0ms at Mon Apr 23 12:28 PM:36,647

2001

Test OK

...

+ +> Added id: 1 delay: 1 Start: Mon Apr 23 12:28 PM:36,652 2001

--> Started Event 1 with error: 1ms at Mon Apr 23 12:28 PM:36,653

2001

Test OK

XX> Event 1 emergency added - Time Over

+ +> Added id: 1 delay: 2 Start: Mon Apr 23 12:28 PM:36,655 2001

--> Started Event 1 with error: 0ms at Mon Apr 23 12:28 PM:36,655

2001

Test OK

+ +> Added id: 1 delay: 1 Start: Mon Apr 23 12:28 PM:36,656 2001

--> Started Event 1 with error: 0ms at Mon Apr 23 12:28 PM:36,656

2001

Test OK

...

As you can see, does the start mostly, but it is out and back to errors, to now is the result of

such a high request to improve the accuracy, would be the first consideration, to configure

the job in such a way as to that of the Eventing service always the interval of one millisecond

complies with with these settings, the test was not, however, the desired result, but there

were still the same error.

The real problem here is that the performance was not sufficient, to all text output to be

carried out within a millisecond after the text output were omitted in part, the test was

almost flawless. There were still error on, but not more in 10ms increments, but only every

115

few seconds; also the misconduct has improved: were it to the top 2 more failures per error,

it is the case in the following test run only has one:

...

--> Started Event 1 with error: 0ms at Mon Apr 23 3:54 PM:29,198

2001

--> Started Event 1 with error: 0ms at Mon Apr 23 3:54 PM:29,199

2001

--> Started Event 1 with error: 0ms at Mon Apr 23 3:54 PM:29,200

2001

--> Started Event 1 with error: 0ms at Mon Apr 23 3:54 PM:29,201

2001

--> Started Event 1 with error: 0ms at Mon Apr 23 3:54 PM:29,202

2001

--> Started Event 1 with error: 0ms at Mon Apr 23 3:54 PM:29,203

2001

--> Started Event 1 with error: 1ms at Mon Apr 23 3:54 PM:29,205

2001

XX> Event 1 emergency added - Time Over

--> Started Event 1 with error: 0ms at Mon Apr 23 3:54 PM:29,207

2001

...

Cycle 2:

Set precision of the Ereignisdienstes :1 millisecond (precision= 1)

Set time difference of the Test-Events :2 millisecond.

Associated function call:

Osaaddevent(/ * ID * / 1.0 ,

/ * Type * / 1+2,

/ * Delay * / 2.0 ,

/ * Repeat * / 0.2 ,

/ * Timeout * /10,

116

/ * Feature * / &test);

And the test results:

...

--> Started Event 1 with error: 0ms at Thu Apr 26 12:12:42,310

2001

+ +> Added id: 1 delay: 2 Start: Thu Apr 26 12:12:42,312

2001

--> Started Event 1 with error: 0ms at Thu Apr 26 12:12:42,312

2001

+ +> Added id: 1 delay: 2 Start: Thu Apr 26 12:12:42,314 2001

--> Started Event 1 with error: 0ms at Thu Apr 26 12:12:42,314

2001

+ +> Added id: 1 delay: 2 Start: Thu Apr 26 12:12:42,316 2001

--> Started Event 1 with error: 0ms at Thu Apr 26 12:12:42,316

2001

...

The test was properly here, without that it came to any errors, i.e. , when working with text

files, at least on this system should be a time difference of 2 ms be between 2 Jobs

7.9.3.2 System 2

Here is to be tested, as the replacement of the operating system from Windows 2000 to

Windows 98 is noticeable.

Cycle 1:

Set the precision Ereignisdienstes :10 milliseconds (precision= 10)

Set time difference of the Test-Events :100 milliseconds

Function call:

Osaaddevent(/ * ID * / 1.0 ,

/ * Type * / 1+2,

117

/ * Delay * / 2.0 ,

/ * Repeat * / 0.100 ,// cyclic call every 100 ms

/ * Timeout * /10,

/ * Feature * / &test);

Test run:

In this test Sorry, no results could be collected, as the operating system is either

refused the Test (The Multimediatimer has not been activated), or, if this time

succeeded in, worked behind the exit and save the logs not, because the system

remained at once.

Cycle 2:

Set of precision timer of the Ereignisdienstes: 100 milliseconds

Function call:

Osaaddevent(/ * ID * / 1.0 ,

/ * Type * / 1+2,

/ * Delay * / 2.0 ,

/ * Repeat * / 1.0 ,

/ * Timeout * /10,

/ * Feature * / &test);

Test run:

...

+ +> Added id: 1 delay: involving 994 Start: Mon Apr 24 11:54

PM:07,000 1995

--> Started Event 1 with error: 6ms at Mon Apr 24 11:54 PM:07,006

1995

+ +> Added id: 1 delay: involving 994 Start: Mon Apr 24 11:54

PM:08,000 1995

118

--> Started Event 1 with error: Note No. 4465ms at Mon Apr 24

11:54 PM:12,465 1995// done manually delay

 -> Skipped due to timeout

+ +> Added id: 1 delay: experienced 535 recorded Start: Mon Apr

24 11:54 PM:13,000 1995

--> Started Event 1 with error: 6ms at Mon Apr 24 11:54 PM:13,006

1995

+ +> Added id: 1 delay: involving 994 Start: Mon Apr 24 11:54

PM:than 14,000 1995

Started Event 1 with error: 1ms at Mon Apr 24 11:54 PM

...

The result shows that it is still possible, on a Windows 98 machine with the OSA

to run event service, but may not be a high claims be made to the accuracy!

7.9.3.3 System 3

As there is a on Windows NT-based operating system present, can already at the beginning

with a higher accuracy than in 9.3.2 7.9.3.2 be started.

Cycle 1:

Set precision of the Ereignisdienstes :1 millisecond (precision= 1)

Set time difference of the Test-Events :1 millisecond.

Function call:

Osaaddevent(/ * ID * / 1.0 ,

/ * Type * / 1+2,

/ * Delay * / 2.0 ,

/ * Repeat * / 0.100 ,// cyclic call every 100 ms

/ * Timeout * /10,

/ * Feature * / &test);

119

Test run:

...

--> Started Event 1 with error: 1ms at Wed May 11 11:28:43,584

2001

 -> Skipped due to timeout

XX> Event 1 emergency added - Time Over

+ +> Added id: 1 delay: 1 Start: Wed May 11 11:28:43,585 2001

--> Started Event 1 with error: 1ms at Wed May 11 11:28:43,586

2001

 -> Skipped due to timeout

XX> Event 1 emergency added - Time Over

+ +> Added id: 1 delay: 1 Start: Wed May 11 11:28:43,587 2001

--> Started Event 1 with error: 1ms at Wed May 11 11:28:43,588

2001

 -> Skipped due to timeout

XX> Event 1 emergency added - Time Over

+ +> Added id: 1 delay: 1 Start: Wed May 11 11:28:43,589 2001

--> Started Event 1 with error: 2ms at Wed May 11 11:28:43,591

2001

...

For this test it is clear that here, in this system even more errors have occurred, as in the same

test on the first system. In a further test run however, again, as in 9.3.1 NFS Server

Configuration file7.9.3.1 , that mainly blame the text output is to the late call, the same test

with only a text per call will be as follows:

...

--> Started Event 1 with error: 0ms at Wed May 23 15:18:28,271

2001

--> Started Event 1 with error: 0ms at Wed May 23 15:18:28,272

2001

--> Started Event 1 with error: 0ms at Wed May 23 15:18:28,273

2001

--> Started Event 1 with error: 0ms at Wed May 23 15:18:28,274

2001

--> Started Event 1 with error: 0ms at Wed May 23 15:18:28,275

2001

120

...

So a much better result (Timeouts came even before, however very much less than

previously). This is also the reason why should also sub-programs, the of of the timer

function in so called short intervals are not too to take a lot of time.

Cycle 2:

In the following test was now the Aufruffrequenz halved, to test whether this time the

attempt without Timeouts runs; the test environment is as follows:

Set precision of the Ereignisdienstes :1 millisecond (precision= 1)

Set time difference of the Test-Events :2 milliseconds

Function call:

Osaaddevent(/ * ID * / 1.0 ,

/ * Type * / 1+2,

/ * Delay * / 2.0 ,

/ * Repeat * / 0.100 ,// cyclic call every 100 ms

/ * Timeout * /10,

/ * Feature * / &test);

Test run:

--> Started Event 1 with error: 0ms at Wed May 23 3:47 PM:34,566

2001

--> Started Event 1 with error: 0ms at Wed May 23 3:47 PM:34,568

2001

--> Started Event 1 with error: 1ms at Wed May 23 3:47 PM:34,571

2001

--> Started Event 1 with error: 0ms at Wed May 23 3:47 PM:34,572

2001

121

--> Started Event 1 with error: 0ms at Wed May 23 3:47 PM:34,574

2001

Here the test was now easily, although there were also late calls, but this had to literally be

sought with the magnifying glass, in the absence of such an then time occurred, it wasn't too

bad, because this delay is not Timerout led immediately to a.

7.9.4 Stability tests

7.9.4.1 Exceeding the maximum acceptable number of Events

For this test was the maximum allowable number of 255 entries now intentionally exceeded,

to test the risk of errors:

Function call:

For(i= 0 ;i< 500 ;i++)

Osaaddevent(/ * ID * / i .0,

/ * Type * / 1 + 2,

/ * Delay * / i + 2.0 ,

/ * Repeat * / 256.0 ,

/ * Timeout * /100,

/ * Feature * / &test);

Test run:

+ +> Added id: 0 delay: 2000 Start: Wed May 16 14:30:59,050 2001

+ +> Added id: 1 delay: 3,000 Start: Wed May 16 2:31 PM:00,050

2001

+ +> Added id: 2 delay: 4,000 Start: Wed May 16 2:31 PM:01,050

2001

...

+ +> Added ID: 252 delay: 254000 Start: Wed May 16 2:35

PM:11,050

+ +> Added ID: 253 delay: EUR 255000 per year Start: Wed May 16

2:35 PM:12,050

+ +> Added ID: 254 delay: The value 256000 Start: Wed May 16 2:35 PM:13,050

122

XX> Event 255 not added - table full

XX> Event 256 not added - table full

...

XX> Event 498m not added - table full

XX> Event 499 or fewer not added - table full

--> Started Event 0 with error: 0ms at Wed May 16 14:30:59,050

2001

+ +> Added id: 0 delay: The value 256000 Start: Wed May 16 2:35

PM:15,050 2001

--> Started Event 1 with error: 0ms at Wed May 16 2:31 PM:00,050

2001

+ +> Added id: 1 delay: The value 256000 Start: Wed May 16 2:35

PM:16,050 2001

--> Started Event 2 with error: 0ms at Wed May 16 2:31 PM:01,050

200

...

As you can see, the test run was successful, and there was no further difficulties

7.9.4.2 Exceeding the maximum acceptable number of events per unit time

It was here that the set from the beginning, the maximum number of 5 Events / Unit time

maintained. An attempt is now to exceed this limit, a small difficulty with this attempt is that

the add of the 10 events no longer than a millisecond should be allowed to take. This was the

reason for this and the next attempt the test system 1 is selected.

Function call:

For(i= 0 ;i< 10 ;i++)

Osaaddevent(/ * ID * / i .0,

/ * Type * / 1 ,

/ * Delay * / 1.0 ,

/ * Repeat * / 0.0 ,

/ * Timeout * /100,

/ * Feature * / &test);

Test run: (System (1)

123

+ +> Added id: 0 delay: 1,000 Start: Wed May 15 3:22 PM:08,072

2001

+ +> Added id: 1 delay: 1,000 Start: Wed May 15 3:22 PM:08,072

2001

+ +> Added id: 2 delay: 1,000 Start: Wed May 15 3:22 PM:08,072

2001

+ +> Added id: 3 delay: 1,000 Start: Wed May 15 3:22 PM:08,072

2001

+ +> Added id: 4 delay: 1,000 Start: Wed May 15 3:22 PM:08,072

2001

XX> Event 5 not added - too many events per Time

XX> Event 6 not added - too many events per Time

XX> Event 7 not added - too many events per Time

XX> Event 8 not added - too many events per Time

XX> Event 9 not added - too many events per Time

--> Started Event 0 with error: 0ms at Wed May 15 3:22

PM:08,072 2001

--> Started Event 1 with error: 0ms at Wed May 15 3:22

PM:08,072 2001

--> Started Event 2 with error: 0ms at Wed May 15 3:22

PM:08,072 2001

--> Started Event 3 with error: 0ms at Wed May 15 3:22

PM:08,072 2001

--> Started Event 4 with error: 0ms at Wed May 15 3:22

PM:08,072 2001

7.9.4.3 Overrun of the events per unit time through Zeituberschneidung

This test is similar in principle to attempt from 9.4.2 . above, however, the event service the

overlap of the events do not immediately realize. The events are added so that you are all the

events until a later date to a time overlap. Here is the behavior of the Ereignisdienstes tested

to this situation and will be demonstrated, this is, of course, also the set / do not set of the 4,

bits in the Typenfeldes depending on, here is the setting so that, if an error arises during the

adding, then simply the closest possible time is selected as a start time (bit 4 is not set). In this

example, the minimum delay between the various earliest starts 1 millisecond.7.9.4.2

Since the test this time a bit longer, it was the result of the test for the better understanding

still comments.

Function call:

124

For(i= 0 ;i< 10 ;i++)

Osaaddevent(/ * ID * / i .0,

/ * Type * / 1+2,

/ * Delay * / 1+ i,0,

/ * Repeat * / 10- i,0,

/ * Timeout * /100,

/ * Feature * / &test);

Test run: (on System 1.

1 Step: Add the 10 Events

+ +> Added id: 0 delay: 1,000 Start: Tue May 22 11:48 am:42,200

2001

+ +> Added id: 1 delay: 2000 Start: Tue May 22 11:48 am:43,200

2001

...

+ +> Added id: 8 delay: 9,000 Start: Tue May 22 11:48 am:50,200

2001

+ +> Added id: 9 delay: 10,000 Start: Tue May 22 11:48 am:51,200

2001

2 Step:because it is cyclic events, you will be

 Re-added

--> Started Event 0 with error: 0ms at Tue May 22 11:48 am:42,200

2001

+ +> Added id: 0 delay: 10,000 Start: Tue May 22 11:48 am:52,200

2001

--> Started Event 1 with error: 0ms at Tue May 22 11:48 am:43,200

2001

+ +> Added id: 1 delay: 9,000 Start: Tue May 22 11:48 am:52,200

2001

--> Started Event 2 with error: 0ms at Tue May 22 11:48 am:44,200

2001

+ +> Added id: 2 delay: 8,000 Start: Tue May 22 11:48 am:52,200

2001

--> Started Event 3 with error: 0ms at Tue May 22 11:48 am:45,200

2001

125

+ +> Added id: 3 delay: 7,000 Start: Tue May 22 11:48 am:52,200

2001

--> Started Event 4 with error: 0ms at Tue May 22 11:48

am:46,200 2001

+ +> Added id: 4 delay: 6,000 Start: Tue May 22 11:48 am:52,200

2001

But since only 5 events/unit (here 1 millisecond) may be

called, the remaining 5 to be launched later.

--> Started Event 5 with error: 0ms at Tue May 22 11:48 am:47,200

2001

XX> Event 5 not added - too many events per Time

+ +> Added id: 5 delay: 5,001 Start: Tue May 22 11:48 am:52,201

2001

--> Started Event 6 with error: 0ms at Tue May 22 11:48 am:48,200

2001

XX> Event 6 not added - too many events per Time

+ +> Added id: 6 delay: 4001 Start: Tue May 22 11:48 am:52,201

2001

--> Started Event 7 with error: 0ms at Tue May 22 11:48 am:49,200

2001

XX> Event 7 not added - too many events per Time

+ +> Added id: 7 delay: 3001 Focal point Start: Tue May 22 11:48

am:52,201 2001

--> Started Event 8 with error: 0ms at Tue May 22 11:48 am:50,200

2001

XX> Event 8 not added - too many events per Time

+ +> Added id: 8 delay: 2001 Start: Tue May 22 11:48 am:52,201

2001

--> Started Event 9 with error: 0ms at Tue May 22 11:48 am:51,200

2001

XX> Event 9 not added - too many events per Time

+ +> Added id: 9 delay: 1001 Start: Tue May 22 11:48 am:52,201

2001

3. Step:Here you just added the starts of the events, only to

have a better overview the rows have been shown, in

which the events are started.

126

--> Started Event 0 with error: 0ms at Tue May 22 11:48 am:52,200

2001

--> Started Event 1 with error: 0ms at Tue May 22 11:48 am:52,200

2001

--> Started Event 2 with error: 0ms at Tue May 22 11:48 am:52,200

2001

--> Started Event 3 with error: 0ms at Tue May 22 11:48 am:52,200

2001

--> Started Event 4 with error: 0ms at Tue May 22 11:48 am:52,200

2001

--> Started Event 5 with error: 0ms at Tue May 22 11:48 am:52,201

2001

--> Started Event 6 with error: 0ms at Tue May 22 11:48 am:52,201

2001

--> Started Event 7 with error: 0ms at Tue May 22 11:48 am:52,201

2001

--> Started Event 8 with error: 0ms at Tue May 22 11:48 am:52,201

2001

--> Started Event 9 with error: 0ms at Tue May 22 11:48 am:52,201

2001

7.10 Results and Outlook

By the enlargement to the event service is now the OSA+ a further major step in the direction

toward real-time capability.

This makes it possible that now jobs or functions in an adjustable time in an adjustable time

window can be started.

The maximum achievable accuracy is, however, limited by the underlying operating system

on Windows 95 testing e.g. in the best case only 50 milliseconds, while under Windows

2000/NT even accuracies of up to 1-2 milliseconds were possible.

If necessary, you can also the jobs started in the same intervals be repeated.

This relatively high accuracy in Windows2000/NT is achieved by the fact that the event

service functions to read/set that provides the time, which only during the initialisation of

the C use the Standardzeitfunktion. Later, the time, then determined with the help of the

system time, which is much more accurate.

This OSA - internal time is also necessary, since there may be times on the network need to

be synchronized, and not the CMOS - clock of the system is to be affected.

If you have higher levels of accuracy should be needed, it is recommended that you the

porting of the OSA+ on a Echtzeitplatform such as VxWorks or RT-Linux.

127

Then there are up to the factor of 10 higher accuracy possible and 100% guaranteed

real-time capability.

7.11 ANNEX

7.11.1 List of all Windows specific functions

Here is a list of the Windows 95 / 98 / ME/NT/2000 specific functions in the porting to a

different platform need to be replaced:

Timegettime()

Reads the current system time from (milliseconds since startup) and there is this as

a 32-bit integer value back. (due to the 32-bit, the value is 49.71 days all resettiert)

Timesetevent(PRECISION,1, TimerProc , 0, TIME_PERIODIC);

This function is responsible for ensuring that the Mutimediatimer of the Windows is

initialized and then in definable intervals (here:precision) the timer function (

TimerProc) invokes the timer function has on the basis of the fixed parameters

therefore look like the following:

Void callback TimerProc(UINT uid, UINT uMsg, DWORD dwUser, DWORD DW1,

DWORD DW2) ;

The Windowsspezifischen variables are passed but not evaluated further.

(What the implementation should facilitate to other platforms.

7.12 Literature

[Brinks et al, 00]Brinkschulte, Krakowski, Riemschneider, "The OSA+ architecture", Internal

Report, Institute for microcomputer and automation, Uni-Karlsruhe , 28 March 2000)

128

8 Inertial Measurement Unit

Based on Mohammad Subhan, "Building a inertial measurement system for an experimental

environment", Diploma Thesis, 2001/2002, Karlsruhe University of Applied Sciences

University of Technology

Table of Contents

TABLE OF CONTENTS 128

LIST OF FIGURES: 130

LIST OF TABLES 132

LIST OF TABLES 132

1 INTRODUCTION 133

1.1 TASK 133
1.2 OVERVIEW 134

2 BASICS 135

2.1 COORDINATE SYSTEM 136
2.2 CALCULATION OF THE CURRENT POSITION 137
2.3 COMPASS 138

3 ARCHITECTURE DESIGN OF THE IMU 139

3.1 MEßDATENAUFNAHME 139
3.2 MEßDATENAUFBEREITUNG FEHLER! TEXTMARKE NICHT DEFINIERT.

4 DEVELOPMENT ENVIRONMENT 141

4.1 HARDWARE-ENTWICKLUNGSUMGEBUNG 141
4.2 SOFTWARE DEVELOPMENT ENVIRONMENT 142

5 REALIZATION OF THE IMU 143

5.1 MEßDATENAUFNAHME 143
5.1.1 Circuit Design for the Meßdatenaufnahme 143

5.1.1.1 Acceleration Sensors 143
5.1.1.1.1 Rather than focusing solely on the accelerometer

 Fehler! Textmarke nicht definiert.

5.1.1.1.2 Laying down the bandwidth of the accelerometer

 145

129

5.1.1.1.3 Definition of the period duration of the accelerometer

 145

5.1.1.2 The roundabout and the filtering their output signals 146
5.1.1.2.1 Calculation of the order Butterworth

 147

5.1.1.3 The Kompaßsensoren and filtering their output signals 148
5.1.1.4 Reference Voltage 150

5.1.2 Board layout design for the Meßdatenaufnahme 151
5.2 MEßDATENAUFBEREITUNG 153

5.2.1 Circuit Design for the Meßdatenaufbereitung 153
5.2.1.1 Supply Voltage 153
5.2.1.2 Reference Voltage 153
5.2.1.3 Memory 153
5.2.1.4 Jumper Settings 155

5.2.2 Board layout design for the Meßdatenaufbereitung 155
5.2.3 The software for the Meßdatenaufbereitung 157

5.2.3.1 States and state transitions of the program 159
5.2.3.2 Analysis and Design with SA (Structured Analysis) / SD (Structured Design) 160
5.2.3.3 User Interface 161
5.2.3.4 Collection of data of the acceleration sensors 162

5.2.3.4.1 Decoding of the outputs of the acceleration sensors

 162

5.2.3.4.2 Calculation of the acceleration with high accuracy

 163

6 TEST RESULTS 165

6.1 HARDWARE-TEST 165
6.2 TEST OF THE OVERALL SYSTEM WITH THE MICROCONTROLLER (C167) 166

6.2.1 Gesamtsystem-Test 1 166
6.2.2 Gesamtsystem-Test 2 168
6.2.3 Gesamtsystem-Test 3 168

7 SUMMARY AND OUTLOOK 170

130

List of figures

Fig 1: translational and rotational motion parameters .. 135

Fig 2: Euler-Winkel ... 136

Fig 3: Spatial Representation... 137

Fig 4: Earth's magnetic field .. 138

Fig 5: The architecture of the IMU the "Alternate Lotte" .. 139

Fig 6: Development Environment for the hardware development; EAGLE Layout Editor .. 141

Fig 7: Development Environment for the software development; µVision2 Text Editor 142

Figure 8: Block diagram of the Meßdatenaufnahme ... 143

Figure 9: Block diagram of the Beschleunigungsaufnahme ... 144

Fig 10: Embedding an accelerometer ... 144

Fig 11: Block diagram of the Winkelgeschwindigkeitsaufnahme ... 146

Fig 12: circuit for the Winkelgeschwindigkeitsaufnahme .. 147

Fig 13: Butterworth ... 148

Fig 14: Block diagram of the heading indicator ... 149

Fig 15: on-chip component of the Kompaßsensors .. 149

Fig 16: Set/reset circuit for the Kompaßsensor ... 150

Fig 17: Reference Voltage .. 151

Fig 18: Komponentenbesetzung on the circuit board 1 and 2 .. 152

Fig 19: Platinenansicht of IMU-overall system ... 152

Fig 20: Block diagram of the Meßdatenaufbereitung (Sensordatenaufbereitung) 153

Fig 21: circuit for the Eingangsspannungsuberwachung ... 154

Fig 22: serial interface will be started .. 155

Fig 23: component side of the Mikrocontrollerboards .. 156

Fig 24: solder side of the Mikrocontrollerboards ... 157

131

Fig 25: Environment of the microcontroller .. 158

Figure 26: state diagram for the Meßdatenaufbereitungs-Software ... 159

Fig 27: User Interface of the IMU for testing purposes. .. 161

Fig 28: Sensor Output of ADXL210 .. 162

Fig 29: the accelerometer, in X-direction ... 166

Fig 30: the accelerometer, in Y-direction ... 166

Fig 31: the accelerometer, in Z-direction ... 167

Fig 32: the accelerometer, in X-direction ... 168

Fig 33: the accelerometer, in Y-direction ... 169

Fig 34: the accelerometer, in Z-direction ... 169

132

List of Tables

Table 1: Bandwidth .. 145

Table 2: Resistance values for the setting of the period .. 146

Table 3: jumper settings on the microcontroller board ... 155

Table 4: Results of the gyros ... 165

133

133

8.1 Introduction

The inertial navigation system [1] is an autonomous system, which, in contrast to the

satellites or other turnovers no external information is needed, and using a inertial navigation

system is one in the location,

 To measure acceleration and rotation speeds,

 To determine angulation and

 To calculate position and speed - on dynamically moving vehicles.

And is possible

 In every weather.

 At any time,

 In every place on earth

Due to its construction, the present Inertialnavigationssystem assigned the Strapdown-

Systemen. As Strapdown-Systeme are called inertial navigation systems, in which the

acceleration sensors that are mounted to the vehicle, the equipped of the sensors are usually

parallel to the main axs of the vehicle.

The sensors for such a Strapdown-Inertialnavigationssystem consists of accelerometers, the

the translatory Beschleunigungskomponenten capture, the gyroscopes (gyros), the capture the

Drehwinkelbeschleunigungen. These amounts are constantly in the direction of the axs of the

detected vehicle korperfesten. From the measurement of the Drehwinkelbeschleunigungen

differential equations can be the Winkelinkremente (azimuth-, Nick and

Rollwinkelinkremente) and the angulation (azimuth-, Nick-, and roll angle) continuously

calculate. From these values a navigation computer determined the location of the vehicle on

the specified Navigationskoordinatensystems.

The Strapdown-Technik provides the direct coupling of the sensors to the vehicle dynamics

high dynamic demands on the sensors themselves.

8.1.1 Task

In: solar-powered boat "Lotte" -Project of the University of Stuttgart has been to the

identification of the dynamic models of the airship and for the realisation of regulations in a

inertial measuring system with GPS procured, which will culminate in various already been

used successfully.

For an alternative "low-cost" flight control system is the integration of a 3-D inertial

measurement system called for in the system environment, the task is a Inertial Measuring

System to design with a microcontroller and then to integrate into the overall system.

The signals from three accelerometers and three roundabouts are to be connected to a

microcontroller, this will in turn over the serial interface with the Regelrechner be connected.

134

8.1.2 Overview

The goal of the national work it is, an IMU (Inertial Measurement Unit) with a "low-cost" to

realize sensors.

First, the basics of inertial navigation systems presented.

Then the architectural design of the IMU is presented.

Afterwards, the realization of the individual parts described.The draft of the Board has with

the program package EAGLE ver, performed 3.55 out. In the implementation of the Software,

. (Microcontrollerprogramming) has been the program Vision ver, wedge used 2.03 &

of the company, it is a shareware version for a limited code size of 16 Kbyte. The

programming is in C. the production of the 4-ply Mikrocontroller-Platine is from the company

PCB-POOL accepted

Thereafter some test results of tests of the entire IMU presented.

135

135

8.2 Basics

The content of this chapter is [1], [3] and [6] issued.

A spatial behavior and/or the movement of a body in the room can be described with six

parameters: three Translationsgroßen (x-, Y-, Z-acceleration) and three Rotationsgroßen (x-,

Y-, Z- angular velocity), the movement of the body to have to define three accelerometers and

three gyroscopes are joined together on a platform (Strapdown-Konzept), so that you form

an orthogonal system, and the distance, the journey to be, and the angle to which the body has

rotated, can by integration of the individual translations and rotations will be calculated, by

accurate calculations using the periodic scans at the sensor output can be made using the ideal

system to track movement and the current position [3].

Fig 1

According to Fig 1 can be the distance traveled and the rotation through the following basic

formulas calculate.:

 2dttats (8-1)

 dttt (8-2)

The main limitation of a bet of the system performance is to the limited precision of the given

sensors. is a continuous small error in the acceleration once integrated, this will result in the

results of the integration to a error in the speed, the speed is still once integrated, it will cause

a large error in the distance, and thus are very accurate sensors and bug fixes (

"Feedbackalgorithmen") needed to ensure an accurate to obtain

Tragheitsnavigationsplattform. An example of a 'cheap' Feedbackalgorithmus is the G-

vectoring. It does not require any additional hardware, but simply take to that the average

direction of the Z-Beschleunigungsvektors exactly perpendicular to the direction down earth's

surface, and its average -9,81 m/sec² is, and a different putting is the inclusion of GPS

positional data, will be fed into the the, but this approach requires careful considerations on

the upgrade process, so that the entire system is not disturbed.

136

8.2.1 Coordinate System

Another difficulty is the choice of the coordinates of the orthogonal system. There are

different solutions, and some of them allow redundancy with the Add of a improved

precision.

Fig 2

It was the representation with the 'Euler' -Angles [1] is selected, the Euler-Winkel are defined

as follows (see Fig 2

 Azimut, heading, heading (also yaw angle); Axis LPH

 Longitudinal Tilt, pitch angle (also pitching); axis K2

 Hangewinkel, bank angle (also roll angle, slope); Axis XF

8.2 Basics

137

137

8.2.2 Calculation of the current position

Fig 3

Based on Fig 3 , the current movement based on the Koordinatenreferenz (x, y, z) and a

mathematical Transformation (based on the Euler-Winkeln) calculate:

The current Winkelgeschwindigkeitsvektor (, ,) is then calculated using the following

formula:

138

Important here is the sample rate, you must be large enough, if a fast rotation movements is

present (because of the Abtasttheorems).

8.2.3 Compass

Most navigation systems today use a compass or something similar, in order to determine the

thrust, with the measurement of the magnetic field strength of the earth, can the Electronic

Compasses, the magnetoresistischen sensors are based on a rotation to 0.1 degree determine.

Fig 4

The magnetic field strength of the earth is approximately 0.5 to 0.6 Gauss and has a

component that is parallel to the earth's surface, and which to the north shows. This is the

basis for all the magnetic compasses, the magnetic field of the earth can be approximated with

the Dipolmodell in Fig 4 is shown. This figure illustrates that the direction of the Earth's

magnetic field is always on magnetically North shows, this field is used to determine the

Kompaßrichtung.

139

139

8.3 Architecture design of the IMU

Bewegung

des

Flugschiffs

Sensoren
(Beschleuni-

gungssensoren,

Gyroscope)

Signal-

anpassung

MicrokontrollerErdmagnet-

felder
magnet. Sensor

(Kompaß)

Signal-

anpassung

Referenz-

spannung

Meßdatenaufnahme
Meßdaten-

aufbereitung

Navigations-

und

Regelungs-

rechner

(an Bord des

Luftschiffs)

serielle

Schnittstelle

Fig 5

8.3.1 Measurement Data Collection (Meßdatenaufnahme)

The Meßdatenaufnahme consists of sensors, to whose outputs a signal adaptation is switched,

the the output signals of the sensors on a reinforced such a voltage level that you, as input

signals to the microcontroller (Meßdatenaufbereitung) can be connected, i.e. the

Meßdatenaufnahme hardware is realized only.

8.3.2 Measurement Data Processing (Meßdatenaufbereitung)

The Meßdatenaufbereitung is realized with a software to a microcontroller is running, the

adapted (partially analog) Sensorausgangssignale are the input signals of

Meßdatenaufbereitung. By the Meßdatenaufbereitung are first the in analogue form adapted

existing Sensorausgangssignale changed into digital signals.

All of the sensors (accelerometers, gyroscopes and magnetoresistische sensors) have a drift on

for temperature fluctuations, and the Meßdatenaufbereitung has a Temperaturmeßeinheit and

can to use the known (driftbehafteten) Meßdatenaufnahme-characteristics of the sensors this

drift again deduct. Finally, the corrected, digital sensor values are lined up in a row and on a

serial output of the microcontroller and the further use of the data on the navigation and

Regelungsrechner given on board.

The microcontroller with its external additional elements (additional memory, Treiber, ...) is

realized on its own Board, to a hardware of the decoupling of the Meßdatenaufbereitung to

achieve Meßdatenaufnahme. This is granted a modularity, the subsequent changes of IMU-

systems easier.

140

Further processing of the IMU-data:

Project increment 1:

As a provisional solution, the IMU-data from the microcontroller to the navigation and

Control computer (Regelungsrechner) give you the unprocessed to the ground station via

radio data transmission sends, and only find there the integrations instead.

Project inkrement 2:

The navigation and Control computer takes the necessary integrations before and uses the

position and order for his control algorithm, and the position and order together with all other

be sensor data to the ground station via radio sends.

141

141

8.4 Development environment

8.4.1 Hardware-Entwicklungsumgebung

The hardware development is done with the program of the company Cadsoft EAGLE. It is

the eagle-Version 3.55 , with Windows 2000, the tool includes a layout editor, with the the

boards were designed, EAGLE also contains a Bibliotheks-Editor , a CAM (Computer

Aided Assembly) -processor and a text editor, you can with the Bibliothekseditor housing

and edit icons.

Fig 6

142

8.4.2 Software Development Environment

The programming of the microcontroller C166 was done with the development µVision of the

company Keil

One finds in µVision, Version 2 the basic elements of a modern IDE:

 A specially adapted text editor.

 An ANSI-C-compiler (C166-ANSI-C-compiler),

 A Assembler (A166-Assembler),

 A left/Lokator (L166),

 A debugger (µVision2 Debugger)

Fig 7

143

143

8.5 Realization of the IMU

In this chapter will be the implementation of the Advanced Inertial Measurement System

explains. After the block diagram of the Meßdatenaufnahme Meßdatenaufnahme is the

shifting of the presented, the individual parts of the circuit are described in detail, on the same

principle will be the implementation of the described Meßdatenaufbereitung and, in the case

of the Meßdatenaufbereitung even the description of the developed software on the

Microcontroller is added.

8.5.1 Meßdatenaufnahme

The task of the Meßdatenaufnahme consists in, and the movement of the airship and the

earth's magnetic field to capture the Meßdatenaufnahme is composed of three acceleration

sensors, three roundabouts and three magnet sensors together.

Bewegung

der

Luftschiff

Beschleuni-

gungs-

sensoren

Meßdaten-

aufbereitung

Erdmagnet-

feld

magnet.

Sensoren

Signal-

anpassung

Referenz-

spannung

Meßdatenaufnahme

Gyroskope

(Kreisel)

Signal-

anpassung

serielle

Schnittstelle

Figure 8

For the adaptation of the Sensorensignale Meßdatenaufbereitung to the additional

Signalanpassungsschaltungen be required.

8.5.1.1 Circuit Design for the Meßdatenaufnahme

The whole circuit for the Meßdatenaufnahme is shown in Annex A, the following are the

individual areas of the circuit described in more detail.

Acceleration Sensors

Accelerometers measure, as the name already says, the rate of change of velocity, by creating

electronic signals, the measured or to control a process can be used, and traditional

applications include the activation mechanisms of safety belts and air bags, in which the

sudden deceleration of the accelerometer which is responsible for the security techniques in

gear sets.

144

The above sensors use a mechanism, the with of the elongation of a spring can be compared,

the force, by the acceleration due to is, extends the spring, with a higher acceleration is even

more stretched the spring. The measurement of the Deformationslangen and the acceleration

can be determined.

Beschleunigung

des Luftschiffs

Beschleunigungs

sensoren
Mikrocontroller

Digitale

Signale

physikalische

Größen

Figure 9

The ADXL210 is a "low cost" 2Achs-Beschleunigungssensor with low power consumption,

and the measurement is between - 10g and +10G. The special on the ADXL210 are the digital

outputs on the two axles, the outputs are digital signals, whose length (ratio of the pulse width

to the period) proportional to the acceleration in two axles are. These outputs can directly be

measured with a Mikrocontroller-Zahler. There is no ad-converter needs. The

Arbeitszyklusmodulator (DCM) has a resolution of 14 bits, based on this special properties,

the acceleration with a simple schema record. After Figure 9 , the digital outputs of the sensor

to the microcontroller directly connect the circuit for the embedding of such an accelerometer

is in the Fig 10 shown.

The ADXL210 is to configure the following: the length of the period and the bandwidth of the

signal output (e.g. , elimination of high-frequency vibrations). These settings are described

below.

Fig 10

The error behaviour of the acceleration sensor

The sensor failure a of the ADXL210 is in general from a scale factor error , a bias B and a

stochastic noise process w , so that the error can be described as follows:

8.5 Realization of the IMU

145

145

wBaa

There is a possibility, before each experiment to determine the bias, so can the error with a

much lower bias be assessed, as without this information.

Laying down the bandwidth of the accelerometer

The ADXL210 from Analog Device is set to 100 Hz bandwidth. This setting is

By Cx and Cy (here C10 and C11 connector, see 10), determines, two capacities are to pin 11

(Yfilt) and 12 (Xfilt) connected, and the calculation of the capacity is as follows:Fig 10

 yx

dB
Ck

F
,

3
322

1

 (8-3)

 yxC

F
F dB

,

5
3

 (8-4)

Bandwidth Capacity

10 Hz 0.47 F

50 Hz 0.10 F

100 Hz 0.05 F

200 Hz 0.027 F

500 Hz 0.01 F

5 Khz 0.001 F

Table 1

Definition of the period duration of the accelerometer

The length of the period at the sensor output is determined by a resistance Rset (in the image

R23+R24+R25), is connected with the GND, the equation is then:

M

R
T SET

125
2 (8-5)

146

T2 Rset

1 MS 125 K

2 MS 250 K

5 MS 625 K

10 MS 1.25 M

Table 2

The gyro and the filtering their output signals

The angular velocity with a roundabout you can be record. This recording is in

the Fig 11 shown to adapt it to the microcontroller a Butterworth filter be added and an

amplifier.

Rotation des

Luftschiffs
Kreiseln Tiefpaßfilter

physikalische

Größen

Verstärker Mikrocontroller

Signalanpassung

Fig 11

The "heart" of the gyroscope is a Keramikstab, which, in its longitudinal axis is brought to

vibrate, the rod is in two places with Metallgabeln welded to the "nodal point" of the rod are,

and when the rod to rotate is placed on the vertical plane to a vibration appears through

influence, the with the angular velocity is the same, the on the rod mounted piezo-electric

plates are both a way to swing the rod longitudinal to bring, as well as the vibration

generated by the appears through influence on the vertical plane should be repealed, and the

voltage, the repealing of the vibrations on the vertical level is necessary, there is information

on how fast the rod (and therefore, the gyroscope) is turning. The gyroscope in this way

creates an output voltage that is proportional to the angular velocity is.

8.5 Realization of the IMU

147

147

Fig 12

The output of the Kreisel-Sensors is an analog voltage to Noise-Reduzierung and the

antialiasing is the sensor a Butterworth filter 2. Ok downstream and the resulting signal is

output through a 1.2 -fold at the amplifier AD-converter led of the microcontroller, you used

to strengthen a IC of analog device of the type OP491.

The Butterworth filter is used only resistors and capacitors with fault tolerance of 1 %. This is

necessary, because of the filter must be exactly in the calculation of the resistors and

capacitors are C1 with 22 nF and C2 with 100nF commanded. Based on these values can then

the values of the other resistors be determined.

Calculation of the order Butterworth

1

2
0

R

R
A (8-6)

1

32

3211
R

RR
RRCa g (8-7)

3221

2

1 RRCCb g (8-8

The following constants are specified:

A0 = 1; a1 = 1.4142 ; b1 = 1

148

Fig 13

As a fixed values has been C1 with 22 nF and C2 set with 100 nF. It follows after the forming

of equation (8-8

21

0121

2

2

2

121

2
4

14

CCf

AbCCCaCa
R

g

 (8-9)

 kkR 470,33435,332

As a last then you can R3 calculate

221

22

1
3

4 RCCf

b
R

g
 (

 8-10)

 kkR 500,34436,342

The Compass sensors and filtering their output signals

The current direction of the airship can be seen, in which you have a sensor that the magnetic

field on the surface of the earth measures, uses, this compass is in the Fig 14 briefly

presented. With a instrumentation amplifier is the output signal from the sensor connected

to the microcontroller.

8.5 Realization of the IMU

149

149

magnetische

Felder der

Erdoberfläche

Kompaßsensor

physikalische

Größen

Instrumenten-

verstärker
Mikrocontroller

Signalanpassung

Set/Reset

Sensor

Fig 14

Magnetoresistic sensors from Honeywell are simple bridge connections (Figure 15), the only

an input voltage need to to measure magnetic fields, and if a voltage from 0 to 10 volts to

Vbridge is connected, begins to the sensor, a magnetic fields to measure in the environment.

In addition, the sensor two "on chip straps", the offset and the Enter reset switch.Fig 15

Fig 15

The offset-bridge can be different operating modes, if a DC by the offset-bridge flows. An

unwanted, but known magnetic field can be subtracted out.

150

Fig 16

The Set/reset (S/R) can be a high current pulses, which are then very useful, if the sensor in a

highly sensitive work mode can be, and most magnetic sensors, measure the low field

strengths, are influenced by larger magnetic fields (> 4 - 20 gauss), the can lead to a

Ausgangssignalverminderung. In order to to reduce this effect, and to the signal at the

output to maximize, can a magnetic circuitry (Fig 16) on the S/R will be applied, the

eliminated the effect, with the help of IRF7105 brings top is at the exit of the Set/reset circuit

with a power output of approximately 3A present, the purpose of Set/reset (S/R) is more

sensitive to the sensor back to make small field strengths. This is accomplished, by a large

current through the S/R pulsates.Fig 16

8.5.1.2 Reference Voltage

The analog output signals of the sensors require a reference voltage, this reference voltage is

the building block by UM780 AD generated, as both Referenzspannungerzeuger, as well as

use Temperaturanderungssensor. By AD780 is a Ultrahochprazision "Bandgap" generated

reference voltage, the 2.5 V or 3.0 V provides. The required input voltage can be between 4-

36 volts.

8.5 Realization of the IMU

151

151

Fig 17

In addition to the reference voltage generated of the AD780 is still a further output voltage,

the correlated with the temperature difference (in Fig 17

A room temperature of 25 C is the outlet temperature voltage of 560 mV (according to the

data sheet) with a "temperature sensitivity" of 1.9 mV/°C, since the reference voltage of 2.5

volts and AD-converter of the microcontroller a resolution of 10 Bit has, the system has a

resolution of:

mV
V

4,24
2

5,2
10

 .

To the capture of signals to simplify, was elected an amplifier of 2.47 (see Fig 17 1 C

temperature change then caused a change in voltage at the output of + 4.7 mV. during the

room temperature is the output voltage: 1.48 V.

8.5.2 Board layout design for the Meßdatenaufnahme (Measurement data collection)

The three a wide array (acceleration sensors - Drehwinkelmessung and telemetry,

magneticfield measurement, etc.) each have three components (each for the measurement in

the x-, Y-and z-direction). In all three Sensorpaketen the sensors must be (responsible for the

Meßdatenaufnahme) also in the direction of the corresponding spatial axs (X, Y, and z-axis)

be aligned, i.e. , that a package two sensors (e.g. , for the Meßdatenaufnahme in x and y-

direction) in a plane, and the third sensor (e.g. for the Meßdatenaufnahme in Z-direction) in

a vertical plane.

152

This can be realized by two sensors each of the three a wide array on a circuit board and the

third sensor placed all three a wide array on a second board, perpendicular to the first circuit

board is mounted.

Accelerometer

Gyroscope

C

o

n

n

e

c

t

o

rCompas sensor

digital output

analog output

analog output

Accelerometer

Gyroscope

C

o

n

n

e

c

t

o

r
Compas sensor

digital output

analog output

analog output

Referenz voltage analog output

Connector to z-axis

Z-Axis XY-Axis Platine 1 Platine 2

Fig 18

Fig 19

8.5 Realization of the IMU

153

153

8.5.3 Meßdatenaufbereitung

Infineon

C167CRLM

FLASH

128 KByte

FLASH

128 KByte

RAM

128 KByte

RAM

128 KByte

RS 232

DRIVER

galvanic

isolation

CAN

Transceiver

DB9-socket

X1

DB9-plug

X2

Connector SV1

Connector SV2

digital I/O

analog port

digital I/O

Fig 20

8.5.3.1 Circuit Design for the Meßdatenaufbereitung

The Meßdatenaufbereitung is with a microcontroller (with additional memory and

peripheral components) are realized.

The shift, the the microcontroller with the additionally required memory and peripheral

components connects, is listed in Appendix B, the following are the individual sections of the

circuit described in more detail.

Supply Voltage

Supply voltage is used as a component of the type 78M05. In the component is an input

voltage between 7.5 volts and 12 volts input. As a output voltage is 5 volts, all components

work with 5 volts of power. The pins of the inputs are via the jumpers JP2 and JP6 (see Fig 23

Reference Voltage

For the reference voltage there are two possibilities: either the supply voltage of 5 Volt be

used as a reference voltage, or it can be connected a separate reference voltage, which can be

selected by jumper settings (see JP10 in JP11 in the Table 3Fehler! Textmarke nicht

definiert.).

Memory

The microcontroller is to 256 KByte ROM (2 blocks per 128 Kbytes) and 256 KByte RAM

equipped. The used Rome is of the type 681000, the RAM of the type 29F010 of the Philips

company, with the power supply of RAM was a second supply voltage available to potential

154

losses to avoid the memory, and the building block MAX690 machines only (by Maxim)

takes on this task (see Fig 21

Fig 21

For a connection with other computers or for the programming of the flash RAM, a serial

interface and a CAN-bus to the board appropriate. Instead of a port a CAN-bus the connection

can also used as a second serial interface be. The first interface X1 (see Fig 22

8.5 Realization of the IMU

155

155

Fig 22

Jumper Settings

The microcontroller board can be configured with different jumper settings, and there is still

an additional switch to the RAM or the Rome to configure.

The jumper settings have the following functions:

 Default Setting Alternative setting

JP1 (1 +2) CAN-VCC generated by

Supplay

(2 +3) CAN-VCC generated by

CAN-network via DB9-

X2

JP8

JP9

(2 +3) DB9-X2 works as CAN (1 +2) DB9-X2 works as a

second serial specific

JP10 (1 +2) VAREF generated by

VCC

(2 +3) VAREF generated by

external Suplay on SV2

JP11 (1 +2) RGND generated by

DGND

(2 +3) RGND generated by

external earth via SV2

Table 3

8.5.4 Board layout design for the Meßdatenaufbereitung

As for the components of the Meßdatenaufbereitung no special spatial directions (as in the

Meßdatenaufnahme) are required, the entire Meßdatenaufbereitung on a sufficiently large

board will be realized.

156

It shows that the whole circuit for the Meßdatenaufbereitung on a four-layered EURO-board

is to realize.

The first of the four layers is the Bestuckunsseite, an interlayer is the ground, a second

intermediate layer is connected to the supply voltage, and the fourth layer is used as a solder.

Fig 23

8.5 Realization of the IMU

157

157

Fig 24

8.5.4.1 The software for the Meßdatenaufbereitung

The actual Meßdatenaufbereitung is realized by a software on the microcontroller (C167)

expires.

Signals from sensors are recorded and edited, depending on the switch settings will be

different operating modes, and forwarded to multiple LEDs (i.e. , the LEDs show the current

mode). The edited data is then given to the serial interface.

158

Microcontroller

Serielle

Schnittstelle

SchalterLED

SENSOREN

Fig 25

8.5 Realization of the IMU

159

159

States and state transitions of the program

CALIBRATION

READY_MEASURE

MEASURE

START

STOP_CAL

START_MEASURE

START_CAL

Figure 26

160

CALIBRATION

In this condition, the initialized and/or calibrated sensors. In the acceleration sensors is the

period on the DCM-output measured. The IMU must once again to the x-, Y-, and z-axis will

be rotated, this will determine the force of gravity, the later in the Gravitationskompensation

is used.

The system can be moved in the Calibration-Zustand, by the START_ Calibration-Befehl

there is, after turn of the IMU can then this state with a stop Calibration-Befehl be terminated

after calibration, the system in the READY_MEASURE-condition.

READY_MEASURE

This condition is considered a transition state, it will be no data from the sensors detects. This

operating mode is used only for the preparation of the next status. With the command

START_MEASURE the system goes to the next state.

The condition READY_MEASURE can only be achieved if the system has already been

calibrated, which means that the condition is never reached, if the system has not yet been

calibrated, which makes it the faulty measurement of the sensors prevent another transition in

the calibration state calibration is possible, however, in the man the Start_calibratoin-

command is there.

Measure

In this condition in certain periodic cycles, is the data collected by the sensors, after error

correction, and calculations (Meßdatenaufbereitung) are the data obtained on the serial

interface given. This you get the current measured data on the serial interface.

Analysis and Design with SA (Structured Analysis) / SD (Structured Design)

The program processes the data from the sensors and then you are to the serial interface, the

user can use serial interface defined commands to the microcontroller to the program of a

condition to put in the other (see Figure 26

You can also reach a transition of the program, in which various switch, the with pins of the

microcontroller are connected, actuated. Whether the command over the serial interface or the

of a switch has a higher priority, can be set a separate switch, should be in the General

commands via the serial interface have priority.

The processes of the system are in the following SA-graph (circles mean functions or

processes, arrows mean data flows):

8.5 Realization of the IMU

161

161

sensor_data

Ax

Ay

Az
wx

wy

wz
Cx

Cy

Cz

Vref

Vtemp

Datenerfassungsensor_data

Ax

Ay

Az
wx

wy

wz
Cx

Cy

Cz

Vref

Vtemp

Fehlerkorrektur

s
e

n
s
o

r_
d

a
ta

A
x

A
y

A
z

w
x

w
y

w
z

C
x

C
y

C
z

Send_data sensor_data

Ax

Ay

Az
wx

wy

wz

Cx

Cy

Cz

8.5.4.2 User Interface

The user interface is used for the test case for this purpose, to communicate with the

microcontroller, so between the different modes can be switched.

Fig 27

The user has the option, the system with five different commands to affect:

Show

162

The formula s= 1/2 a t² the user receives in the primitive test case the current position in

relation to a starting position, in which the Board at the start of the program was. This

command can only be executed when the system is already calibrated and has been started.

Clear

Sets all readings back to zero, so a new measurement can be started, if you have already been

calibrated.

Start calib.

The system is brought into the calibration mode, the sensors must now by hand to the rotary

axs (X-, Y-, and Z-axis) be rotated once.

Stop calib.

Let the program go to a condition when loaded and ready to launch.

Start

Starts the Measurements

Collection of data of the acceleration sensors

In the collection of the accelerometer data a special procedure is necessary.

Roundabout, Kompaßsensoren and temperature and/or reference voltage are on to the AD-

converter of microcontroller connected, and the data that will be without a special routine

converted into a digital form.

Decoding of the outputs of the acceleration sensors

The outputs of the acceleration sensors are in the form of digital signals before. This is used

for decoding a special routine necessary.

Fig 28

To the two components of a accelerometer to determine, you need to have the Signallangen

of T1 and T2 of the two outputs of the sensor (see Fig 28 = 0) started. The count on the signal

8.5 Realization of the IMU

163

163

covered (TB) is stored during running timer, the contents of Timer is on the following rising

edge of the x-output (TC) is stored and, at the same time stopped, a process which will then

for the Y-output repeatedly (TD, TE and Tf).

T1 and T2 are then easily calculated with the following formulas.

TaTbT 1 (8-11)

TaTcT 2 (8-12)

In normal use, if no high accuracy is required, you can the acceleration with the following

simple Naherungs-Formel calculate (see [4]):

%4

%50
2

1

)(

T

T

gingungBeschleuni (8-13)

Calculation of the acceleration with high accuracy

With the given "low cost" sensors can be a high level of accuracy only achieved by a suitable

software will be in accordance with the data sheet of ADXL210 is to achieve a higher level of

accuracy, the following routine to use in the process (see [4]):

At the beginning the system should be placed in the Kalibrier-Zustand, and then with each

component of the Beschleunigungs-Sensors be made the following:

The Komponenten-Richtung lies horizontally, then slowly to the sensor is full 360o rotated,

and in such a way that the Komponenten-Richtung the zenith (direction that is perpendicular

to the top) cuts. If the Komponenten-Richtung in the Zenit shows, should measure the

accelerometer -1g, according to +1g, if the Komponenten-Richtung vertically downwards.

164

Meaning of the variables in the following formulas:

T2cal The value of T2 during the calibration.

Zcal The 0 g of T1 during the calibration.

Bit scale factor Bitnormierungsfaktor

K Scale Factor

2

min1max1 TT
Zcal

 (8-14)

min1max1

*2

tT

factorscalebitcalT
K

 (8-15)

The current acceleration can be calculated as follows:

actualT

ZactualTK
gungBeschleuni

2

1*
 (8-16)

Where:

calT

actualTZcal
Zactual

2

2*
 (8-17)

165

165

8.6 Test Results

In this chapter are test results of tests of the IMU-presented overall system, and the first thing

will be results of the tests described, then Mikrocontroller-Programm tests to be described.

8.6.1 Hardware-Test

After all boards were manufactured, some of the tests were carried out before the system was

put into operation, in this test is the measurement of the output voltages of Gyros and to

measurement of DCM-signals that are produced by the acceleration sensors.

An input voltage of 5 volts to the circuit board is connected, the voltages on Gyros and other

components are measured with the voltmeter, while in the acceleration sensors the

Signallangen be displayed with the oscilloscope.

In general, this test, the function of each of the components tested so you can determine

whether the sensors are working or not.

Test Description Result Large

Roundabout No1 2.4 Volts

Roundabout No2 2.4 Volts

Roundabout No3 2.3 Volts

Table 4

The acceleration sensors also functioned.

166

8.7 Test of the overall system with the microcontroller (C167)

After the successful Hardware-Test was the collection of data by using the microcontroller

(C167) tested the company PHYTEC. This is not the developed in the present work

microcontroller board, but a testboard contains of Phytec. This evaluation module has been

with the developed in the present work connected sensor boards.

In the test were the Signallangen every 100 ms (see Fig 28

8.7.1 Gesamtsystem-Test 1

The IMU rested this series (i.e. , no movement has been run).

Fig 29

Fig 30

1040
1045
1050
1055
1060
1065
1070

100 1100 2100 3100 4100

Z
ä
h

le
rw

e
rt

 i
m

 T
im

e
r

d
e
s

M
ik

ro
c
o

n
tr

o
ll
e
rs

Zeit (ms)

T1

1040
1045
1050
1055
1060
1065
1070

100 1100 2100 3100 4100

Z
ä
h

le
rw

e
rt

 i
m

 T
im

e
r

d
e
s

M
ik

ro
c
o

n
tr

o
ll
e
rs

Zeit (ms)

T1

8.6 Test Results

167

167

Fig 31

Although the sensors are not moving, were the data collected did not constant, the deviations

to the constant value are + 1 counters (i.e. , about 0.1 %). This is located on the timer of the

microcontroller while the clocking.

1040
1045
1050
1055
1060
1065
1070

100 1100 2100 3100 4100

Z
ä
h

le
rw

e
rt

 i
m

 T
im

e
r

d
e
s

M
ik

ro
c
o

n
tr

o
ll
e
rs

Zeit (ms)

T1

168

8.7.2 Gesamtsystem-Test 2

In this attempt, the above error measured by averaging the data be reduced:

The period T1 takes 1ms in test1 was sampled every 100 ms, i.e. each hundredth value of the

sensor has been detected in test2 are now all 100ms the first ten values (in the distance of

1ms) detects and of these ten of the mean value is formed, this average is now considered the

(every 100 ms) sampled value.

Fig 32

8.7.3 Gesamtsystem-Test 3

Here the data of the roundabout in a similar manner, it showed that coverage without

averaging (according to Gesamtsystem-Test 1 for the acceleration sensors) the values of the

dormant roundabout more of a constant value which differed (approximately 0.5 %). A

averaging was not made.

1050
1052
1054
1056
1058
1060
1062
1064
1066
1068
1070

1 11 21 31 41

Z
ä

h
le

rw
e

rt
 i
m

 T
im

e
r

d
e

s

M
ik

ro
c

o
n

tr
o

ll
e

rs

Zeit in ms

T1

8.6 Test Results

169

169

Fig 33

Fig 34

1050
1052
1054
1056
1058
1060
1062
1064
1066
1068
1070

1 11 21 31 41

Z
ä

h
le

rw
e

rt
 i
m

 T
im

e
r

d
e

s

M
ik

ro
c

o
n

tr
o

ll
e

rs

Zeit in ms

T1

1050
1052
1054
1056
1058
1060
1062
1064
1066
1068
1070

1 11 21 31 41

Z
ä
h

le
rw

e
rt

 i
m

 T
im

e
r

d
e
s

M
ik

ro
c
o

n
tr

o
ll
e
rs

Zeit in ms

T1

170

8.8 Summary and outlook

It was a partly functional IMU finished, with only the microcontroller to

Meßwertaufbereitung must still be tested for functionality, and the first results of the tests

are described in the Chapter 6 under this test is simple tests in dormant sensors, it is not yet

to the Error Correction him part of a temperature change of the sensors, the

Kompaßsensoren have not yet been tested, because the time was in very short.

The Mikrocontrollerboard could not be tested because some problems occurred during the

commissioning of the microcontroller, these issues have been corrected, but it could not be

carried out more software testing.

 In order to assess the system as a whole, had to be made many more test, with ongoing

uptime would, however the differences especially in the roundabouts accumulate, but it

became so in regular, not again to large intervals an updated, with the correct reference

value (for example, through a GPS-system) the IMU offsets, i.e. , the next step would be the

further development to a hybrid system.

171

171

Literature

 [1] BROCKHAUS, Rudolf: "Flugregelung"; Springer Verlag; Heidelberg u.a. 1994

[2] DOROBANTU, Raul: "Simulation des Verhaltens einer low-cost Strapdown IMU unter

Laborbedingungen"; Technische Universitن t München; München.

[3] MOSER, Luethi/ MOSER, Thomas: "Low Cost Inertial Navigation System"; Electronic

Laboratory of Swiss Federal Institute of Technology, Zurich. 2000

[4] WEINBERG, Harvey: “Using The ADXL202 Duty Cycle Output”; NORWOOD,

MASSACHUSETTS. 2

[5] “Low Cost + 2g/+ 10g Dual Axis Accelerometers with Digital Output”; NORWOOD,

MASSACHUSETTS3

[6] CARUSO, Michael J: “Applications of Magnetoresistive Sensors in Navigation Systems”;

Honeywell Inc4

2 Technical data sheets of Analog Device

of http://products.analog.com/products/info.asp?product=ADXL202

3 Technical data sheets of Analog Device

of http://www.analog.com/productSelection/pdf/ADXL202_10_b.pdf

4 Application note from Honeywell Inc. of

 http://www.ssec.honeywell.com/magnetic/datasheets/sae.pdf

http://www.analog.com/productSelection/pdf/ADXL202_10_b.pdf
http://www.ssec.honeywell.com/magnetic/datasheets/sae.pdf

172

C: \Documents and Settings\AdiK\Desktop\subhan\Report\Annex A. doc

C: \Documents and Settings\AdiK\Desktop\\portnumber subhan\Report.doc

C: \Documents and Settings\AdiK\Desktop\subhan\Report\Annex C. doc

C: \Documents and Settings\AdiK\Desktop\subhan\Report\Annex D. doc

C: \Documents and Settings\AdiK\Desktop\subhan\Report\Annex E. doc

../../../../../../../../../Dokumente%20und%20Einstellungen/AdiK/Desktop/subhan/bericht/Anhang%20A.doc#_blank
../../../../../../../../../Dokumente%20und%20Einstellungen/AdiK/Desktop/subhan/bericht/Portnumber.doc#_blank
../../../../../../../../../Dokumente%20und%20Einstellungen/AdiK/Desktop/subhan/bericht/ANHANG%20C.doc#_blank
../../../../../../../../../Dokumente%20und%20Einstellungen/AdiK/Desktop/subhan/bericht/ANHANG%20D.doc#_blank
../../../../../../../../../Dokumente%20und%20Einstellungen/AdiK/Desktop/subhan/bericht/Anhang%20E.doc#_blank

173

173

9 Actuator Board

Development of a Aktorik-Ansteuerungseinheit of an airship

Jamal E.

Diploma Thesis

2002

University of Stuttgart

Institute for Flight mechanics and control

IFR

174

175

175

Table of Contents

INHALTSVERZEICHNISI 175

ABBILDUNGSVERZEICHNISIII 177

1INTRODUCTION1 181

THE SOLARLUFTSCHIFF LOTTE1 1.1 ."" 181
1.2TASK2 182
1.3 MEGA PIXELS OVERVIEW2 182

2BASICS4 183

2.1REAL-TIME SYSTEMS4 183
BORDER COOPERATION • 2.2HARDWARE4 183

2.2 .1components and classifications4
 183
2.2 .2The microcontroller family C1666 -
 184
2.2 .3The C167 microcontroller family7
 185
2.2 .4The memory organization of the C1679 tool
 186
2.2 .5The interrupt system for the C16711
 188
2.2 .6The Timereinheiten14
 190
2.2 .7Capture Compare Unit (Capcom)15
 191
2.2 .8The Pulsweiten-Einheit PWM16
 193
2.2 .9Analog Digital Converter (ADC)18
 194

2.3CONTROL OF SERVO MOTORS 20 195

3ARCHITECTURE DESIGN OF THE AKTORIK-ANSTEUERUNGSEINHEIT (ENGL, ACTUATOR CONTROL UNIT

(ACU)22 197

VERSION 3.1 VOLTAGE REGULATION22 197
REALLY 3.2BETRIEBSSPANNUNGSUBERWACHUNG23 198
3.3 BASISBETRIEBSZUSTANDS-EINSTELLUNG 23 198
3.4 STEUERSIGNAL-ERZEUGUNG 24 198
ANOTHER 3.5NOTSTEUERUNGSBAUGRUPPE25 199
PINHOLE 3.6OPERATING STATES OF THE ACU26 200
3.7MODULARITY OF THE ACU26 200

4DEVELOPMENT ENVIRONMENT29) 202

4.1 HARDWARE-ENTWICKLUNGSUMGEBUNG 29 202
4.2 SOFTWARE DEVELOPMENT ENVIRONMENT 30 203

176

5REALISATION OF THE ACU31 204

5.1 VERSORGUNGSSPANNUNGS-STABILISIERUNG 31 204
5.1 .1circuit design for the Versorgungsspannungs-Stabilisierung 32
 205

5.2WAITING BETRIEBSSPANNUNGSUBERWACHUNG34 207
5.3 BASISBETRIEBSZUSTANDS-EINSTELLUNG 36 208

5.3 .1circuit design for the Basisbetriebszustands-Einstellung 38
 211

5.4 STEUERSIGNAL-ERZEUGUNG 40 212
5.4 .1The hardware of the Steuersignal-Erzeugung 42
 214
5.4 .2The monitoring and the forwarding of the PWM-signals from the remote control (normal B)42
 214
5.4 .3 Notsteuersignal-Erzeugung stage 149
 219

INTERNATIONAL 5.5NOTSTEUERUNGSBAUGRUPPE51 222
5.5 .1circuit design for the monitoring of the control signals on the output of the ACU and the channel5-

output of the Fernsteuerempfangers51
 222
5.5 .2circuit design for the Notsteuerungsbaugruppe52
 223
5.5 .3circuit design for the forwarding of the PWM signals from Fernsteuerungsempfanger (Luftschiff-

Startphasen -Operation)53
 224

5.6LAYOUT DESIGN OF BOARD 1 ("VOLTAGE REGULATION", " BASISBETRIEBSZUSTANDS-EINSTELLUNG " AND " NOTSTEUERUNGS-

BAUGRUPPE ")54 224
& 5.7THE BOARDS OF THE ACU55 225

6EXPERIMENTAL RESULTS56 227

CONSTRUCTION OF THE 6.1Ø' AUTHORISATION TESTPLATZES56 227

6.2EXPERIMENTS AND TEST57 228

6.3THE ORDERED TEST57 228

6.3 .1Test articles 159
 229
6.3 .2Test 260
 230
6.3 .3Test 361
 231
6.3 .4Test 461
 232
6.3 .5Test 562 New
 233

7SUMMARY AND OUTLOOK64 235

LITERATURE65 RATING 236

APPENDIX A66 MOTORWAY 237

ANNEX B69 240

177

177

List of figures:

Figure 1: An airship2 181

2: Overview of different processor families5 184

3: Block diagram of the C167he family8 186

4: Memory organization of the C1679 tool 187

5: Layout of a Interrupt Control register of the C16712 189

6: The building of a Timer-Einheit 14 191

Fig 7: Timer T015 hand brake 192

Fig 8: Control register PWMCON017 193

Fig 9: Control register PWMCON017 193

Fig 10: The ADC circuit diagram19 195

Figure 11: shows the Servo in 3 different states21 196

Fig 12: The architecture of the actuator control Unit (ACU) of the "alternative Lotte"22 197

Fig 13: States and their transitions of the ACU. remarks, see sections 3.1 to 3,526 200

Fig 14: architecture of the ACU (detailed description)28 201

Figure 15: development environment for the hardware development; EAGLE Layout Editor

29 202

Figure 16: development environment for the software development; µVision2 Text Editor30

 203

17: Block diagram for the " Versorgungsspannungs-Stabilisierung '31 204

Fig 18: circuit " Versorgungsspannungs-Stabilisierung '32 205

19: The block diagram for Betriebsspannunguberwachung34 207

Figure 20: for the Betriebsspanunnungsuberwachung Programmablaufplan on the µC35

 208

Figure 21: Block Diagram " Basisbetriebszustands-Einstellung " with Environment36 209

178

Figure 22: state diagram for the manifold of the " Basisbetriebszustands-Einstellung " (see

fig.13 in section 3.6 above) "37 209

Figure 23: Part 1 of the switch between Luftschiff-Startphasen -operation and normal

operation (LSB/NB-switch, part1)38 211

Fig 24: Part 2 of the switch between Luftschiff-Startphasen -operation and normal operation

(LSB/NB-switch, part2)38 211

Fig 25: Block diagram of the " Steuersignal-Erzeugung '. 41 214

Fig 26: finite state machine for the " Steuersignal-Erzeugung ". (See Figure 13 in section 3.6

above)42 214

Fig 27: for the Aktorik-Ansteuerungsprogramm Programmablaufplan on the µC43 215

28: Capture mode45 217

Fig 29: T0 and CC1 in Capture mode47 218

Fig 30: PWM-production in the Mode PMX = 050 221

Fig 31: for the Blockdiagram Notsteuerungsbaugruppe51 222

Fig 32: Monitoring of the control signals (PWM signals) at the output (CAKTIV) of the ACU

and the channel5-output of the Fernsteuerempfangers (P2.5)51 222

Figure 33: Notsteuerungsignal-Erzeugung - level 252 223

Figure 34: One of the three generated PWM signals, which is created through the

combination of the clocks of the two expands flip-flops (explanation, see text)53 224

Figure 35: the layout design of printed circuit board 154 225

Fig 36: the two boards (1 and 2) The ACU55 226

Figure 37: the receiver and the actuators (engine,servos) are on board 1 angeschlossen.55

 226

Figure 38: Testplatzaufbau56 227

Fig 39:59 PM 230

Fig 40: Test 260 231

Figure 41: Test 361 232

Fig 42: Test 4, CH1 = channel 5; CH2 = input signal from channel 4; CH3 = output from the

microcontroller; CH4 = output channel 4 of the ACU62) 233

179

179

Figure 43: Test 5-1, CH1 = channel 5; CH2 = input signal from channel 4; CH3 = output from

the microcontroller; CH4 = output channel 4 of the ACU63) 234

Figure 44: Test 5-2, CH1 = channel 5; CH2 = input signal from channel 4; CH3 = output from

the microcontroller; CH4 = output channel 4 of the ACU63) 234

180

List of Tables

Table 1: Overview of the C166 microcontroller family7 185

Table 2: interrupt resources of the C167) (Part 1)12 189

Table 3: summarizes the inputs and outputs of the LSB/NB-switch together:39 212

Table 4: shows the channel no.., and the corresponding connections and Capture-Register 44

 216

Table 5: shows the DCLS Einheit-Ausgange and their corresponding timer49 (220

181

181

9.1 Introduction

9.1.1 The Solarluftschiff Lotte

Airships in the last years experience a renaissance, and at the University of Stuttgart was a

Solarluftschiff (Lotte) has been established, the Institute for statics and dynamics of the air

and Raumfahrtkonstruktion has in February 1992 the project "Solarluftboot" has started.

objective was to use new materials and construction, to achieve a solar and new concepts of

the steering, and navigation scheme to implement.

At the Institute for as aeroelasticity, flight mechanics and control engineering (IFR) is in this

context with the methods of identification, as a model is only formed from measuring data,

without physical knowledge of the object to be involved, for this procedure you need accurate

data on the movement of the object to tailored to the IFR is a measurement and navigation

structure, with the trajectory and the location of Lotte is captured and recorded.

One of the airships is replaced by the means a loss of gas its buoyancy, today usually

incombustible Helium, formerly it was hydrogen, and the means a loss of gas because of its

low density is "easier "than air and therefore generates a boost, a cubic meters of helium is

about the capacity of a kilogram, you therefore requires a lot of volume, in order to to take a

lot of weight, therefore, airships voluminous body, and the load-bearing capacity is increased

with the 3 power of the long, it's perfect for this would be the shape of a ball, but as you but as

much as possible with a large speed and small driver want to travel, is a form with a smaller

resistance sought, from which the elongated fish or cigar will see figure 1, but the shape was

like driftwood in the water in the air and bustle, if not lead plants were attached to the

stabilization, which will be fitted with oars, which, as the ship or plane distract the flow to the

change in direction and thus the controllability manufacture so you have three essential

conditions: the impetus for a voluminous body as much as possible, minimiye the airodyamic

resistance due to a streamlined form, carefully calculated to as much as possible the main

plants and rowing.

Figure 35

Traggashülle Leitwerk Propeller

182

9.1.2 Task

For the above mentioned Solarluftschiff Lotte is the University of Stuttgart with the support

of the University of Karlsruhe an alternative flight control system (flight control system -

FCS) developed, which takes into account modern information technology methods.

 In the present work is to Aktrorik-Ansteuerung and their connection to the alternative FCS

will be developed.

9.1.3 Overview

The goal of the national work it is, a Aktorikansteuerungs-Baugruppe (AABG) for the flight

control system (FCS) of the airship "alternative Lotte" to realize.

First, the basics regarding real-time systems and embedded systems presented.

Then, the architectural design of the AABG presented.

Afterwards, the realization of the described parts, and that the draft board was carried out with

the program package EAGLE. In the implementation of the Software

(Microcontrollerprogramming) has been the program Vision ver, wedge used 2.03 & of

the company, it is a shareware version for a limited code size of 16 Kbytes, the programming

language is C.

Thereafter some test results of tests of the entire AABG presented.

183

183

9.2 Basics

The content of this chapter is [1], [2], [3] and [4] issued.

9.2.1 Real-time systems

For systems that are of a mechanical, electrical and data processing part, it is of crucial

importance that the information processing happens so quickly, as the mechanical part of or

the entire system needs, such as a plane sensors and actuators, and there are information

technology units that the sensor data processing, and, according to the actuators of an

implemented control loop, and it is the information processing in all your components be at

least as quickly, that the actuators (Helm, etc.) get their commands in time, so that the

planned rail can be flown.

 This circumstance of the timeliness is called real-time, and the real-time capability of a

system, or a component ensures the processing of a task within a defined time frame, and this

can occur in the case of a network the guaranteed delivery of information or in the case of a

operating system is the answer of a task to certain aktionsauslosende events within the defined

maximum latency be.

9.2.2 Hardware

9.2.2.1 Components and classifications

The rapid technological progress causes that is nowadays an unmanageable size variety of

components available on the free market is, in figure 2 is an example of a very broad

overview of a small part of available given Mikroprozessorfamilien. The classification in the

discretion is based on experience and have been made to be regarded rather as a grows.

CISC/Complex RISC/Simple

14500B

 AM2901

4004

4040 1802

8051 Z8 8008 6800,650x

2650 SC/MP F8

 F100-L

 8080/5 NOVA IMS6100 PIC16x

MCP1600 Z80 6809

 Z-280 PDP11 CC116666 M17

8086 TMS9900

 56002 Z8000 65816

32016 68000 ACE

 4 Bit

 8 Bit

 16 Bit

184

Figure 36

For the engineer in this context is often a problem of the selection and selection of an

appropriate product for the task, we need to solve, for this is it I. A, necessary, and the

individual products according to classify, classify and to be able to assess, and in many cases

the task is mostly more difficult by the fact that many of the products of various categories

merge with each other, do try to classify you different products or to compare, so you should

always the target application to the fore, and try for this to find the best solution, a simple

comparison with Benchmarks makes no sense, if you don't for a concrete example of the

application into consideration investigated you, for example, microprocessors, these can be

roughly classified according to their data bus width (16 bit, 32 Bit, ...), your scope

(controller, signal processor, pure microprocessor, ...) or even after the scope of your

instruction set

(RISC, CISC, ...) and of the underlying architecture, and a further, incomplete

List of criteria to be taken into consideration is the following:

 Price/piece

 Pieces, availability, compatibility

 Space, available housing types, required peripherals, etc.

 Power consumption (power supply, heat dissipation, ...)

 Development environments (programming languages, simulators, emulators,)

 Maintainability, modularity, integrity, etc.

All of these decision-making criteria are on a case-by-case basis according to be weighed and

new to weights.

9.2.2.2 The microcontroller family C166

The C166he family was from the company Infineon (formerly Siemens) in the first line for

time-critical control, and control tasks developed, equipped with a 16-bit wide data bus and

numerous peripheral devices provides it to the user a very powerful, integrated solution is

available, as typical for a controller it has a distinct Interrupt-System , many configurable I/O

lines and various timer, in table 1 is an overview of the various families of the C166he given

microcontroller, as is seen, are very many Members of this controller family in addition with

integrated analog Digital Converters (ADC), capture Compare units, a PWM module (PWM)

and serial interfaces.

8.2 Basics

185

185

Table 5

This 16-bit microcontroller family comes with only a very small number of machine

instructions of the C166 has for example, only 78 asm statement, in most cases only a single

machine cycle to be processed, due to the very low number of commands that the controllers

can than RISC type be classified with some extensions.

The memory organization is in a von Neumann architecture , i.e. , programs and data-sharing

is a linear address space together, and each peripheral components, however, are quite

modular and with a very complex networked bus system, which allows the parallel execution

of internal transfers between the modules and the calculator.

9.2.2.3 The C167 microcontroller family

The C167he family is based on the architecture of the C166 family, the to 1990 by the

Siemens company was newly developed in Munich, in contrast with other microcontrollers

and microprocessors was in a more modern, newer concept. The focus has been on a more

efficient interrupt treatment, the optimized ability, with individual bits to work quickly and

efficiently, and to increased throughput between the on-chip peripherals, the memory and the

CPU, put. In addition, played the expandability with other peripheral modules, a important

role, in order to for various applications to obtain an optimized microcontrollers, Figure

3 shows the internal block structures of the C167he family and gives an overview of how the

individual modules are linked together.

C166 Timer Capture Serial

Family I/O ADC Counter Compare PWM Interface Watchdog AddOn`s

 USART

C161 63-76 -/8 Ch.8 Bit 3-5 - - SSC -/I
2
C

C163 77 - 5 - - USART -

 SSC

C164 59 -/8 Ch.8 Bit 5 8 Ch. 6 Outp. USART CANv2.0B

 SSC

C165 77 - 5 - - USART -

 SSC

C166 76 -/10 Ch. 7 16 Ch. - 2 x USART -

 10 Bit

CC116677 111111 --//1166 CChh.. 99 3322 CChh.. 66 OOuuttpp.. UUSSAARRTT CCAANNvv22..00BB

 1100 BBiitt SSSSCC

186

Figure 37

The most important structural elements are of the CPU core, compared to a slight extension

of the C166he has experienced CPU, the interrupt controller and the Peripherie-Einheit .

These three Kernblocke determine the performance and the responsiveness of the controller

to external events and in the following sections are a bit more detail.

9.2.2.4 The memory organization of the C167)

As mentioned previously, the C167) after a organized of the von Neumann architecture

memory. This is through a common linear program and data memory marked of the C167)

can be up to a maximum of 16 MByte addressing. The other area is divided into 256 code

segments, each of which are 64 KByte large. This is another area in 1024 Data pages for each

of 16 KByte organized. The code segments will be on the code segment pointer (CSP), and

the data ranges of 4 data page pointer (DPP0-3) addressed. This allocation is also from the

figure 4 can be seen.

CAN

Mod-

 ule

o

d

P

O

R
T

2

 16

 32 16

 16

 XRAM 16

 2KB
 Interrupt Controller

 16

 16 Port 10-Bit GPT1 ASC PWM CAPCOM CAPCOM

 0 ADC T2 USART 2 1

 Ext. T3

 16 Port Bus T4 T7 T0 16

 1 Contr- GPT2 T8 T1

 oller T5

 16 Port .. T6 BRG

 4

 Port 8 Port 5 Port 3 Port 7 Port 8

 8 16 15 8 8

CPU-Core

Internal

 ROM

 Area

Internal

 RAM

 2KB

Watchdog

 OSC

 PLL

PEC

8.2 Basics

187

187

Fig 38

The segment 0 is a special case, as it registers all the peripheral modules, the General Purpose

Register (GPR), the stack, the internal ROM -if any- and the internal RAM contains. From

address 0x0000 in segment 0 is the internal ROM , which is also in the segment 1 can be

displayed, this is during the reset process on the CPU register set SYSCON. From address

0xe000 is located in the area of the so-called XRAMs (on-chip extension RAM) or the

Register of the CAN module, the XRAM behaves like a normal external memory, the

required no wait states, but this will be no external bus cycles generated. In the address range

between 0xf000 and 0xFFFF is located the internal RAM and the Special Function Register

(SFR). This area contains all I/O register

The C167, which is remarkable, that those who register, the shaded in gray in the

Adreßbereichen are (0xF100-0XF1FF, 0xFD00-0xFDFF and 0xFF00-0xffff), bit by bit-

addressable, i.e. to the change of the bits is not a so-called Read-Modify -Write cycle

required, as he usually when manipulating of registers by means of a bitmask is used, the

internal RAM contains, the more the system stack, which, in its size in the range of 32-1024

words is programmable, and the stack grows from higher to lower addresses, addresses, and

 7 0 7 0 7 0

Segment
0xFFFFFF

RAM/SFR
0xFFFF

SFR
0xFFFF

 255 Area

 0xFF0000 0xF000 Area

Segment

 254 XRAM/CAN

 0xFE0000 0xE000

0xC000

 External Internal

 Memory Ram

0x8000

0xF600

0x3000

Internal

Segment Rom
0x4000

 Reserved

 2 Area

 0x2000 0xF200

Segment

 1

 0x1000 ESFR

Segment Area

 1

0x0000 0x0000 0xF000

 Adress Space System Segment 0 RAM/SFR Areas

 16 Mbyte 64 Kbyte 4 KByte

188

use the Stack underflow that sometimes reduced download performance (STKUN) or stack

overflow (STKOV) registers, the stack also outsourced, and thus be extended dynamically. It

speaks in this case of a circular stack, and also in this area the General Purpose Register is

created, the on the context pointer (CP) will be addressed, a new tab is required (for example

in case of a subprogram call-up or the branch in a interrupt service time (down to -routine), it

may simply by implementing of the CP on a new Registerbank be switched, this has the

advantage that, in a Programmverzweigung instead all of the registers only the CP at the top

of the stack Must be backed up, and also are located in this address range the Source and

Destination pointer for the Peripheral Event Controller (PEC) see [1], the rest of the internal

RAM is used either as a memory for variables and data, or for program code.

9.2.2.5 The interrupt system of the C167)

As the C167) microcontroller has a distinct interrupt system, which allows him to very

efficiently to external and internal events react to, in principle is to distinguish between

 Normal interrupts,

 Peripheral Event Controller (PEC) interrupts,

 Trap Features (Hardware and Software traps) and

 External Interrupts.

The procedure of the expiry in the event of an interrupt will now be explained, first of all, the

interrupt service routine (ISR) to create, the I. A, a subroutine is equivalent, but with the

exception that for the corresponding interrupt source a defined interrupt trap number, see

Table 3 , must be specified when a interrupts is then on this trap number in the Interrupt

Vector table [2], with the address 0x0000 in the address space is located, called the interrupt

service routine, and then the appropriate interrupt source is with a suitable interrupt priority

level (ILVL) and Group Priority Level (GLVL) fitted to the C167) has 16 ILVL level, each

with four group level, it can therefore a maximum of 64 different interrupt priorities be

awarded multiple interrupts occur at the same time, so those with a higher wins and ILVL

GLVL value.

Only occurs on an interrupt, it is only the ILVL value with the CPU-ILVL value in the

Program Status Word (PSW) compared, only if the value is higher, the CPU in your current

valueaƒvalueb interrupted. After the establishment of the significance of each interrupt source

8.2 Basics

189

189

Table 6 interrupt resources of the C167) (Part 1)

By the programr, this priority level (ILVL+GLVL) in the associated interrupt Control

Register written (for example, T0IC = 0x0027; tells the Timer 0 Interrupt Control Register a

ILVL value of 9 and a Group level from 3 to.) The general layout of an Interrupt Control

register in Figure 5 is played.

Figure 39

Address: 0xyyyy 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 yyIC yyIR yyIE ILVL GLVL

 Reset: 0xzzzz

 Source of Interrupt Request Enable Interrupt Vector Trap

 PEC Service Flag Flag Vector Location Number

CAPCOM Register 0 CC0IR CC0IE CC0INT 0x0040 0x10

CAPCOM Register 1 CC1IR CC1IE CC1INT 0x0044 0x11

CAPCOM Register 2 CC2IR CC2IE CC2INT 0x0048 0x12

CAPCOM Register 3 CC3IR CC3IE CC3INT 0x004C 0x13

CAPCOM Register 4 CC4IR CC4IE CC4INT 0x0050 0x14

CAPCOM Register 5 CC5IR CC5IE CC5INT 0x0054 0x15

 CAPCOM Register 28 CC28IR CC28IE CC28INT 0x00F0 0x3C

 CAPCOM Register 29 CC29IR CC29IE CC29INT 0x0110 0x44

 CAPCOM Register 30 CC30IR CC30IE C30INT 0x0114 0x45

 CAPCOM Register 31 CC31IR CC31IE CC31INT 0x0118 0x46

 CAPCOM Timer 0 T0IR T0IE T0INT 0x0080 0x20

 CAPCOM Timer 1 T1IR 1IE T1INT 0x0084 0x21

 GPT1 Timer 2 T2IR 2IE T2INT 0x0088 0x22

 GPT1 Timer 3 T3IR T3IE T3INT 0x008C 0x23

 GPT1 Timer 4 T4IR T4IE T4INT 0x0090 0x24

 GPT2 Timer 5 T5IR T5IE T5INT 0x0094 0x25

 GPT2 Timer 6 T6IR T6IE T6INT 0x0098 0x26

 GPT2 CAPREL Reg. CRIR CRIE CRINT 0x009C 0x27

 A/D Conversion Comp. ADCIR ADCIE ADCINT 0x00A0 0x28

190

It is this, the greater the ILVL and GLVL value the higher is the appropriate priority, after the

definition of the priority is to source the appropriate interrupt enable (by setting the

corresponding yyIE bits), is a PEC transfer be enabled, it is at this point the PECC Register as

well as the source and destination address set. After the local interrupt release must be

allowed an interrupt global. For this is in the CPU program status word register PSW the bit

'Interrupt Enable' (IEN) must be set, interrupts that occur can now be processed and approved.

The C167) only has a single dedicated interrupt pin - the non-maskable interrupt (NMI) - it

can, however many IO pins with the associated logic be configured so that an external signal

an Interrupt Request can trigger these interrupts are typically all 400ns at a speed of 20MHz is

scanned, the top eight pins of Port 2 can also be used as a however almost external

interrupts are configured, see [1] page 5-23, which can also the edge change, you want to

trigger a request to be programd in this specific case, it is the scanning of the inputs all 50ns at

a CPU speed of 20MHz.

In addition to the previously discussed Interrupt mechanisms there are the so-called trap

functions, of which two types are distinguished in the Software trap is a trap in the

valueaƒvalueb on function (for example: _trap_(0x10)) an interrupt is triggered it is

processing as in the case of a normal ISR, with the exception that the Interrupt Request (IR)

flag is not set and the ILVL priority value not in the Program Status Word is copied, which

means that software Traps of interrupts with a lower priority are always can be interrupted,

for example, the UN-ter the Hardware traps are energized because of the CPU summarized

(e.g. B: mis-aligned requests, Opcode violations, etc.), these are not maskierbar and have

priority over any other CPU activity within this Hardware traps there is a prioritization in

different classes, depending on the severity of the error, see [1] page 5-5, and the processing

of this error is the same as with a normal ISR, with the exception that there is always a ILVL

value of 15 in the Program Status Word is copied.

9.2.2.6 The Timereinheiten

A timer is a hardware counter (Figure 6), although the initialized with commands, but then

program runs independently and in his cause an interrupt zero-crossing can. He is used for

many tasks, the software is only by program can be very costly, for example:

 As a periodic interrupt timer,

 Use as an event counter for signal edges,

 Frequency generator and frequency meter, as well as

 Pulse width modulation to control of engines (Servos).

8.2 Basics

191

191

Fig 40

By programming the timer control the timer can be set in different modes, used as the clock

source either the internal or an external signal processor, with the gate input is insulated

controlled the clock is in a zero crossing of the counter can be a signal to the outside or

delivered an interrupt will be triggered. Hilfsregister serve to recharge, compare, and reading

of the meter reading.

9.2.2.7 Capture Compare Unit (Capcom)

 Compare / Reload

 Timer +/- 1

 Capture

 Null

KontrolleTakt
Quelle

Interner

Takt

 Timer - Steuerung

 Ext. Takt Gate Ausgang

 Interrup-Request

192

The Capture Compare Unit of the C167) is used to capture and compare Signalzustanden of

external digital, and can quite elegant with this module are generated pulse patterns, this

module is divided into two functional groups with the CAPCOM unit 1 from the two timers

T0 and T1 as well as the 16 registers CC0 to CC15 is the one of the two Timer T0 or T1 are

assigned to, in the CAPCOM unit 2 work registers CC16 to CC31 with one of the two Timer

T7 and T8 together in Figure 7 is a functional block diagram of the Timer T0 shown Timer

T0 as a timer or counter can be used and has a separate Reload register. The timer T1 can only

be used as a timer, but as well as Timer T0 on a own Reload register. The timer T7 is

analogous to Timer T0 and T8 to T1 running analog.

Fig 41

In the Mode Timer work the timer only counts upwards with the TaktquelleIntern (getelter

CPU-measure) or with the output of GPT T6, and the timer T0 and T7 have additional

external flankenprogrammierbare inputs (Count-Betrieb). In each zero crossing the timer

automatically Nachladeregister TxREL lengthen it from the reloaded, and it can be triggered

an interrupt.

In the Mode Capture (field) is the current meter reading of the assigned Timer in one of the

Register CCxx stored and it can be triggered an interrupt, and this is done with a

programmable edge on one of the inputs CCxxIO, the external interrupt to trigger be used.

In the Mode is Compare (Compare) is one of the tabs CCxx on a comparator with the current

count of the associated timer compared. If it matches, it will be a signal on the corresponding

output CCxxIO output, and it can be triggered an interrupt.

 T0 f CPU T0I T0M

 / 8 000 T0REL

 / 16 001

 / 32 010

 f CPU / 64 011

 / 128 100 0 T0R

 / 256 101

 / 512 110 T0 Interrupt

 /1024 111 1 (caunts up) T0IR Request

 T0I

 .2 .1 .0

 x 0 0

 x 0 1 1

 x 1 0 CAPCOM1

 x 1 1

8.2 Basics

193

193

9.2.2.8 The PWM Pulsweiten-Einheit

 With this unit in the event of an emergency is constant PWM-generating signals, if the

recipient for any reason no signals to Outputs further sends. This unit has 4 channels of each

of the 4 channels contains its own Timer PTX, of the of the CPU-measure or a divider on the

counts, the period of the signal results from a comparison of the current counter with the

Periodenregister PPx. The Low-Zeit from a comparison with the Pulsweitenregister PWx.

For the setting of the measure, the use of the Interrupt mode and all 4 channels the common

control register PWMCON0, PWMCON1 see figure 8 and 10, and PWMIC. For each channel

there is a own Timer PTX, a own Periodenregister PX, a own Weitenregister PWX and a own

output P7x.

Fig 42

PTRx Timer-Laufkontrolle :0 = off, 1 = Run

PTIx Timer-Taktauswahl : 0 CPU-cycle, 1 = CPU-measure : 64

Fig 43

PENx output control : 0 output locked, 1 = output Friday

PMX Operating Mode (Mode) 0 = up counter, 1 = on-/ decrementer

In the PMX = 0 Operating Mode Mode The timer counts PTX starting with the initial value of

0 only up. The counter is of the timer is equal to, or greater than the comparison value in the

corresponding PWX, the output to 1 (High) Set, if the counter reaches the comparative value

 PWMCON0

 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 PI PI PI PI PI PI PI PI PT PT PT PT PT PT PT PT

 R3 R2 R1 R0 E3 E2 E1 E0 I3 I2 I1 I0 R3 R2 R1 R0

 Interrupt-Anzeige Interrupt-Freigabe Taktauswahl Laufkontrolle

 PWMCON1

 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 PS3 PS2 -- PB01 -- -- -- -- PM3 Pm2 PM1 PM0 PEN PEN PEN PEN

 3 2 1 0

 Sonderbetriebsart Betriebsart Ausgang

194

of the corresponding PX, it will be in the next is kept pressed the output to 0 (low) is set and

the timer with the initial value 0 started again.

9.2.2.9 Analog Digital Converter (ADC)

The C167he family has an integrated analog digital converter, see figure 11, with the

following properties:

10-Bit Resolution

Wandlungsverfahren: successive approximation

Conversion time: minimum 9.6 s

16 Analog Input Channels

In each computer system is the so-called bit (Binary-Digit , divalent paragraph), the smallest,

not more further divisible unit of information in the system, a bit can the value (logical 0),

or(logical 1) Accept.

In electrical systems, these are two statuses in general shown by electrical voltage and

therefore applies to, for example :

 Log.1 = high = +5V

 Log.0 = low level = 0V

Seen in this way it makes sense, in a first resolution step the voltage to be measured on a

digital input pin of the µCs to connect, but unfortunately there are only two logical however it

binary statuses and thus only two distinguishable also unchangeable.

Now here comes the use of the ADC, this component is nothing other than a

vorschaltbaugroppe, the analog voltage signal µC-arranges meet, i.e. in converts a numeric

value of the C167-AD-converter not only converts so simply analog voltages in binary

numbers, but also provides the user still 6 different modes available, see [4], with which

a wide variety of measurement tasks is very easy to carry out in this work is with Auto Scan

continuous conversion mode worked.

Auto Scan continuous conversion mode

In this mode, each time a whole sequence of analog channels of the series after analog-to-

digital changed. In the ADCH a bitfield which is specified with the channel of the the

Wandlung-Sequenz begins; it ends with channel zero, after each conversion is an interrupt

request generated, indicating that, in the ADDAT Register is a current Wandlungsergebnis. In

this mode, between a single and a continuous conversion mode differences.

When Single converts of the AD-converter will automatically all the channels from the

channel down to the channel 0 and then stop and the continuous running analog from, only

that now permanently further converts.

8.2 Basics

195

195

Analoge

Eingangskanäle

 P5.0=AN0

 P5.1=AN1

.

.

.

 Interrupt

. MUX Requests

.

.

.

.

 P5.15=AN15

 Referenz- Masse
 Spannung

Steuerregister ADCON

Mit den Bits

ADST ADCH ACM ADBSY

Conversion Control

Sample
& hold

10-Bit
Converter

ADCIR
ADEIR

Resultatregister
ADDAT

Fig 44

9.2.3 Control of servo motors

In order to with a Mikrorechnersystem as C-C167) to also control Mechanical Systems

You can, you can rely on several concepts.

Stepper motors are controlled with special Signalsequenzen to separate coils are placed these

engines, so move the rotors always exactly one "step" next, mostly a few Umdrehungsgrade.

About a complicated control and appropriate transmission the system may then be moved, DC

motors with Mikrorechnern can once via the appropriate amplification stages be turned on

and off, and on the other you can, for example, about Pulse Code Modulation set speeds.

196

A very different technique, the so-called servo-drives, which, inter alia, in the

MODELLBAUWELT (plane, car, and model ships) are used, these are already for a few

marks and have to have some impressive advantages for the amateur electronics engineers.

To work with low voltages (5V are enough), and on the other they consume little power in the

hibernate. Your Ursprungszweck according to create a rotation of about 90-180 degrees to a

strong reduction, i.e. very strong axis. For movements, the living with such values (e.g. , the

sun tracking solar paneling, mirror tilt, steer models, etc.) are servo motors ideal, the most

important ingredients are a small DC motor with gearbox, at the output is coupled

mechanically a potentiometer and a Electronics, a pulslangenmoduliertes

Signal (PWM signals) evaluates, and controls the engine according to the top there is a

standardized control of these servos. In the distance of 25 ms pulses are sent (in radio remote

controls on the transmitter), with a length of 1.0 ms to 2.0 ms varies and so the position of the

servos indicating (left and right).

Is located in the center position of the servo, it is the pulse duration 1.5 ms see figure 12. This

Eingangsimpulslange is with the pulse duration of the monostable Multivibrators compared,

the of the position of the potentiometer and so that the position of the servos depends on, and

only if the position of the servos the same internal pulse generated, such as the externally-

scale, hears the movement to, the servo has its default position is reached, so that all of the

users of a commercially available servos are still needs to do is the earth, and 5 V and connect

at the entrance for a pulse sequence ensure that it is "understands". What is customary here

are normal TTL-level.

Figure 45

 Signal T_1 T_1 = 25 ms

 T_2

 Zustand: 1 0 -1

 T_2 = 1 ms T_2 = 1,5 ms T_2 = 2 ms

197

197

9.3 Architecture design of the Aktorik-Ansteuerungseinheit (engl, Actuator
Control Unit (ACU)

Fig 46

9.3.1 Voltage regulation

The assembly "Voltage Regulator" supplies the remaining blocks of the ACU with a constant

voltage of such a level, for which the individual blocks is needed, as well as the assembly

ensures that the power supply for a certain time is maintained after Normal-

Betriebsspannungsversorgung not more is fully functional (by the normal operating voltage

Basisbetriebs -
Zustands -
Eins tellung

Steuersignal -
Erzeugung

Notsteuerungs -
Baugruppe

Betriebsspannungs -
Überwachung

Navigations -

und
Regelungs -

Rechner
(N/R - Rechner)

(an Bord des
Luftschiffs)

Fern -
Steuerungs -
Empfänger

Aktoren
(Servos,
Motor)

Actuator Control Unit (ACU)

Normal -
Betriebs -
Spannung
der ACU

Spannungs -
Stabilisierung

Notbetriebs -
Spannung
der ACU

198

drops below a certain level). that the normal operating voltage drops below a certain level, the

"Betriebsspannungsuberwachung" found.

9.3.2 Betriebsspannungsuberwachung

The "Betriebsspannungsuberwachung" monitors, whether and when the required operating

voltage falls below a particular level, in which the blocks of the ACU not more properly can

be supplied. Is the block "Voltage Regulator" just in the condition "Supply of

Normalbetriebsspannung" (that is from the voltage regulator to the Normalbetriebsspannung

the other blocks of the ACU passed on), and then drops the Feed level requested below a

certain level, there is the block "Betriebsspannungsuberwachung" a signal to the block

"Voltage Regulator" that this "to be supplied with Notbetriebsspannung" switch.

9.3.3 Basisbetriebszustands-Einstellung

Using a switch of the through a separate channel of the remote control is pressed, the

distributor of the " Basisbetriebszustands-Einstellung " with either normal

operation (contains normal operation A (valid commands come from the N/R-calculator) and

normal operation B (interconnection of the control signals from Fernsteuerungsempfanger))

or with Luftschiff-Startphasen -operation be initialized when Luftschiff-Startphasen

operation, the PWM signals from Fernsteuerungsempfanger routed directly to the actuators

(without the use of the microcontroller of the block " Steuersignal-Erzeugung "), during

normal operation, the "Steuersignalerzeugung" from normal operation A to normal operation

B toggles and vice versa, in this separate channel is constantly being sent, i.e. , the signal for

normal operation or Luftschiff-Startphasen -operation is stationary at.

During the flight can be between Luftschiff-Startphasen -operation and normal operation be

switched in both directions.

If neither control signals (PWM signals) at the output of the block "Steuersignalerzeugung"

concerns, nor in the separate channel of the remote control, the between normal mode and

Luftschiff-Startphasen -operation mode, the finite state machine of the "

Basisbetriebszustands-Einstellung " the system, in the Condition " Notsteuersignal-Erzeugung

- level 2" (i.e. , hardware production of Notsteuersignalen) move to normal operation after

emergency operation status transfer (level 2).

9.3.4 Steuersignal-Erzeugung

Of the block "Steuersignalerzeugung" generated depending on the operating condition in

different ways control signals (PWM signals), the directly the actuators (engine, servos)

response:

 In normal operation A receives the "Steuersignalerzeugung" control commands from

the distributor of the " Basisbetriebszustands-Einstellung " and generates control

signals (i.e. , PWM signals)

 In normal operation (B) are control signals (i.e. , PWM signals) from

Fernsteuerungsempfanger forwarded to the actuators.

8.3 Architecture design of the IMUACU

199

199

 At the system startup to the normal operation B is initialized, if on channel 5

"Normal mode" is set, and the further operation may, at any time from normal

operation B switch to normal operation a be and vice versa, and this is done by

setting from the N/R-machine from the N/R-computer receives this information on his

communication system from the ground (not from the remote control).

 If in normal operation A or normal operation B due to the failure or failure of the N/R-

computer and/or of the Fernsteuerungsempfangers the microcontroller no more signals

to the input port of the microcontroller receives, is moved to the State "

Notsteuersignal-Erzeugung - level 1 ", in which the microcontroller of the

"Steuersignalerzeugung" autonomously PWM signals to the actuators generated and

there is.

9.3.5 Notsteuerungsbaugruppe

In the start-up phase of the airship will be exclusively the PWM signals from

Fernsteuerungsempfanger used to control the actuators, and the PWM signals but not only by

the microcontroller of the " Steuersignal-Erzeugung", but by the "Notsteuerungsbaugruppe"

given directly to the actuators.

If

1. No valid control signals more through the " Steuersignal-Erzeugung " be

created (this may be the case, after the order of the different states in the "

Steuersignal-Erzeugung " have failed, or but the " Steuersignal-Erzeugung " as

a whole suddenly fails) and

2. Also no valid control signals more on the output of the

Notsteuerungsbaugruppe be measured by the Direktdurchschaltung the control

signals from Fernsteuerrungsempfanger Notsteuerungsbaugruppe by the stem,

and

3. No PWM signals to the separate channel of the remote control concerns, the

between normal mode and Luftschiff-Startphasen -operation switches to

(1., 2 and 3, in the "Notsteuerungsbaugruppe" monitors), there are the

"Notsteuerungsbaugruppe" a signal to " Basisbetriebszustands-Einstellung ", which

automatically to the hardware Notsteuersignal-Erzeugung the "Notsteuerungsbaugruppe"

mode.

200

9.3.6 Operating conditions of the ACU

 System-
start

Normalbetrieb

Notsteuersignal-
Erzeugung-
Stufe 2

Luftschiff-
Startphasen-
Betrieb

Start
Normalbetrieb

Normalbetrieb A Normalbetrieb B

Not steuersignal -
E r zeugung

- S tufe 1

Kanal

5

N/R-Rechner

Fig 47

9.3.7 Modularity of the ACU

The blocks "Voltage regulation", " Basisbetriebszustands-Einstellung " and " Notsteuerungs-

Baugruppe " are realized purely hardware the blocks "Betriebsspannungsuberwachung" and

"Steuersignalerzeugung" software will be with a program that runs on a microcontroller,

realized.

As far as possible to the system modular design, it offers to the ACU to divide into two

subsystems, each of which will be implemented on a board: a subsystem, in which the blocks

"Voltage regulation", " Basisbetriebszustands-Einstellung " and " Notsteuerungs-Baugruppe "

are (will be realized on a printed circuit board 1), and another subsystem, in which the blocks

"Betriebsspannungsuberwachung" and "Steuersignalerzeugung" are located, which has the

following advantage: if the circuit board with the microcontroller fails, the ACU still work

(by the Notsteuerrungsbaugruppe). The board for "Betriebsspannungsuberwachung" and

"Steuersignalerzeugung" (circuit board 2) In the context of this work is not developed, already

a general test board of the company PHYTEC is present, on the the two blocks are to be

realized: only the software, the on the on the test board expires the microcontroller, is

developed in the context of this work.

8.3 Architecture design of the IMUACU

201

201

Fig 14: architecture of the ACU (detailed presentation)48

Basisbetriebs - -
Zustands-Einstellung

Steuersignal - Erzeugung

Betriebsspannungsüberwachu
ng

Verteiler
(Zustand -
automat)

Navigations

-
und

Regelungs -
Rechner

(N/R - Rechner)

 (an Bord

des

Luftschiffes

des

des Luftschiff

)

s

Fern -
Steueru ngs -
Empfänger

Steuersignal - Erzeugung
(Normalbetrieb A)

Uberwachung
Steuerbefehle
N/R Rechner

Überwachung der
Steuersignal vom
Fernsteuerungempfänger

Notsteuersignal -
Erzeugung

(Softwaremäßig)

Ü berwachung der
Steuersignale am Ausgang

der ACU

Notsteuersignal -

-

Erzeugung Stufe 2
(Hardwaremäßig)

Aktoren

(Servos,

Motor)

Actuator Control Unit (ACU)

Überwachung der

Betriebsspannung der

ACU

Normal-

Betriebs-

Spannung

der ACU

Versorgungs-

Spannungs-

Stabilisierung

Spannungs-

Stabilisierung

Not-

Betriebs-

Spannung

der ACU

Weiterleitung der PWM -
Signal vom
Fernsteuerungsempf.

Weiterleitung der PWM -
Signal vom
Fernsteuerungsempf.

Kanal 5
Notsteuersignalbaugruppe

202

202

9.4 Development environment

9.4.1 Hardware-Entwicklungsumgebung

The hardware development is done with the program of the company Cadsoft EAGLE. It is

the eagle-v4.0, with Windows 2000, the tool includes a layout editor, with which the Board

for the blocks "Voltage regulation", " Basisbetriebszustands-Einstellung " and "

Notsteuerungs-Baugruppe " was designed, also contains a Bibliotheks-Editor EAGLE, a

CAM (Computer Aided Assembly) -processor and a text editor, you can with the

Bibliothekseditor housing and edit icons.

Fig 49

203

203

9.4.2 Software Development Environment

The programming of the microcontroller C166 is under development

environment

One finds in µVision, Version 2 the basic elements of a modern IDE:

 A specially adapted text editor.

 An ANSI-C-compiler (C166-ANSI-C-compiler),

 A Assembler (A166-Assembler),

 A left/Lokator (L166),

 A debugger (µVision2 Debugger)

Fig 50

204

9.5 Realization of the ACU

In this chapter is the realization of the actuator control Unit (ACU) explains the five blocks of

the ACU (see Figure 14) is as follows: First, it presented the block diagram, for the blocks

"Voltage regulation", " Basisbetriebszustands-Einstellung " and " Notsteuerungs-Baugruppe "

is the respective circuit presented, and the individual parts of the circuit described in detail in

blocks " Betriebsspannungs-Überwachung " and " Steuersignal-Erzeugung " is only described

the Software on the microcontroller expires because the Board for the latter 3 blocks off-the-

shelf was concerned, and only the programming of the microcontroller to an established part

of the present work was.

9.5.1 Versorgungsspannungs-Stabilisierung

Fig 51

Figure 17 shows the assembly " Versorgungsspannungs-Stabilisierung ", which the remaining

blocks of the ACU with a constant voltage of +5V supply, as well as provides this assembly

to ensure that the power supply for a certain time is maintained, after the Normal-

Betriebsspannungsversorgung not more is fully functional, and this is done in that the "

Versorgungsspannungs-Stabilisierung " in this case, the remaining elements of the ACU to

the Notbetriebsspannungsquelle connects.

Basisbetriebs-

zustandseinstellung

Steuersignal-Erzeugung

Notsteuerungsbaugruppe

Betriebsspannungsüberwachung

Versorgungs-

Spannungs-

Stabilisierung

Spannungs-

Stabilisierung

Notbetriebs-

Spannungs-

versorgung

der ACU

Aktoren

(Servos,

 Motor)

Normal-

betriebs-

spannungs-

versorgung

der ACU

Notbetriebs-

Spannungs-

versorgung

der Aktorik

Normal-

betriebs-

spannungs-

versorgung

der Aktorik

205

9.5.1.1 Circuit Design for the Versorgungsspannungs-Stabilisierung

Fig 52

The circuit for the Versorgungsspannungs-Stabilisierung consists of six areas (see figure

above, the ranging numbers are there circled):

1. Connection to the supply voltage for the ACU (Normal and

Notbetriebsspannungsversorgung)

2. Stabilization of the supply voltage for the Blocks " Betriebsspannungs-Überwachung "

and " Steuersignal-Erzeugung " (i.e. , for the microcontrollers, since these two blocks to

the Microcontroller are implemented)

3. Stabilization of the supply voltage for the Blocks " Versorgungsspannungs-Stabilisierung

", " Basisbetriebszustands-Einstellung " and " Notsteuerungs-Baugruppe " (i.e. , for those

blocks, the hardware are implemented, and while on a common board)

4. Connection to the remaining blocks of the ACU (left series: Connections to the

microcontroller, i.e. , to " Betriebsspannungs-Überwachung " and " Steuersignal-

1

2

5

3 4

6

206

Erzeugung "; rights series: Connections to the blocks "voltage stabilization", "

Basisbetriebszustands-Einstellung " and " Notsteuerungs-Baugruppe "), to the stabilised

voltage with this to supply.

5. Connection to the supply voltage for the actuators (Normal and

Notbetriebsspannungsversorgung)

6. Toggle switch from normal operation to Notbetriebsspannungsversorgung

Circuit Description The Schaltungsbereiches for the supply of the Mikrokontrollers

(Schaltungsbereiche 1-4, upper half of the pattern thus activating):

Relay K1 switches battery 1 (soldering tag LSP1 +Pol, and LSP2 -pol) and the battery 2

(soldering tag LSP3 +Pol, and LSP4 -pol) using Digitalport P2.7 to (' 1' = Battery 2 enabled).

The charge level of the battery voltage Vc is by the voltage divider R1 + R2 on the analog

port P5.0 measured (VIN 1/3 VC), with the voltage divider R4 + R5 can be an internal

voltage activated, the supply of the Capcom is carried out by the +5V voltage regulator IC1

which are Umschaltspitzen with the capacitor C1 smoothed, the supply of the internal logic is

made with the regulator IC2, the in addition to the highly-capacitive Pufferkondensator

HICAP1 in total voltage drop is supplied to the servos in a defined location, see figure 18.

207

Circuit Description The Schaltungsbereiches for the supply of the actuators (servos and

engine) (Schaltungsbereiche 5, left, the lower quarter of the pattern thus activating):

Relay K7 switches battery 3 (soldering tag LSP5 +Pol, and LSP6 -pol) and battery 4

(soldering tag LSP7 +Pol, and LSP8 -pol) using Digitalport P2.6 or higher (' 1' = Battery 4

enabled). The battery charge the battery voltage vs is by the voltage divider R6 + R7 at the

analog port P5.1 measured (Vin Ca Aprx 1/3 Vs). The LSP9 (+pol) and LSP10 (-pol) is

connected the supply of the governor.

9.5.2 Betriebsspannungsuberwachung

The "Betriebsspannungsuberwachung" monitors, whether and when the required operating

voltage falls below a particular level, at the the blocks of the ACU not more properly can be

supplied.

Fig 53 Block diagram for the Betriebsspannunguberwachung

The Betriebsspanunnungsuberwachung software is purely realized with a program, which

expires on the microcontroller, the Microcontroller uses up to a A/D-converter, which is also

on the PHYTEC-test board is located, to current, analog voltage level in a digital number to

convert, then finally the with the help of a Mikrocontroller-Programms is compared with a

threshold value, the digitized current voltage level is less than the threshold, a signal is

generated on the output of the microcontroller, which is by the Block "

Versorgungsspannungs-Stabilisierung " is directed, and there causes that on

"Notversorgungsspannung" is switched.

Betriebsspannungsüberwachung

Versorgungs-

Spannungs-

Stabilisierung

Überwachung der
Betriebsspannung der

ACU

208

Fig 54 the µC

Figure 20 shows the µC-program for the Betriebsspannungsuberwachung. The same program

is used for both the Betriebsspannungsuberwachung the Aktorik-Spannungsversorgung , as

well as for the Betriebsspannungsuberwachung the ACU-power supply used. The two analog

Meßeingange for the two power supplies are available at two different channels of the ADCs

and will be gradually converted by the ADC and the ADDAT in-register of the

microcontrollers written (Single conversion mode of the ADC, see Ch. 2).

The microcontroller still works at a supply there must be a pause of. That is why the 4.76 V.

Microcontroller are used to a voltage fell below below the 5V-border to detect and respond to

it.

9.5.3 Basisbetriebszustands-Einstellung

Using a switch, the on a separate channel (channel 5) of the remote control is pressed, the

distributor of the " Basisbetriebszustands-Einstellung " with either normal

operation (contains normal operation and normal operation (A B) or with Luftschiff-

Startphasen -operation be initialized when Luftschiff-Startphasen operation, the PWM signals

from Fernsteuerungsempfanger switched directly to the actuation system (to override of the

microcontroller of the block " Steuersignal-Erzeugung "), during the flight can

Fernsteuerungskanal 5 between Luftschiff-Startphasen -operation and normal operation be

switched in both directions, if neither control signals (PWM signals) at the output of the block

"Steuersignalerzeugung", nor on the channel5-output of the Fernsteuerempfangers concerns,

the finite state machine of the " Basisbetriebszustands-Einstellung " the system, in the

Starten

Digitalen Spannungswert

vom ADC holen

und ins ADDAT-

Register schreiben

ADDAT > 496 ?

(5 V)

ADDAT > 496 ?

(5 V)

Px = 1, Umschalten von
Normal- auf Notbetrieb

Ende

ja

janein

nein

Digitalen Spannungswert

vom ADC holen

und ins ADDAT-

Register schreiben

209

Condition " Notsteuersignal-Erzeugung - level 2" (i.e. , hardware production of

Notsteuersignalen) move to (state transition Notsteuersignal-Erzeugung normal operation

after - level 2).

Basisbetriebs -

Zustands -

Einstellung
Steuersignal -

Erzeugung

Notsteuerun gs -

Baugruppe

Navigations -

und

Regelungs -

Rechner
(N/R - Rechner)

(an Bord des

Luftschiffs)

Fern -

steuerungs -

empfänger

Aktoren

(Servos,

Motor)

Versorgungs -

Spannungs -

Stabilisierung

Verteiler

(Zustand -

automat)

Normalbetrieb B

Normalbetrieb A

Luftschiff-Startphasen-Betrieb Zusandsübergang

nach „Notsteuersignal-Erzeugung – Stufe2“

Benachrichtigung, daß ein Zusandsübergang anch

„Notsteuersignal-Erzeugung – Stufe2“ staatfinden

muß

Fig 55

Figure 22 shows the state diagram for the distribution of the " Basisbetriebszustands-

Einstellung ":

System-

start

Normalbetrieb

Notsteuersignal-

Erzeugung-
Stufe 2

Luftschiff-
Startphasen-

Betrieb
Kanal 5

Figure 56

210

211

9.5.3.1 Circuit Design for the Basisbetriebszustands-Einstellung

Kanal 5 > 1,5 ms =>Luftschiff-Startphasen-Betrieb (LSB)

Q = „0“ => LSB

Figure 23: Part 1 of the switch between Luftschiff-Startphasen -operation and normal

operation (LSB/NB-switch, part1)57

Fig 24: Part 2 of the switch between Luftschiff-Startphasen -operation and normal operation

(LSB/NB-switch, part2)58

Transition from startup, after LSB or NB and between LSB and NB (see Figure 23):

212

The PWM-signal of Fernsteuerungskanal 5 is from the output P2.5 of the

Fernsteuerungsempfangers on the entrance to the LSB/NB-switch (in Figure 24 with P2.5

refers). In the LSB/NB-switch is depending on the length of the PWM-signal greater than 1.5

ms: LSB; smaller than 1.5 ms: NB) of the output 12 (C/_Ext) of his flip-flop module IC7B on

high or low (see Figure 23) is set, this line of the flip-flops, with the gate input is insulated

(C/_Ext) of the Fett-Kondensators Q7 (see 24) connected. The FET controls the relay K2 and

K4, and K2 can be either a interconnection of the Fernsteuerkanale 1 and 2 (P2.1 and P2.2) to

the rudder and the engine or but the connection of the rudder and the engine to the outputs

P8.2, P7.0, P8.3 and P7.1 of the microcontroller, K4 has the same effect as K2, but not for the

rudder and the engine, but for the two Hohenruderhalften (elevators 1 And 2).

Transition from NB or LSB Notsteuersignal-Erzeugung - level 2 (see Figure 23):

If neither PWM signals at the output of the ACU concerns, nor PWM signals over

Fernsteuerungskanal 5, interrupt the relay K3 and K5 the connections to the relay K2 and K4

and connect the actuators with the Block " Notsteuersignal-Erzeugung - level 2 ".

Table 7 summarizes the inputs and outputs of the LSB/NB-switch together:

9.5.4 Steuersignal-Erzeugung

In Abschn.3.3 was the architecture of the " Steuersignal-Erzeugung raised before the

description of the off-the-job training Shelf-Hardware and the design of the software

components of the " Steuersignal-Erzeugung " is moved, here is to again on the architecture

of the " Steuersignal-Erzeugung " be received, and also some of the things added:

The Block "Steuersignalerzeugung" generated depending on the operating status on various

way control signals (PWM signals), the directly the actuators (engine, servos) response:

 In normal operation A gets the "Steuersignalerzeugung" commands from manifold of

the " Basisbetriebszustands-Einstellung " and generates control signals (i.e. , PWM

signals)

 In normal operation B are control signals (i.e. , PWM signals) from

Fernsteuerungsempfanger (by the microcontroller through) activated and forwarded to

the actuators, the Microcontroller is used here as Signal-Begrenzer and observers.

Fernsteuerungs- ACU- ACU- Einstell- Funktion

Kanal Eingang Ausgang Potentiom. (Servo)

1 P2.1 P8.2/P7.0 P17 Seitenruder 1+2

2 P2.2 P8.3/P7.1 P16 Motor

3 P2.3 P8.4/P7.2 P15 Höhenruder 1

4 P2.4 P8.5/P7.3 P14 Höhenruder 2

5 P2.5 Umschaltung

ext./µC

213

 At the system startup to the normal operation B is initialized, if on channel 5

"Normal mode" is set, and the further operation may, at any time from normal

operation B switch to normal operation a be and vice versa, and this is done by

setting from the N/R-machine from the N/R-computer receives this information on

his communication system from the ground (not from the remote control).

 If in normal operation A or normal operation B due to the failure or failure of the N/R-

computer and/or of the Fernsteuerungsempfangers no more signals the microcontroller

on the input port of the microcontroller, will be moved to the State " Notsteuersignal-

Erzeugung - level 1 ", in which the microcontroller of the "Steuersignalerzeugung"

autonomously PWM signals to the actuators generated and there is, so can the time of

the failure of normal operation and normal operation B with a defined PWM signals

are bridged.

Basisbetriebs-

Zustands-

Einstellung

Steuersignal-Erzeugung

Notsteuerungsbaugruppe

Steuersignal-

Erzeugung

(Normalbetrieb A)

Überwachung der

Steuerbefehle vom

N/R-Rechner

Überwachung der

Steuersignale vom

Fernsteuerungsempfänger

Notsteuersignal-

Erzeugung Stufe 1

(Softwaremäßig)

Aktoren

(Servos,

Motor)

Versorgungs-

Spannungs-

Stabilisierung

Weiterleitung der PWM-

Signale vom

Fernsteuerungsempf.

(Normalbetrieb B)

214

Fig 25: Block diagram of the " Steuersignal-Erzeugung "59

Start

Normalbetrieb

Normalbetrieb A Normalbetrieb B

Notsteuersignal-

Erzeugung

- Stufe 1

N/R-Rechner

Fig 60

9.5.4.1 The hardware of the Steuersignal-Erzeugung

The Steuersignal-Erzeugung is realized by a software on the microcontroller 80C167CR-LM

is running, and the microcontroller is located on a Testbord, the company was purchased

PHYTEC. All the required peripherals are also located on the plate.

9.5.4.2 The monitoring and the forwarding of the PWM-signals from the remote control

(normal operation (B)

The monitoring of the pulse width is particularly important for the proper function of the

circuit, because of these data have the dynamic and the stationary behavior of the airship

(alternative Lotte) abhanget, faults can also indirectly in the Aktorenbereich pulse produced

by the be discovered.

The 4 channels of the receiver are connected to the lower 4 pins of the Port 2 connected. In

Figure 27 is the program for the 4 inputs of the µc. The pulse lengths are programd with the

help of the Capcom1 unit measured

215

Fig 61

Starten

Initialisierung

P2.x = 1

steigende Flanke

CCxIC_1

P2.x=P8.x

T0R=1

Warte Erfüllt?

Erfüllt?

T2IC

CCxIC_2

P2.x = 1

fallende Flanke

CC_N>1,8ms
P7.x=1,5ms

T2IC

P8.x=0

I,8ms

CCx*IC

P2x<1,2ms

CC_N=T0

P2.x=P8.x

P8.x=0

 1,2 ms

CCx*IC

P7.x=1,3ms

Warte

216

Table 8

The subunit CAPCOM1 consists, as previously mentioned in chapter 2 was, from the two

timers T0 and T1, the program was only one timer necessary and 4 registers (see Table 4) .

Be the 4 tabs in the Mode Capture (used to recover) is used, which means that the register at

each rising or falling edge on these inputs corresponding the the recovered CCxx meter

readings of the Timer T0 Record. Your Operating Mode (Mode) in a 4-bit-long field in a of

the Betriebsartregisters CCM0.

The control register CCMx set the operating mode of each of four Captur/ compare channels

each firmly.

 Selection of the operating mode CCMODx

 001 : Capture on the rising edge at the terminal CCxIO

 010 : Capture the trailing edge at Port CCxIO

 011 : Capture on both flanks at Port CCxIO

 ACCx assignment the timer: 0 = T0 or "T7 ", 1 = T1 or T8

The CCM0 register is in the main function under void main (void) with CCM0 = 0x1111 set,

and so is with each rising edge on these inputs a corresponding interrupt (CCxIC) is triggered,

and for processing led to the first interrupt routine.

First interrupt routine:

In the first interrupt routine is the Timer T0 and its 3,000 Nachladeregistern the value given

to the same period of 25 ms to reach the measured signals, then with T0R = 1 started, before

the control register should T01CON = 0x0000 in the main function will be programd, the

CCM0-Register is here with 0x2222 programd to the falling edges to capture.

 KanalNr. Capture-Rg. Mode-Register Anschluß Timer Interrupt

1 CC1 CCM0 .0 - .4 CC1IO P2.1 T0 CC1IC

2 CC2 CCM0 .4 - .7 CC2IO P2.2 T0 CC2IC

3 CC3 CCM0 .8 - .11 CC3IO P2.3 T0 CC3IC

4 CC4 CCM0 .12 - .15 CC4IO P2.4 T0 CC4IC

217

And so with the falling edge on the inputs a corresponding interrupt (CCxIC) triggered and

the current counter of the timer T0 to the corresponding Capture-Register CCxx saved (see

Figure 28). The triggered Interrupt leads to the processing of the second interrupt routine.

Fig 62

Second Interruptroutinen:

 In the second interrupt routine , the value of the Timer T0 in the moment in the Capture-

Register saved and then to the global variable copied CC_Nx. The CCM0-Register will be

programd to rising edge, and the pulse length is measured not only easy, but it must also be

made in a statement, and this is why the CC_Nx values with two constant T1x_MIN and

T1x_MAX compared (see program and Figure 29). The two constants are used to limit the

pulse signals between 1.2 ms and 1.8 ms, and that makes it possible to get the

Hohenruderausschlag limited by the software.

 If (CC_N > T1_min)

 {

 CC18 = T1_min;

 P82 = !P21;

 }

 Else if (CC_N < T1_max)

 {

 CC18 = T1_max;

 }

 Else

 }

 P82 = P21;

 T0 0xFFFF

 Capture Value cv2

 Capture Value cv1=

 Reload Value T0Rel

 Interrupt

 Requests CCxIR CCxIR CCxIR CCxIR CCxIR 0x0000

 CCxIO

 CCx==cv2 CCx==cv2

 CCx==cv1 CCx==cv1

218

 }

Fig 63

Third interrupt routine:

In this interrupt routine, the contents Compare-Register , of the same value of 1.8 ms is, with

the Timer T1 within second interrupt routine compared. In conformity is a Interrupt CCX * IC

is triggered and this will of the appropriate output port (P8X= 0) set to zero, thus the PWM-

limited pulses.

At 1.2 ms, with the smaller T1_min the Compare-Registers/1.8 ms and when is with the larger

value of T1_max the Compare-Registers compared.

 CC18_isr void (void) interrupt 0x32

 {

 Eingangssignal

 P2.1
 65536

 T0

 3000

 T0REL = 3000

 T0 = 3000

 CC1 (Captur)

: 8

 CC1IC

20 Mhz

219

 P82 = 0;

 CC21 = T1_max;

 }

Fourth interrupt routine:

For the monitoring of the input signals is the fourth interrupt routine with the Timer T2

initialized . The initialization of the interrupts is done after the setting of the mode of the timer

T2CON = 0x0003 (period = 210 ms) and with T2R = 1, the timer is started and with a 0 the

interrupt processing given freely, and the timer T2 is in the second Interruptroutinen every

time on the T2 = 500 reset, which means that the third interrupt routine is not triggered, only

if no rising or falling edge within the period of the timer is important, in the T2 interrupt

routine, constant

PWM signals generated by the PWM unit.

Test routines

For the tests, which are described in chapter 2, test programs have been created.

Test 1 is used

For the measurement and evaluation of the Mikrocontroller-Eingangssignale (PWM signals)

on board, the come from the recipient and

To test the of the PWM-unit of the microcontroller produced PWM signals.

Test 2 will test the constancy of the supply voltage of the µC, and the other components of

the Aktorik-Ansteuerungsbaugruppe .

The full code is included in Annex B listed.

9.5.4.3 Level 1 Notsteuersignal-Erzeugung

 With this unit in the event of an emergency are constant PWM signals generated (30), if the

recipient for some reason no sending them signals to the outputs, this unit has 4 channels,

each of the 4 channels contains its own Timer PTX, the from the CPU-measure or a divider

on the counts receives(Table 4). The period of the signal results from a comparison of the

current counter with the Periodenregister PX, the Low-Zeit from a comparison with the

Pulsweitenregister PWX (see C program and 30).

220

Table 5: shows the DCLS Einheit-Ausgange and their corresponding Timer

 T2_isr void (void) interrupt 0x22

 {

 P7X = 0; // P7.x is output

 PX = 7800; // Max Period

 PWX = 7372) and strong support ; // Initial value (high flank)

 PWMCON0 = 0x0044; // Timer and CPU-to-measure : Age 64 (210

ms)

 PWMCON1 = 0x0004; // outputs with mode 0 Free

 }

 Kanal Timer Periode PPx Weite PWx Port-Ausgang

 0 PT0 PP0 PW0 P7.0

 1 PT1 PP1 PW1 P7.1

 2 PT2 PP2 PW2 P7.2

 3 PT3 PP3 PW3 P7.3

 Timer

 PP

 PW

 Signal

221

Fig 64

222

9.5.5 Notsteuerungsbaugruppe

Fig 65

9.5.5.1 Circuit Design for the monitoring of the control signals on the output of the ACU and

the channel5-output of the Fernsteuerempfangers

Fig 66

If to P2.5) and CAKTIV no signals are present, the OR-link to output 3 set to "Low" and

flip-flops to input 12 of the IC5B of the " Basisbetriebszustands-Einstellung " (see Figure 23).

The output 9 of the IC5B is to input 11 of IC9B (see Figure 29) has been set and now led the

production of Notsteuerungssignalen - level 2.

Basisbetriebs-

Zustands-

Einstellung

Steuersignal-Erzeugung

Notsteuerungsbaugruppe

Versorgungs-

Spannungs-

Stabilisierung

Weiterleitung der PWM

Signale vom

Fernsteuerungsemf.

Überwachung der

Steuersignal am Ausgang

Der ACU

Notsteuersignal-

Erzeugung – Stufe 2
(Hardwaremäßig)

Aktoren

(Servos,

Motoren)

Fern-

steue-

rungs-

empfänger

Kanal 5

223

9.5.5.2 Circuit Design for the Notsteuerungsbaugruppe

Fig 67

As already mentioned above, output 9 of the IC5B of the " Basisbetriebszustands-Einstellung

" (see Figure 23) with input 11 of IC9B (see Figure 33) now connected and led the production

of Notsteuerungssignalen - level 2, and this is done as follows:

Output 9 of the IC9B triggers each of the input A of the three flip-flops IC8B, IC8A and

IC9A. The output of the latter three flip-flops is each with the gate of a FET, the gate signal of

the reinforced forwards to the respective actuator, PWM signals are caused by the

combination with the clock of the two flip-flops expands (IC9B and IC8B, IC9B and IC8A,

IC9B and IC9A).

 T1

 T2

224

Figure 68 One of the three generated PWM signals, which is generated by the combination of

the clocks of the two flip-flops expands is created (see text)

The PWM of the three generated PWM signals (in the picture as an example T2-T1 for one of

the three generated PWM-signals) can before each use of the airship by the potentiometer P15

P16 and P17 be set (Figure 34). This can the Notsteuersignal-Erzeugung - level 2 of the

conditions of the respective mission be adapted.

9.5.5.3 Circuit Design for the forwarding of the PWM-signals from

Fernsteuerungsempfanger (Luftschiff-Startphasen -operation)

The condition " Luftschiff-Startphasen -operation" are the channels 1-4 (in Figure 24 are you

with P2.1-P2.4 and higher) of the Fernsteuerempfangers placed directly to the actuators, and

this is done, if K2, K3, K4 and K5 are activated accordingly (see left and right lower half of

the 24), i.e. , P2.1 is directly with SEITSERV1 and SEITSERV2 connected, P2.2 is directly

with RPMSERV (engine) connected, P2.3 is connected directly with HÖHSERV1 and P2.4

and higher HÖHSERV2 is directly connected with.

i.e. here is not a new circuit necessary.

9.5.6 Layout design of board 1 ("Voltage regulation", " Basisbetriebszustands-Einstellung
" and " Notsteuerungs-Baugruppe ")

The blocks "Voltage regulation", " Basisbetriebszustands-Einstellung " and " Notsteuerungs-

Baugruppe " are realized on the circuit board 1 (see section 3.6), Figure 35 shows the layout

design of Board 1.

225

Fig 69

9.5.7 The circuit boards of the ACU

226

The both circuit boards of the ACU

Fig 36: the two boards (1 and 2) to the ACU

Empfänger

Servos

Motor

Figure 37: the receiver and the actuators (engine,servos) are connected to circuit board 1.

Platine 1

Platine 2

serielle Schnittstelle

227

9.6 Experimental results

9.6.1 Structure of the Testplatzes

Figure 38: Testplatzaufbau

Fig 38 shows the in the experiments and the development of the program used for the ACU

devices. The PC is the ACU via a serial interface (RS232) connected to the PWM signals to

make visible, an oscilloscope is used.

The ACU is particularly sensitive to static electricity, which is why it is important, this

assembly to a suitable place to be during the experiments, in the housing for the embedded

system is a Versorgungsspannungserzeugungseinheit (right-hand side of the figure) is

installed, in order to able to forego on batteries.

 serielle Schnittstelle

 PC

 Oszilloskop

 ACU

Versorgungs-

spannung

Servos,

Motor

Gehäuse mit

Versorgungsspannung
und Backplane mit

Karteneinschubplätzen

 Oszilloskop

 ACU

228

9.6.2 Experiments and test sequence

The output values (counter values the Compare-Einheit/swap is performed on the ACU-

microcontroller for the rising and falling edges of visualized on the oscilloscope signals) over

a serial interface sent to the PC, it is calculated and the pulse width on the PC-screen made

visible, the three following signals are made visible at the same time on the oscilloscope.

 The ACU-input signal to channel 5,

 A selectable output signal of the ACU and

 A selectable input signal of the ACU.

On the PC-screen pulse width can be permanently on the oscilloscope with the pulse width of

the respective signal shown by the user are compared, so you can while the program runs

directly determine whether the program expires without fault, this data are of great help in the

detection of the error with unstable program.

The two most important experimental data are visualized on the oscilloscope and the length of

the period of the distance between the rising and the falling edge of the the PWM-signal.

9.6.3 The series of tests

At the time of the implementation of the tests was the ACU Mikrokontroller-Platine so faulty

that input only P2.4 and higher (channel 4), exit 4 (control of elevator clattering 1) and

channel 5 did, so no signals from other A and/or outputs (control of the rudder, of the engine,

...) will be tested, but are on the other a and/or outputs to the expected signals similar to those

of each input 4 and Output 4.

In the following tests the signals to Input 4 and Output 4 in various operating conditions as

measured. The current operational status is also measured by the signal set to channel 5, the 2

possible modes of channel 5 (1, by the recipient pulse width less than 1.5 ms: normal

operation; 2, pulse width from the receiver greater than 1.5 ms: Luftschiff-Startphasen -

operation) are by a switch on Fernsteuerungssender (on the ground) set by hand.

The following are the different conditions under which the different tests ran:

Test 1: pulse width of channel 5 of the receiver less than 1.5 ms: -> normal. The ACU is

under the condition when you turn on "normal" to the normal mode B initialized. Under this

condition runs test 1.

Test 2: pulse width of channel 5 of the recipient greater than 1.5 ms: Luftschiff-Startphasen -

operation.

Test 3: there is no signal from the receiver: -> It is a signal to output generated by the

microcontroller 4 (Notsteuersignal-Erzeugung - level 1)

Test 4: ACU Mikrocontroller-Platine is removed from the system: -> Notsteuersignal-

Erzeugung - level 2 is activated, a signal generated by the Notsteuerungsbaugruppe is to

output 4 to.

Test 5-1, Test 5-2: operation B, i.e. the microcontroller directs the PWM-signal from the

remote control next (input 4 on the outcome 4)and, in addition, the pulse width of the signal

229

limited, i.e. , the signal on output 4 (channel 4) is in contrast to the signal at the input (up or

down to) Limited, unlike the limit test 1 is indeed in the visible, because the input signals

outside the limits.

Test 6: between normal operation and normal operation A B is changed by the corresponding

information from the N/R-machine to the microcontroller of the ACU is given, the N/R-

computer receives this information via the communication system from the ground, in test 6

this will be simulated by two different keys on the lab computer, the serial interface is

connected to the ACU, and of the the N/R-simulated by computer, will be activated, if the A

button is pressed, the system is intended to go to the normal mode A, in the other key is to

control the system to normal operation B go. The correct transfer of information from N/R-

machine to the microcontroller and the correct response is with the help of appropriate LEDs

on the Mikrocontroller-Platine (board 2) simulates. These lights depending on the currently

valid condition.

In the Test-Abbildungen are from top to bottom to see the following signals:

1. CH 1: channel 5 at the entrance of the ACU

2. CH 2: channel 4 at the entrance of the ACU

3. CH 3: Channel 4 on the output of the µC

4. CH 4: Channel 4 on the output of the ACU

9.6.3.1 Test 1

The channel 5- switch of the remote control on the ground, is to "pulse width less than 1.5

ms" provided.

It is the normal case B (control signals from Fernsteuerrungs-Empf . will be give to the

microcontroller, the passes on this to its output) tested, with the Fernsteuerungsknuppel is a

certain deflection of the commanded Hohenruders. This specification is on channel 4 sent.

230

Fig 39: Test 1 CH1 = channel 5; CH2 = input signal from channel 4; CH3 = output from the

microcontroller; CH4 = output channel 4 of the ACU

Figure 39 shows that the pulse width of the channel 5 less than 1.5 ms (1.2 ms) is, this is

normal operation B is set, and the PWM of the PWM signals at the input and output of the

channel 4 are identical (1.5 ms), and so has the µC the PWM signals without modification of

the output of the ACU redirected. The results came out as expected.

9.6.3.2 Test 2

The channel 5- switch of the remote control on the ground, is to "pulse width greater than 1.5

ms" position, this will the Luftschiff-Startphasen -operation (the PWM signals are

Fernsteuerungsempfanger directly to the ACU-outputs passed on) set, otherwise runs Test 2

as the above test 1.

231

Fig 40: Test 2 CH1 = channel 5; CH2 = input signal from channel 4; CH3 = output from the

microcontroller; CH4 = output channel 4 of the ACU

In Figure 40 is the PWM-signal to channel 5 (CH 1) 2 ms long, and as expected, this

Luftschiff-Startphase -operation set by the µC, the PWM on the lower limit of 1.2 ms limited,

and because the input signal (CH2) only 1.0 ms long and thus smaller than 1.2 ms, it is to 1.2

ms at the µC output extended (see Ch 3). The Luftschiff-Startphasen -operation however the

signals directly forwarded and unlimited on the ACU-output (CH4) is set, and the results in

the figure are consistent with what you would expect.

9.6.3.3 TEST3.

The PWM signals from Fernsteuerungsempfanger (channel 1, channel 5) will not be more to

the ACU-inputs connected (this is CH2 dead, i.e. , in the Fig is not a rash to see), thus a

failure of the remote control will be simulated, and no data coming from the R/N-machine.

Thus, the level 1 Notsteuersignal-Erzeugung enabled.

232

Figure 41: Test 3 CH1 = channel 5; CH2 = input signal from channel 4; CH3 = output from the

microcontroller; CH4 = output channel 4 of the ACU

As expected, the µC with the help of his internal PWM unit PWM signals with fixed

pulsewidth created (CH3), the on the output of the ACU (Ch 4) concern.

9.6.3.4 Test 4

In this test, the " Notsteuersignal-Erzeugung - level 2" is activated, by the circuit board with

the microcontroller (Plate 2) from the ACU is mechanically separated, this will simulate a

failure of the microcontroller, in Fig. 42 one sees that neither an input signal (CH2) is present,

even at the output of the microcontroller (CH3) a signal is present, even is the channel5-input

signal from Fernsteuerungsempfanger (CH1) to.

The successful production of a PWM signal with the " Notsteuersignal-Erzeugung Level 2" is

shown by ch 4.

233

Fig 42: Test 4, CH1 = channel 5; CH2 = input signal from channel 4; CH3 = output from the

microcontroller; CH4 = output channel 4 of the ACU

9.6.3.5 Test 5

The Pulsweiten-Begrenzung the PWM signals in normal operation B at the output of the

channel 4 tested.

By the Fernsteuerungsknuppel, the maximum pulse (2.0 ms) (Test 5-1) and minimum pulse

width (1.0 ms) (Test 5-2.) The PWM-signal commanded. This is on ch 2 in the two

illustrations 43 and 44 to see.

In Figure 43 is the limitation of the PWM-signal to the upper limit of the pulse width clearly

shown: CH 2 (2.0 ms) is the unlimited signal, CH 4 (1.8 ms) is the limited signal.

In Figure 44 is the limitation of the PWM-signal to the lower border of the pulse width clearly

shown: CH 2 (1.0 ms) is the unlimited signal, CH 4 (1.2 ms) is the limited signal.

234

Figure 43: Test 5-1, CH1 = channel 5; CH2 = input signal from channel 4; CH3 = output from

the microcontroller; CH4 = output channel 4 of the ACU

Figure 44: Test 5-2, CH1 = channel 5; CH2 = input signal from channel 4; CH3 = output from

the microcontroller; CH4 = output channel 4 of the ACU

235

9.7 Summary and outlook

In this work , a part-functioning Aktorik-Ansteuerungs -unit (Actuator Control Unit (ACU)

for the airship "alternative Lotte" was completed, and the ACU Fernsteuerungsempfanger get

input signals of a or of a regulatory and the navigation computer (R/N-computer) on board,

depending on the operating mode are in different ways by the ACU Anteuerungssignale for

the actuators (Helm, engine) is created, the ACU has a multi-level security system to R/N-the

airship crash or Kommunikationsverbindungsausfall defined for a time as possible to control

and, where necessary to bring safely to the ground.

At the time of submission of the thesis is the data stream between R/N-machine and ACU has

not yet been tested on correctness, the there is a connection, but is has been verified and the

data stream between R/N-machine and ACU is to be tested during the integration phase, i.e.

when the ACU together with the other components of the Flugkontrollsystems (Flight Control

System (FCS) are joined together.

236

Literature

[1] (C167) underlying hedged transaction Users Manual, Infineon AG, Munich, 3.1 edition;

March 2000.

[2] Schmitt G, "micro-computers with the Controller C167 ", Oldenbourg Verlag, 2000.

[3] Martin H. , "lecture notes for microcontroller C167 ", Institute of Computing Technology,

Technical University of Vienna, 2000.
5

[4] Bernd B. / Peter G. , "The Big C167-microcontroller Operation", Gerber Verlag,

2001

5 The script is available for free on the Internet under http://mc.ict.tuwien.ac.at

http://mc.ict.tuwien.ac.at/

237

9.8 Appendix A: Circuit Design for the Stabilization of Power Supply
Voltage

Figure 0-1: circuit design for the Stabilization of Power Supply Voltage

(Versorgungsspannungs-Stabilisierung)

238

Circuit for switch between Luftschiff-Startphasen -operation and normal operation

(LSB/NB switch, part2)

Figure 0-2: shift to switch between Luftschiff-Startphasen -operation and normal

operation (LSB/NB switch, part2)

239

Circuit Design for the Basisbetriebszustands-Einstellung and the

Basisbetriebszustands-Einstellung

Figure 0-3: circuit design for the Basisbetriebszustands-Einstellung and the

Basisbetriebszustands-Einstellung

 240

9.9 ANNEX B: Test program 1

/ * Measure of the length of time between successive flanks the entrance P2.3 * /

#Include <REG167.h>

#Include <intrins.h>

#Include <stdio.h>

SFR Pam Picon = 0xf1c4;

/ * --

** The direction of the ports in and out for those needing

* /

SBIT DP84) = DP8 ^ 4;

SBIT P84) = P8 ^ 4;

SBIT DP72 = DP7 ^ 2;

SBIT P72 = P7 ^ 2;

SBIT DP23 = DP2 ^ 3;

SBIT P23 = P2 ^ 3;

Unsigned int CC_N;

Unsigned int flankennr = 0; / * distinguishes between 1ter and 2nd flank * /

Unsigned int T_E= 0;

Const int T1_min = 6000; / * constant to the decision on whether the timer should be stopped

* /

Const int T1_max = 7500; / * constant to the decision on whether the timer should be stopped

* /

/ * --

** Global variables for the serial interface

* /

Unsigned int t0_inhalt_start = 0;

 241

Unsigned int t0_inhalt_stop = 0;

Unsigned int steur_reg = 0;

Unsigned int steur_zaehler = 0;

/ * --

** Production of the PWM-signals from derPWM-unit

* /

Void t2_isr (void) interrupt 0x22

 {

 P72 = 0;

 PP2 = 7800;

 PW2 = 7372) and strong support ;

 PWMCON0 = 0x00ff;

 PWMCON1 = 0x000F;

 }

/ * --

** Limitation of the pulsewidth of the PWM signals

* /

Void cc20ISR (void) interrupt 0x34

 {

 P84) = 0;

 CC20 = T1_max;

 }

/ * --

** Programming the PWM signals at the entrance

* /

 242

Void p23 (void) interrupt 0x13

 {

 Charbuff_tmp [40];

 Int I;

 PP2 = 0;

 PW2 = 0;

 P72 = 1;

 P84) = P23;

 If (flankennr= = 0) / * First edge * /

 {

 T2 = 500;

 T0rel = 3000;

 T0 = 3000;

 T0R = 1; / * starts timer T0 * /

 T0_inhalt_start = T0;

 T7rel = 2950;

 T7 = 2950;

 T7R = 1;

 CCM0= CCM0 & 0x0FFF;

 CCM0= CCM0| 0x2000;

 Flankennr= 1; / * YES -> There are still two more sides expected * /

 }

 Else if (flankennr= = 1) / * Second flank * /

 {

 CC_N = CC3;

 T0_inhalt_stop = T0;

 CCM5 = 0x0005;

 CCM0= CCM0 & 0x0FFF;

 CCM0= CCM0| 0x1000;

 243

 Flankennr = 0;

 If (CC_N < T1_min)

 {

 CC20 = T1_min;

 P84) = !P23;

 }

 Else if (CC_N > T1_max)

 {

 CC20 = T1_max;

 }

 Else

 {

 P84) = P23;

 }

/ * --

** The serial interface

* /

 If ((+ +steur_reg) == 100)

 {

 For (i= 0; i< 100; i++)

 {

 sprintf(buff_tmp, "T0start: %u;Tstop: %u;imp: %u\n",

 T0_inhalt_start,t0_inhalt_stop,CC_N , steur_reg);

 Printf (buff_tmp);

 }

 }

 }

}

 244

Void main (void)

 {

 Flankennr = 0; / * 0.. there is still no flank occurred * /

 DP72 = 1; / * DP7.2 central as output * /

 DP23 = 0; / * sets the direction of DP2.3 to input * /

 DP84) = 1; / * sets the direction of DP8.4 on output. * /

 Pam Picon = Pam Picon | 0x3;

 CCM0 = 0x1000;

 CCM1 = 0x0001;

 T01CON = 0x0000; / * Timer 1 has been with period (26 ms) initialized *

/

 CC3IC = 0x0047;

 CC4IC = 0x0046;

 CC21IC = 0x0045;

 CC20IC = 0x0048;

 T2CON = 0x0003;

 T2IC = 0x0044;

 T78CON = 0x0000;/ 0 1 00 0 000 0 1 00 0 000 26 ms * /

 T2R = 1;

 IEN = 1;

 While(1) {

 idle();

 }

}

Test program 2

#Include <reg167.h>/ * Register Diffinitionen of the C167) * /

 245

#Include <intrins.h>/ * bausteinspezifische functions * /

#Include <stdio.h>

/ * ---

** Initialization of the inputs and outputs

* /

SBIT DP26 =DP2 ^ 6;

SBIT P26 =P2 ^ 6;

SBIT DP27 =DP2 ^ 7;

SBIT P27 =P2 ^ 7;

SFR P5DIDIS = 0xFFA4;

Unsigned int adc_kanal0[200];/ * buffer for the Wandlungeergebnisse * /

Unsigned int adc_kanal1[200];/ * buffer for the Wandlungeergebnisse * /

Static unsigned int steur_reg = 0;

Static unsigned int steur_kanal0 = 0;

Static unsigned int steur_kanal1 = 0;

Static unsigned int pxt= 0;

/ * In the AD-converter interrupt service routine, the Wandlungsergebnisse

 Read and in the field adc_werte copied and if the value in adc_werte 16

 Less than 496 (4.76 p. p. p. n V) is, is therefore in this moment by high edge to P2.6 or

higher a

 HRLY RATE be switched * /

Void adcisr (void) interrupt 0x28

{

 Int I;

 Unsigned int test_1;

 Unsigned int test_0;

 246

 Char buff_tmp[40];

 If (ADDAT & 0x1000)

 {

 TEST_0 = ADDAT & 0x03ff;

 Adc_kanal steur_kanal0+0 [+] = ADDAT & 0x03ff; / * result of a/d process * /

 If(test_0 < 800)/ * voltage small e.g. 4 V * /

 {

 P26 = 1; / * is available on the P7.8 1 (rising edge) * /

 }

 Else

 {

 P26 = 0;

 }

 }

 Else

 {

 TEST_1 = ADDAT & 0x03ff;

 Adc_kanal steur_kanal1+1 [+] = ADDAT & 0x03ff; / * result of a/d process * /

 If(test_1 < 600)/ * voltage small e.g. 4 V * /

 {

 P27=0;/ * is available on the P7.8 1 (rising edge) * /

 }

 Else

 {

 P27 = 1;

 }

 }

 247

 / * --

 From the µC ** data sent back to the screen

 * /

 If ((steur_reg) < 100)

 {

 + +Steur_reg;

 }

 Else if ((steur_reg) == 100)

 {

 For (i= 0; i< 50; i++)

 {

 sprintf(buff_tmp, "Channel1: %u, Kanal0: %u\n",

 Adc_kanal1 [i], adc_kanal0 [i]);

 Printf (buff_tmp);

 }

 + +Steur_reg;

 }

}

 / * --

 ** With GPT1 is the conversion each time after time start bestemmte

 * /

Void gpt1T3 (void) interrupt 0x23

{

 ADST = 1; / * Conversion start * /

}

 248

Void main (void) {

 DP27 = 1;

 P27 = 1;

 DP26 = 1;

 P26 = 1;

 P5DIDIS |= 0x0001;

 Adcon= 0xf221;

 T3CON = 0x0002;

 T3 = 0x0BDC;

 T3IC = 0x006B;

 T2CON = 0x0020;

 T2 = 0x0BDC;

 ADCIC = 0x004C;

 IEN= 1;

 T3R = 1;

 While(1){

 idle();

 }

}

 249

10 Communication and User Interface

Based on the bachelor thesis of Rabih al-Farkh, "Development of a communication interface for a

measurement system", June 2002, Lebanese University – Tripoli/Lebanon, Faculty of

Engineering

Abstract

A communication system which includes a graphical user interface has been

developed to control a mobile sensor platform, and to receive measurement data

from this mobile sensor platform. The measurement system is used to measure

alternative energy resource values like solar power and wind vector at different

points.

Keywords: graphical user interface, airship, transceiver, wireless communication, V-

model, structured analysis, structured design, software engineering.

10.1 Introduction

10.1.1 The LOTTE project and the “alternative Lotte”

Airships are becoming more and more important within the last years. At the

“Institut für Statik und Dynamik der Luft- und Raumfahrtkonstruktion” at the

University of Stuttgart a solar airship was built. In February 1992 the project

“Solarluftboot” was initiated. The purpose of this project was to find new materials,

new construction methods and a new concept for controlling and navigating an

airship run by a solar energy engine.

The “alternative Lotte” – a cooperation project between the universities of Karlsruhe

and Stuttgart and the Fachhochschule Karlsruhe - is planned to be an experimental

airship which can be controlled directly from the ground (first step of

implementation) or (second step of implementation) fly automatically to specified

coordinates. The energy supply is going to be conventional batteries in the first step

but it is planned to switch to solar energy later. With “alternative Lotte”

environmental data are collected during the flight via different sensors which can be

mounted on the airship. In the first step the speed of the wind, the temperature and

the solar radiation are measured. Apart from that flight data such as acceleration,

angular velocity and azimuth angle are measured for navigation purposes.

 250

10.1.2 Development method

The software is developed using structured analysis / structured design (SA / SD). This

method is very common in industrial development processes as well. The complete

communication system is tested in a laboratory using two PCs and the transceivers. The

whole development process basically follows the known V-model.

10.1.3 Working task and realization approach

The task is to develop a communication interface which is software running on a PC which is

connected with the transceiver on the ground. Apart from that a program which is running

on the board computer has to be developed. The purpose of this program is to establish the

communication between the sensors and the transceiver on the “alternative Lotte” sensor

platform.

So the diploma thesis can be divided into several tasks:

 Specification document, SA diagram (Structured Analysis) and SD diagram

(Structured Design) for the User Interface.

 Programming of the User Interface using Visual Basic 6.0.

 Specification document, SA/SD for the communication protocol.

 Programming of the communication protocol with programming language C.

 Programming of the protocol for sending and receiving with an off-the-shelf

transceiver cards.

 Testing the communication system with the User Interface.

10.1.4 Overview

After a short introduction some basic knowledge about the used development

method SA / SD, the V-model and some general information about transceivers is

provided.

In the third chapter a detailed description of the user interface and the transceiver is

given. Then the system architecture of the whole system is presented.

Chapter 5 contains the SA, SD of the alternative Lotte communication system and a

brief description of the software implementation. After that the development

environment is explained.

The last chapter is about the tests that have been done to verify the functionality of

the communication system.

Detailed figures of the hardware and the code of the software can be found in the

annex.

 251

10.2 Basics

10.2.1 The V-Model

The V-Model is an extensive collection of knowledge about the best practices of software

development. This knowledge can be described as a process: In addition to the planned

products and activities, the V-Model also contains information about the course the project

will take. To this end, the process standard includes which output products are to be created

by an activity and which successor activities need this product as input. This internal

product flow allows you to derive a chronological order for the activities.

The V model is a logical product model. It describes the contents of the products which have

to be created during a software project and their relationships on a very high level. However,

in a real project the physical structure of these products might (and in most cases will) be

quite different [1].

Figure 2.1: The V–Model

The left side of the V shows the products resulting from development activities: problem

description, user requirements, developer requirements, system design, component design

and component code. The products are not further described here.

The right side of the V documents the construction of the final system starting with

individual components. The products on this side of the V are called executable

components, executable system, usable system and used system.

Besides development and constructional activities the V model also contains some analytical

activities: verification and validation.

 252

Verification takes place after each development activity. The output of the activity is

verified against the input in order to check if both actually match.

Validation happens after each construction step to assure that the so far constructed

system behaves as it should. It is therefore tested against the corresponding product

on the other side of the V model.

It should be emphasized that the V model is no physical product model nor any kind

of process or life cycle model. However, due to its very general description, products

used in a life cycle model can always be matched with the products contained in the

V model. Therefore, it can be seen as a generic product model.

The V-Model is a Lifecycle Process Model, originally developed to regulate the

software development process within the Federal Administration of the Federal

Republic of Germany.

The V-Model is composed of four submodels: software development, quality

assurance, configuration management, and project management.

The submodels are closely interconnected and mutually influence one another by

exchange of products and results. The software development submodel develops the

system or software. The quality assurance submodel submits requirements to the

other submodels and test cases and criteria to assure the products and the

compliance of standards. The configuration management submodel administers the

generated products. The project management model plans, monitors, and informs

the other submodels. Each can be further decomposed. For instance, the software

development submodel can be broken down as follows (see [2]):

 System requirements analysis and design.

 Data processing requirements analysis and design.

 Software requirements analysis.

 Preliminary design.

 Detailed design.

 Implementation.

 Software integration.

 Data processing integration.

 System integration.

10.2.2 Structured Analysis (SA) / Structured Design (SD)

In the seventies and eighties of the 20th century Structured Analysis (SA) was

described by Yourdon, Constantine, and DeMarco. These practices became very

popular, and by the early eighties had a profound effect upon the definition of

 253

analysis. SA was a technique in which the requirements of the customer were broken

down into a hierarchy of functions. This breakdown was known as functional

decomposition . Datasets were specified in abstract (Bacchus-Naur) terms, and their

manipulation were depicted through functionally decomposed data flow diagrams.

SA was coupled to another practice known as Structured Design (SD). Indeed, the

two were often mentioned in the same breath as SA/SD. SA described the data sets

and data transformations implied by the requirements. As such, SA described what

the system would do, albeit in very technical terms. On the other hand SD described the

partitioning of the software into modules, and the flow of data between those modules.

Therefore an SD was, more or less, a description of how a system would be

structured to meet the requirements. SA/SD contained a practice known as The

Transform Analysis , which was used to convert the diagrams representing a

Structured Analysis into the diagrams the represented a Structured Design. This

practice, and indeed much of the documentation of the period, established the notion

that the design was directly derivable from the analysis by applying some simple

transformation rules. This meant that the analysis was really a preliminary

description of the design, requiring only a mapping operation to complete. The view

of SA/SD was a remarkable change from the systems analysis of the sixties. In the

sixties no such mapping from analysis to design was implied. The analysis simply

described data sets

and their transformations without implying anything about software structure.

SA/SD also implied a temporal constraint between analysis and design that was not

practiced by the Systems Analysis of the sixties. In SA/SD it was necessary to finish

the analysis before the Transform Analysis could be applied to translate the analysis

into a design. Thus, SA/SD strongly reinforced the waterfall model of development

[3].

 254

Figure 2.2: SA/SD (see [4])

10.2.3 Transceivers

There are three wireless RF modules: transmitter, receiver and transceiver. These RF

modules are designed to serve as a tool for electronics design engineers, developers and

students to perform wireless experiments.

The transmitter is used to transmit data and the receiver is used to receive data, so they are

used in application of one-way communication. The transceiver is used to transmit and

receive data, so it is used in application of two-way communication. All of the RF modules

which are used in this project have 9,600 bps serial interfaces at maximum. The used

modules can communicate over range up to 250 feet. Generally the range depends on the

power and the frequency of the RF module.

Radio frequency (RF) refers to electromagnetic waves that have a wavelength suited

for use in radio communication. Radio waves are classified by their frequencies,

which are expressed in kilohertz, megahertz, or gigahertz [5].

The RF transceiver controls and modulates the radio frequencies that the antenna

transmits and receives.

10.3 Requirements Specification

10.3.1 The Graphical User Interface (GUI)

The user interface is the link between the user and the alternative – LOTTE, a measurement

vehicle for solar radiation and wind power. Its purpose is allowing the user to control the

alternative – LOTTE from the base station, so by using the User Interface, the user can set

data to the alternative – LOTTE (new position, new velocity ...) and get data from the

 255

alternative – LOTTE (acceleration, angular velocity, azimuth, temperature, wind vector, Solar

radiation ...).

Figure 3.1: User Interface

10.3.1.1 Software Requirements Specification

 The user interface contains a frame (Receive_Data_Frame) inside which, we find

several text boxes or labels.

Figure 3.2: Receive Data Frame

 256

 These several text boxes or labels are used to display the data that the base station

received from the alternative - LOTTE. These data are the data sensors

(acceleration in X, Y and Z, angular velocity in X, Y and Z, azimuth, temperature,

solar “Solar Radiation” and wind vector). As to the azimuth parameter, it can not

be seen by the user. It is used by the user interface to display the direction of the

alternative – LOTTE in a picture box. These sensor data will be sent from the

alternative - LOTTE to the base station. The user interface uses these data to

calculate the velocity of the alternative - LOTTE in X, Y and Z and to calculate the

position of the alternative - LOTTE in X, Y and Z.

 The user interface contains command button shown below, this command button

is used whenever the user wants to send data (commands) to the alternative –

LOTTE. When the user presses this command button, a Send_Data_Frame will be

displayed, (Sending_Data_Frame). The commands that the user can send to the

alternative – LOTTE are the new position in X, Y and Z, and the new velocity in

X, Y and Z.

Figure 3.3: Sending Data Button

 The user interface contains Sending_Data_Frame, in this command frame, we

find several text boxes that are used by the user to put the data (commands) that

he will send to the alternative – LOTTE. These data (commands) are the new

position in X, Y and Z, and the new velocity in X, Y and Z.

Figure 3.4: Sending_Data_Frame

 The user interface contains picture box that is used to display the position of the

alternative – LOTTE on a map (two dimensions x, y). In this picture box the user

will be able to see the position of the alternative – LOTTE during its flight.
Figure 3.5: PictureMap

 257

 The user interface contains another command button. The function of this

command button is to test if the connection between the base station and the

alternative – LOTTE is OK. The result is displayed in the Connection_Frame. In

fact, the connection is always put to the test whenever the user receives data from

the alternative – LOTTE (which means that the connection is OK). If the user

wants to make sure about the connection at any time all he has to do is to press

the Test – Connection Button.

Figure 3.6: Test-Connection Button

 The user interface contains a Connection_Frame that is used to tell the user that

the connection is OK while the alternative - LOTTE is in the air. In case there is a

problem in the connection between the base station and the alternative - LOTTE,

it is displayed in this frame, and the user would be able to see that there is a

problem.

Figure 3.7: Connection Frame

 The user interface contains a picture box that is used to display the direction of

the alternative - LOTTE while it is in the air. The user interface will get the

azimuth from the alternative – LOTTE and use this parameter to display the

direction of the alternative – LOTTE.

Figure 3.8: PictureDirection

 The user interface contains a weather frame that is used to tell the user the status

of the weather while the alternative – LOTTE is in the air. In this frame, the user

can observe the temperature, the wind vector, and the solar radiation (solar

radiation in X, Y and Z). The user interface get these data from the sensors data.

 258

Figure 3.9: Weather Frame

 The user interface contains a third command button. The function of this

command button is to display the solar radiation in front of the user in three

dimensions. When the user press this button, he will see the position of the

alternative – LOTTE in three dimensions with the value of the solar radiation in

each position.

Figure 3.10: Solar Radiation Button

 259

 When the user presses the Solar Radiation button, the figure shown below shall

be displayed :

Figure 3.11: Solar Radiation show

In this figure, the position of the alternative – LOTTE is displayed with the power of the solar

radiation, the color at the position shows the intensity of the solar power at this point.

10.3.2 Specifications for the transceiver

The goal of this transceiver is send and receive data between the Base station and the

alternative – LOTTE. There are two transceivers, one is connected to the base station and the

other is connected to alternative – LOTTE.

10.3.3 Communication Protocol for User Data

In each frame, the transceiver processes the data internally and input/output user data. User

data can be specific by user. In general, data is send and receive as “packet”.

 The form of the telegram that the base station receives from the alternative –

LOTTE is :

Figure 3.12: User Data Protocol _ Receive Message

 260

 The Begin flag is the beginning of the telegram (message) and the length of this

command is 1 byte (8 bits). It is a special byte that the user uses to tell the

alternative – LOTTE and the base station that it is the beginning of the telegram

(message).

 The information length of the telegram is on 2 bytes, and it contains an

information about the length of the telegram (message) that the base station

receives from the alternative – LOTTE, or sends to the alternative – LOTTE.

 The sensors data contains information about the acceleration in X, acceleration in

Y, acceleration in Z, angular velocity in X, angular velocity in Y, angular velocity

in Z, the azimuth, wind vector in X, wind vector in Y, wind vector in Z, solar in X,

solar in Y, solar in Z and the temperature. Each information is in 4 bytes and the

type of this data is float.

 The End flag is the end of the telegram and the length of this command is 1 byte.

It is a special byte. So when the base station or the alternative – LOTTE receives

this byte, it knows that this is the End of the telegram and it waits for another

telegram from the alternative – LOTTE.

The form of the telegram (message) that the base station sends to the alternative –

LOTTE is :

Figure 3.13: User Data Protocol _ Send Message

The sent and the received telegram have the same protocol (Begin_Flag , Length of

the Telegram, Data or Commands (information) and then the End_Flag). We can

send the begin flag at first, then the length of message (commands), then the

commands (which gives the new position and the new velocity), and finally the end

flag to tell the alternative – LOTTE that the telegram is finished.

Begin Flag
 (Begin of the

message)

Length of the
message

new Position in X new Position in Y new Position in Z
new Velocity

in X
new Velocity

in Y
new Velocity

in Z

End Flag
 (End of the
message)

Commands

1 Byte 2 Bytes 4 Bytes 4 Bytes 4 Bytes 4 Bytes 4 Bytes 4 Bytes 1 Byte

 261

10.3.4 Handshaking

Handshaking refers to the internal communications protocol by which data is transferred

from the hardware port to the receive buffer. When a character of data arrives at the serial

port, the communications device has to move it into the receive buffer. A handshaking

protocol ensures that data is not lost due to a buffer overrun, where data arrives at the port

too quickly for the communications device to move the data into the receiver buffer.

10.4 Architecture Design

The purpose of the user interface is to control the alternative – LOTTE from the base station

and the purpose of the transceiver is to send and receive data between the base station and

the alternative – LOTTE. The connection between the user interface, the transceiver and the

whole system is shown in the figure below :

Figure 4.1: System Connection

This figure shown above describes the connection between the PC in the base station

which contains the user interface program and the transceiver, and the connection

between the embedded system in the alternative – LOTTE and the other transceiver.

This connection is done through the serial port.

 262

Apart the connection between the embedded system in the alternative – LOTTE, the

transceiver card and the sensors card is shown in the figure above. In fact the sensors

card is connected to the microcontroller which is connected to the embedded system

through the serial port. The purpose of the microcontroller is to transfer the sensors

data from the sensors card to the embedded system. The embedded system gets

these sensors data from the serial port which the microcontroller is connected to and

sends these data to the serial port to which the transceiver card is connected.

The transceiver gets these sensors data from the embedded system through the

RS232C connector, then the data are stored in internal buffer. After the transceiver

checks that the carrier frequency to be set is not used on air, these data will be sent to

the base station using one of the channels frequencies between the 433.200 – 434.775

MHz. The same thing is done when the transceiver gets data from the base station

and will sent to the alternative – LOTTE

The modulation used is the FSK modulation (Frequency Shift Keying), this type of

modulation enables transmission at a maximum of 9,600bps. Also when multiple

channel are to be used simultaneous or if high communication standards are

required, the MSK modulation enables transmission at a maximum of 2,400bps.

Figure 4.0: The “alternative Lotte” Communication System

Windows 98 /

Windows NT

Ground PC

STD-402

Transceiver

STD-402

Transceiver

VxWorks 5.4

Base Station
Communication part of the airship

"alternative - LOTTE"

Embedded Motorola

Target Communication

Service (in C)Graphical User Interface

(in Visual Basic 6.0)

 263

10.5 Development Environments

The development has been done on a PC with AMD – k5 tm processor, AT / AT

compatible, 64 MB RAM and a PC with a PENTIUM – S processor 100 MHz, 96 MB

RAM.

The following software tools have been used for the development:

 MS Windows 98, MS Windows 2000, MS Office 97 and MS Office 2000.

 Windows 2000 server for workflow Management, Linux.

 MS Visual Basic 6.0 language and C language. (program C is done under

VxWorks).

 Visual Basic 6.0 compiler for Visual Basic program.

 "Gcc" compiler for C program under UNIX.

 Tornado 2.0 environments for C program.

 VxWorks 5.4 compiler for C program.

 Optional : MS Visio 2000 for the graphical visualization of processes, Structured

Analysis (SA) / Structured Design (SD).

10.6 Design and Implementation

10.6.1 SA / SD and Implementation for the base station program

10.6.1.1 SA (Structured Analysis)

USER

INTERFACE

DISPLAYKEYBOARD

SERIAL PORT

Commands Sensors_data

Sensors_dataCommands

 264

Figure 6.1: Context Diagram

 The DISPLAY is the screen of a PC in the base station that can be used to observe the

received sensors data. These sensors data are received from the alternative – LOTTE

using the serial port of the PC.

 The KEYBOARD is used by the user to write the commands that he wants to send to the

alternative – LOTTE. These commands are sent to the alternative - LOTTE using the

serial port. In fact, whenever the user wants to send commands to the alternative –

LOTTE, the user interface will send them to the serial port.

 The SERIAL PORT is the peripheral between the user interface and the alternative –

LOTTE. So by using the user interface, we can say that the user will get data (from the

alternative – LOTTE) and set data or commands (to the alternative – LOTTE).

 265

Figure 6.2: data flow diagram (DFD) of the process “User interface”

 266

In this second diagram, we can see all the functions that the user interface can perform .

 Some remarks for structured analysis (SA) convention:

The symbol means that we have a process and this symbol

means that we have a storage.

 In the second increment a security layer is added to the communication protocol.

The commands that the base station sends to alternative –LOTTE will be

acknowledged. If the acknowledgement fails the commands are resent.

ID Features Increments

01

 Send commands to the alternative – LOTTE

 Receive data from the alternative – LOTTE

1

02

 Save Commands that the user sent to the

alternative – LOTTE.

 Waiting for an answer from the

alternative – LOTTE about what it has Received.

 Compare this answer with the Telegram (message)

that the user sent.

2

03

 Send commands with saving it to compare with the

answer from the alternative – LOTTE.

 Receive data from the alternative – LOTTE.

 All

 267

10.6.1.2 SD (Structured Design)

Some remarks for structured Design (SD) convention:

The symbol means that we have a function, and in this symbol we can find

the same name of the function used in program.

this relation means that the function1 calls function 2.

The symbol describes the return value of the function

The symbol describes the input parameters of the function.

Figure 6.3: Structured Design (SD) diagram for the user interface

function 1

function 2

 268

Description of the functions

MSCOMM

This is an OCX (Microsoft Comm Control 6.0) which contains all functions that the

programmer can use when he wants to program the serial port. Using this OCX, we can

manage the serial port from Visual Basic which means that we can open the port, put the

settings of the port, read from serial port and write to serial port

UserInterface Load

This function runs automatically when the user runs the Program. The purpose of this

function is to give the MSCOMM the number of serial port that the user will open and the

settings and the InputMode. It will also enable the TimerRun_R and testing the status of the

serial port.

Timer_Run_R

This function contains the interval which the user interface uses to read data from serial port

if this serial port was not busy. The serial port being busy means that it is not used at the

moment. For example, if we define the interval time like one second, so every one second the

program will read data from serial port. Of course these data are the sensors data, and it

contains information about the acceleration of the alternative – LOTTE and the angular

velocity, the azimuth, the solar, the wind vector, and the temperature.

Read_Data

The purpose of this function is to read sensors data from serial port and to use these data to

calculate the velocity of the alternative – LOTTE and its position. After that it sends these

data to the Receive_Data_Frame which is then displayed in front of the user. Of course the

user can not change these data, he can only see it. (Of course this requires that the serial port

is not busy doing any other function like sending commands to the alternative – LOTTE, or

testing the connection between the base station and the alternative – LOTTE).

Write_Commands

The purpose of this functions is that the user will be able to send commands from the base

station to the alternative – LOTTE, using the serial port. The user can write commands after

disabling the TimerRun_R. but if the TimerRun_R is enabled, this means that the serial port

is used only to Read_Data.

C_Send_Commands

 269

The purpose of this function is to enable the Sending_Data_Frame that it used by the user to

write the sending commands (new position in X, Y and Z, and new velocity in X, Y and Z)

that he wants to send to the alternative – LOTTE.

Send_OK

This function will confirm that the user wants to send the commands that he writes in the

Sending_Data_Frame to the alternative – LOTTE after testing the status of the serial port.

This is because the serial port maybe busy doing another function at that time like receiving

data from the alternative – LOTTE

Send_Cancel

This function is used by the user if he clicks the Sending Data Button and then he changes his

mind and does not want to send commands to the alternative – LOTTE. So this function will

disable the Sending_Data_Frame, and enable the TimerRun_R (which means that the serial

port is not busy sending commands right now, but rather the program is enable to read

sensors data).

C_Connection

The purpose of this function is to test the connection between the base station and the

alternative – LOTTE. It refreshes the Connection_Frame and gets the status connection from

the Read_Data Function. It also displayed the status of the connection on the

Connection_Frame.

PictureBox_Position

The purpose of this function is getting data from the Read_Data function (position in X,

position in Y) and displaying the position of the alternative – LOTTE on the map.

PictureBox_Direction

The purpose of this function is getting data from the Read_Data function (Azimuth) and

displaying the direction of the alternative – LOTTE in the PictureBox.

Calculate_Velocity

The purpose of this function is to get the Acceleration from the Read_Data function and

calculate the velocity of the alternative – LOTTE in X, Y and Z and gives this information to

the Receive_Data_Frame that it displays.

Calculate_Position

 270

The purpose of this function is to get the velocity from the Calculate_Velocity and calculate

the position of the alternative – LOTTE in X, Y and Z and gives this information to the

Receive_Data_Frame that it displays.

TxtCodeHex2Dec

The purpose of this function is to get the sensors data from the Read_Data function and to

convert this data from the hexadecimal format to the decimal format.

TxtCodeDec2Hex

The purpose of this function is to get commands from the Write_Commands function and to

convert this commands from the decimal format to the hexadecimal format.

FormPosition

This function run when the user press on the PicturePosition if he wants to see a large view.

It contains a large picture box that inside it the user can show how the alternative – LOTTE

change its position.

FormDirection

This function run when the user press on the PictureDirection if he wants to see a large view.

It contains a large picture box that inside it the user can show how the alternative – LOTTE

change its direction.

Solar_Radiation

This function run when the alternative – LOTTE finishes its travel. It takes the position in X,

Y and Z and the Solar Radiation in X, Y and Z from the Read_Data function and uses these

parameters to put the position of the alternative – LOTTE in the three dimensions with the

value of the solar radiation in each position. The color of the position (point of position)

changes with the value of the solar radiation.

Jet

This function run when the user press the solar radiation button. It takes the parameters

(position in X, Y and Z and the solar radiation) and puts it in a three dimensional figure.

10.6.1.3 Implementation

The whole VB program code is in Annex E.

In this paragraph, the important things done in the software part will be described. At first,

when the user interface program is used, the user has to care about these commands :

 MSComm1.CommPort = 3 (line of code: 132)

 271

this command is used to open the serial port number 3. Changing the number of the port is

allowed. [6]

After that the initialization of the baud rate of the serial interface, the parity status, the data

length and the stop bit will be done as below :

 MSComm1.Settings = "9600,E,8,2" (line of code: 133)

Then the initialization of the handshaking protocol is done by this command :

 MSComm1.Handshaking = comRTSXOnXOff (line of code: 134)

When the handshaking is set to the value shown above, the RTSEnable property will be set

to TRUE as shown below :

 MSComm1.RTSEnable = True (line of code: 135)

The input mode used is input text mode, this mode is set by the command shown below :

 MSComm1.InputMode = comInputModeText (line of code: 136)

Setting the InputLen property to a number causes the communications control to read this

number of bytes from the receive buffer.

 MSComm1.InputLen = 116 (line of code: 137)

So by using all the commands shown above, the initialization of the serial port is completed

and the serial port can be opened by this command :

 MSComm1.PortOpen = True (line of code: 138)

An important parameter used is the interval of the timer. The value putted in this parameter

is used by the program to read the data from the receive buffer of the serial port.

 272

 TimerRun_R.Interval = 500 (line of code: 155)

The value used is 500 msec, so each 500 msec reading data from the receive buffer is done.

Three files are used by the user interface program. The "Receive_file.rcv" is used to save the

telegram that the base station received from the alternative – LOTTE. In this file, only the

correct telegram will be putted. The "Send_file.snd" is used to save the telegram that the base

station sent to the alternative – LOTTE. The "Solar_file.rad" is used to save the position of the

alternative – LOTTE in X, Y and Z and the solar radiation value. When the Solar Radiation

button is pressed, this file will be opened to get the data from it and use these data to put the

position of the alternative – LOTTE in a 3D figure with the value of the solar radiation. The

command used to open a file from the visual basic is shown below :

 Open "C:\User Interface\Data\Send_file.snd" For Binary Access Write As

 #2 (line of code: 104)

So before the user interface program putted in use, it is very important to put the correct

path of the three files described above.

One program is used with the user interface. The purpose of this program is to showing the

position of the alternative – LOTTE in a 3D figure with the value of the solar radiation

during its flight. The command used to run this program from the user interface program is

shown below :

 Shell "C:\3D\Jet.exe", vbNormalFocus (line of code: 85)

So it is very important to put the correct path of this program.

This program used with the user interface is called "Jet". This is an visual basic program. In

this program, the "Solar_file.rad" is opened to get the data from it and used it to put the

position of the alternative – LOTTE and the value of the solar radiation in a 3D figure as we

said above. So it is very important to be care about the path of the "Solar_file.rad" file before

using this program.

In the "Jet" program, the value of the solar radiation is always putted to the test whenever a

value is received from the alternative – LOTTE. The purpose of this test is to changed the

color of the position of the alternative – LOTTE, because the color of the point will give the

user an idea about the power of the solar radiation at this point.

 273

For the graphical show, a file is used (CURSOR20.ICO) when the user selects a region in the

figure map for doing a zoom. This file must be in the same directory with the user interface

program, or the path of this file should be specified.

 PictureMap.MouseIcon = LoadPicture("cursor20.ico") (line of code: 198)

Another program is developed using visual basic. The purpose of this program is just to

build of a test environment with connected one of PC to the transceiver and connected the

other PC to the other transceiver. By using this program, only sending and receiving data is

allowed. This program uses a Send_Data function to send telegrams.

Note : If all the files and the programs used with the user interface program is putted in the

same directory with it, so the path file will not be important, only the name of the file or of

the program should be written.

10.6.2 Communication part on the board system on the airship

10.6.2.1 The tranceiver

The transceiver to be used is MB-STD-RS232. It is a bi-directional semi-duplex radio modem

having RS232 serial interface. It uses CIRCUIT DESIGN 's standard 434 MHz FM Narrow

Band transceiver module STD-402 transceiver for RF part. This transceiver was selected

because of its frequency of 434 MHz. For this frequency in Germany there is no extra

permission necessary. Another reason is that this transceiver is a cheap one.

The STD-402 transceiver is an UHF Narrow Band Multi channel Transceiver.

The UHF FM-Narrow Band semi-duplex radio data module STD-402 equipped PLL

controller in its robust metal housing. Unlike other transceivers, the STD-402 is ready to

transmit RF data without complicated controller board. The compact size and low power

consumption of the STD-402 make it ideal for battery operated applications where its

interference rejection and practical distance range are much better than similar RF modules

based on Wide Band SAW – resonator frequency devices.

Most of RF setting are done by internal microcomputer, which allows the user to manipulate

the module without professional knowledge of RF circuit.

Special for MB-STD-RS232

 274

Figure 6.4: MB-STD-RS232 – CIRCUIT DESIGN

The RF part complies with the European radio, EMC and safety requirements and has been

notified in major European countries under the R & TTE directive. The MB-STD-RS232

provides long range data link at low/medium data rate for various industrial telemetry and

data transfer applications.

Also this board can be used as a test board of the STD-402 TR.

Features

 CE compliance STD-402 434 MHz RF module on the board.

 RS232 interface with D-sub 9pins connector or Modular 6pin jack.

 Fixed frequency / Auto frequency setting selectable.

 Cross / Straight cable selection SW.

Applications

 Serial data transmission (RS232C communication)

 Telemeter (FA line, Sensor information)

 Wireless connection between PC and peripheral RS232 equipment

General Description

MB-STD-RS232 is designed to make it possible for the user to connect between RS232

equipments with the radio. STD-402 434 MHz narrow band radio module that complies with

EN300220 is equipped on the board. 64 channels are pre-programmed in the module.

There are two frequency setting are available. In fixed (manual) setting, RF channel can be

set on board switches. In auto setting, RF channel is set to vacant channel automatically.

Operation mode and communication set up (Ack, parity, data rate) can be selected by on

board dip-switch. The operation mode 1 is designed for two-way communication and the

operation mode 2 is designed for one-way communication (TX -> RX).

1:N communication is possible by using unique module ID number that designated to each

RF module.

 275

Specification

 RF parameter

 Communication mode Half-Duplex

 Frequency range 433.200 to 434.775 MHz

 CH step 25 kHz

 Number of CH 64 CH

 CH setting Fix / Auto (8Gr*8ch)

 Modulation data speed 9600bps

 Modulation 2FSK

 Emission class F1D

 Transmission power 10 mW

 Serial Interface

 Interface RS-232C

 Data format Asynchronous communication (UART) Data

speed of RS 1200/2400/4800/9600 bps

 Flow control RS / CS hardware control

 Buffer Transmission 2kB, Reception 2KB

 Interface connector D-Sub 9P / Modular 6P

 Other

 Switches Power, Frequency, Operation

Mode, Cable (Cross/Straight)

 LED indication TX, RX, RSSI, LD, LE

 Dimension 85*53*15mm

 Supply Voltage 4.0 to 9V DC.

 276

Figure 6.5: MB-STD-RS232 – CIRCUIT DESIGN

For more details about this board, refer to Annex A.

Special for STD-402 (Transceiver)

Figure 6.6: STD-402 Transceiver – CIRCUIT DESIGN

The STD-402 transceiver is an UHF Narrow Band Multi channel Transceiver.

The UHF FM-Narrow Band semi-duplex radio data module STD-402 equipped PLL

controller in its robust metal housing. Unlike other transceiver, the STD-402 is ready to

transmit RF data without complicated controller board. The compact size and low power

consumption of the STD-402 make it ideal for battery operated applications where its

 277

interference rejection and practical distance range are much better than similar RF modules

based on Wide Band SAW – resonator frequency devices.

Most of RF setting are done by internal microcomputer, which allows the user to manipulate

the module without professional knowledge of RF circuit.

Features

 European EN300 200 standard compliance.

 High technology into compact module for easy operation.

 Low voltage operation from 3.6 V DC.

 Low current consumption, ideal for battery operated

applications.

 9600bps data rate.

 Carrier sense output for Multi-Channel access operation.

Application

 Remote control system.

 Security systems.

 Bi-directional communication systems.

 Telemetry systems

 Handy terminal.

STD-402 characteristics

 Common

Communication form Semi-duplex

Frequency range 433.200 MHz to 433.775 MHz.

Channel step 25 kHz.

Baud rate 9600bps max.

Supply voltage 3.6 – 12 V DC (Direct Mode).

Dimensions 53 35 12 mm.

 Transmitter

RF output power 9 mW 1mW.

Data input level 3.6 – 12V (Direct Mode).

Input signal Digital

Spurious emission < -60 dBm (< 1 GHz).

 278

Supply current 36 mA.

 Receiver

Receiver type Double superheterodyne PLL synthesizer.

Selectivity 4 kHz at –6dB point.

Data output Digital.

The STD-402 transceiver has 3 mode operation guide :

1. Direct Mode Operation Guide (For more details about this mode, refer to Annex B)

2. Auto Mode Operation Guide. (For more details about this mode, refer to Annex C)

3. Auto Mode Operation Guide for CPU interface. (For more details about this mode, refer

to Annex D)

Or the MB-STD-RS232 equips STD-402 transceiver module and performs packet

communication using CPU interface mode of the transceiver.

10.6.2.2 The communication software on the embedded board computer

The code for this program is written in C. The program runs under the Real Time Operation

System (RTOS) VxWorks on the embedded system in the alternative – LOTTE. The purpose

of this program is to get the sensors data from one serial port and put it on another serial

port which is connected to the transceiver.

The whole C program code is in Annex H.

The important thing in this program is the initialization of the serial interface

communication, the following lines contain a description about this initialization :

 id_com_dev = open (c_device, O_RDWR ,0); (line of code: 17)

This command is used to open the serial port. When the serial port is not opened, this

function returns –1.

 if (-1 == ioctl (id_com_dev,FIOBAUDRATE,speed)) (line of code: 24)

 SerialControl = (CLOCAL|CREAD); (line of code: 28)

 Parity = PARENB ; (line of code: 29)

 CharacterSize = CS8; (line of code: 30)

 if (-1 == ioctl (id_com_dev,SIO_HW_OPTS_SET,SerialControl | Parity |

CharacterSize)) (line of code: 31)

 ioctlvalue = ioctl (id_com_dev,FIOSETOPTIONS,OPT_TANDEM &~

 OPT_MON_TRAP); (line of code: 36)

These commands initialize the parity, the stop bit, the data length and the handshaking

mode.

 279

10.7 Component Tests

10.7.1 Transceiver test

The MB-STD-RS232 board which equips the STD-402 transceiver module has stored unique

module identification number in the radio module. When one unit is set up for master and

other unit is for slave, slave modem unit operate with same ID as master unit.

The test of the transceiver is shown in following lines :

1. Connect the serial cable to the D-SUB 9pin connector.

2. Set "Cable SW" (Cross / Straight) according to the cable.

3. Connect the supply voltage of the transceiver to 6V DC.

 280

4. Select unit to be master and set SW1 to "9" and SW2 to "1". Select unit to be slave

and set

 SW1 to "9" and SW2 to "0".

5. Power ON the units.

6. When power of the master is turned on, TX, RX and LE LED turn ON and LD blinks.

 Radio communication start and continue for about 10sec.

7. When power of slave unit is turned on, TX, RX LED turn ON and RSSI turn on when

 signal from master is received. LD blink when group setting is completed.

 281

8. After slave unit receives unique module identification code stored in master units, radio

 communication can be performed with this code.

9. Power of the units.

10. Setting the mode and the property of the communication by the SW switch.

 1 : ON Transmitter 1 : OFF Receiver

 2 : OFF Mode 1 (Two way communication)

 3 : ON Setting prohibited.

 4 : ON Setting prohibited.

 5 : ON ACK response (Yes).

 6 : ON Parity Yes (Even).

 7 : ON Communication speed.

 8 : ON Communication speed. (9600bps).

11. MB-STD-RS232 has 64 pre-programmed frequency channels. These frequencies are

 divided to 8 groups. Each group contains 10 frequencies. The group can be selected by

 SW2, and the value inside the group is selected by SW1. The frequency used to built the

 test is 433.975 MHz. To select this frequency, set the SW1 switch to 3 and the SW2

 282

 switch to 1. The master and the slave unit should be selected to the same frequency.

12. Power on the units.

13. MB-STD-RS232 is in RX mode at wait time (stand by), which means RX is turned ON at

wait time. When the unit receives radio data from the other unit, the RSSI LED turn ON

 and the unit will start outputting the data to RS232 port.

14. When the unit get data from PC through RS232C connector, the data is stored in internal

buffer and then will be sent after the MB-STD-RS232 check that the carrier frequency to be

set is not used in air. The TX LED turned ON when the unit will transmit the data. The unit

returns to RX mode when all data is gone.

10.7.2 User interface laboratory test with two PCs

As described in the implementation in chapter 6, the important things before testing the user

interface program is to take care about the path of the files that the user interface used, the

program run with the user interface, the initialization of the serial port (number of port, baud

rate, parity, data length, stop bit, handshaking mode, input mode ...), the interval of the timer

used to read data from the receive buffer. If all these commands are done in the correct way,

an EXE file can be made and used.

Connect one of the transceiver to a PC that contains the user interface program and the other

transceiver to an other PC that contains the program used to send data

(UserInterface_SendData). Then run the two programs and click the Sending_Data button

and the data will be displayed in the user interface program each 500 msec as below :

Figure 7.1: position & direction of the alternative – LOTTE

 283

Figure 7.2: parameters of the alternative – LOTTE

Figure 7.3: Status of the alternative – LOTTE

Figure 7.4: Weather parameters

As we see in the pictures above that the user interface test with the transceiver test work very

well, and the data are received correctly and putted in their place.

 284

10.7.3 Test of the user interface on the target system

To test the C program on the embedded system, run the TORNADO 2.0 then the following

figure will be shown :

To open the connection between the TORNADO and the VxWorks machine, open the tools

options, then select "Target server", then "PepVMP", then go to the list box to select the IP,

after that the TORNADO inform you if the connection is done between it and the VxWorks

machine.

So if the connection is ok, the user will be able to compile the C file, then open a shell to send

commands to the VxWorks machine. Before running the C file on the VxWorks machine, you

should download the C file on it, this thing can be done by select the project, right click on it

and press Download "name of the project".

If all thing is done in the right way, the user will be able to type the name of the C program

in the shell (In our project, the name of the C program is "maincom"), and the data is sent to

the serial port of the VxWorks machine.

The whole code of the C test program used is shown in Annex G.

 285

10.8 Annex A

Some trouble shooting

Phenomena Cause of trouble

TX-LED blink SW1, 2 setting error. Please check setting of SW1, 2.

RX_LED blink Low voltage. Please check supply voltage

TX and RX LED blink by

turns

Internal EEPROM is something wrong. Please contact us.

Both RX and RX LED

turn ON

 And no transmission.

There would be interference at set frequency. Please change the

frequency. Noise from PC might be the cause of the problem.

Please try to leave the board from PCs and check it.

Frequency CH setting

There are two frequency settings are available.

 Fix setting (manual):

Frequency is set by switches (SW1 & SW2) on the board manually. RSSI-LED

indication helps to set vacant channel.

 Auto setting:

MB-STD-RS232 search radio carrier to find vacant channel before starting radio

communication and set to vacant channel automatically. For more details about the

frequency table, refer to the data sheet (page 6,7)

Initial Setting (Master / Slave)

 SW1

 SW2 Function

 9 0 STD-402 initial setting / set to Slave

 9 1 STD-402 initial setting / set to Master

 9 9 Setting mode (Lf, Ack, Character strings, etc..) and TEST

 286

Operation Mode Setting SW

NO Description

 SW3 setting

 ON OFF

 1 Operation Mode Transmitter Receiver

 2

Mode 2 (One-way

communication)

Mode 1 (Two-way

communication)

 3 (Reserve) Setting Prohibited Off

 4 (Reserve) Setting Prohibited Off

 5 U

 A

 R

 T

ACK response Yes No

 6 Parity Yes (Even) No

 7 Communication

Speed (bps)

ON 9600 OFF 4800 ON 2400 OFF 1200

 8 ON ON OFF OFF

Stop bit at UART Communication

Normally, Stop bit is selected one of 1 / 1.5 / 2 bit when COM port of PC equipment is set-up.

When continuous data are outputted, data comes after stop bit. However there is a case that

there is more time space than specified stop bit length because of asynchronous

communication.

The MB-STD-RS232 receives the data from PC correctly if stop bit is 1 bit or more. Stop bit

of data from the MB-STD-RS232 to PC is fixed to 2 bit therefore communication with PC

can be made regardless of stop bit (1, 1.5, 2 bit).

Jumper Setting

There are 6 jumper settings on the board. Changing J4 and J5 can change LED-working

condition to reduce the consumption current.

J1, J2, J3 : Module set up STD-402 434 MHz setting must be Short, Open, Open.

J4: LED operation of TX, RX, RSSI LED Use: Short Non Use (off): Open

J5: LED operation of LD, LE Use: Short Non Use(off): Open

 287

J6: CPU reset signal: this must be short

Communication Interface

The board equips D-SUB 9pin and Modular 6pin as communication interface [8].

Figure A.1: Serial Connector

Communication Cable

Cross cable which mainly connect between PCs and straight cable which connect PCs and

peripheral RS 232 equipment are available as RS 232 standard cable. Please set “Cable

Signal I/O Modular 6P D-Sub 9p (*) Remark

RD (RX) I 1 2 3
Input terminal / from PC

RS (RTS) O 2 7 8 Hi when the equipment become data

reception possible.

Lo when internal

Buffer is full

SD (TX) I 3 3 2 Data output terminal / from PC

CS (CTS) O 4 8 7 Hi when SD terminal send data

Lo when SD terminal do not send data

GND (SG)

DC (+)

5 5 GND

6

 - Supply power (DC 4 to 9V) is possible

From Modular 6pin.

 288

SW” (Cross / Straight) according to the cable. For more details ,refer to the Data Sheet

(page 11,12).

Operation Mode

MB-STD-RS232 has two operation modes as below :

 Operation Mode 1: Two-way (Semi-duplex) communication

 Operation Mode 2: One-way communication

 Operation Mode 1: Two-way (Semi-duplex) communication

This mode is useful for an application of two-way communication with the Ack/Nck

Response between PC and RS232 equipment, and an application that returns the data from

RS232 equipment to PC according to the command from PC MB-STD-RS232 is in RX at wait

time (stand by). When the unit receives radio data from the other unit, the unit will start

outputting the data to RS232 port. When MB-STD-RS232 get the data from PC through

RS232C connector, the data is stored in internal buffer and then will be sent after the MB-

STD-RS232 check that the carrier frequency to be set is not used on air. The unit returns to

RX when all data in buffer is gone.

1:N communication is possible by implementing the group setting. In this case, the

application software have to be programmed to consider that identification number of RS232

equipment have to be included in transmission command, and only the equipment which

has requested ID number returns the data when its command is received. In this operation

mode, Only Fix CH setting can be used.

 289

Figure A.2: Two-way, Semi-Duplex Communication

 Operation Mode 2: One-way communication

This mode is useful for an application of one-way communication from PC to measurement

equipment. TX (transmitter) / RX (receiver) setting can be done with dip switch on the MB-

STD-RS232. TX unit transmit the signal at selected channel regardless that data is in buffer

or not. RX unit outputs the data to RS232 port when radio signal is received. (RX unit does

not transmit even data is imputed to RS232 port).

1:N communication is possible by implementing the group setting. 1 * TX unit to N * RX

units communication is possible.

In this operation mode, Either Fix channel setting or Auto channel setting is used.

In Auto setting, TX unit perform automatic RF channel search and transmit the data in the

vacant RF channel. RX unit perform channel scan to detect transmission signal and set to the

RF channel.

Figure A.3: One-way Communication

Restriction on data communication

The MB-STD-RS232 equips STD-402 transceiver module and performs packet

communication using CPU interface mode (data length 63bit) of the transceiver.

 290

Serial data or command stream from PC or other equipment connected to the MB-

STD-RS232 is pocketed and sent to a receiver. When these data are outputted from

the unit, the time space appear as shown below. The time space (delay) is 300msec or

more when operation mode 2 (One-way communication) is used.

Figure A.4: Data Communication

ACK Auto Response Function

Depending on RS232 equipment, but some equipment stop or become error and

repeat transmitting same data if Ack/Nck command is not returned as response

signal within several 10msec.

This is not problem in wired communication because PC can return Ack/Nck

command immediately after receiving data from RS232 equipment. Wireless

communication with the MB-STD-RS232 have a few second time-lag for the

response. This function is given to avoid error caused by such situation. It is realized

to return Ack (or specific response string) response return.

1. MB-STD-RS232 operates as that the data from RS232 equipment is suppose to

carry delimiter symbol (Etx, Lf etc…) at end.

2. When Ack/Nck character is contained in output from RS232 equipment, MB-

STD-RS232 judges that the Ack/Nck character is the response from PC and

when it is not contained the output is recognized as data stream (i.e.

measurement data) for request

 291

 data command from PC. The MB-STD-RS232 sends Ack response only if this

data

 stream (without Ack/Nck) is recognized.

 (If there is data in TX buffer, the Ack will be sent after that).

3. Delimiter, Ack/Nck and character string to recognize these operation can be

changed by user.

Example

 Delimiter “Lf” (0AH)

 Response detect code 1 “Ack” (06H)

 2 “Nck” (15H)

 Auto response character string “Ack CR Lf” (06 0D 0AH) Max. 16 characters

Figure A.5: ACK Auto Response

Group Setting

The MB-STD-RS232 has stored unique module identification number in the radio

module. When one unit is set up for master and other unit(s) is for slave, slave

modem unit operate with same ID as master unit.

 292

If this setting (group setting) have not finished, radio communication between the

MB-STD-RS232 is not possible even with same frequency.

 Setting Procedure

1. Select unit to be master and set SW1 to “9” and SW0 to “1”. Select unit(s) to be slave

and set SW1 to “9” and SW0 to “2”. Power on the units.

2. When power of the master unit is turned on, TX, RX and LE LED turn ON and LD

LED blinks. Radio transmission start and continue for about 10sec.

3. When power of slave unit(s) is turned on, TX, RX LED turn ON and RSSI turn ON

when signal from master is received. LD blink when group setting is completed.

After slave unit receives unique module identification code stored in master units, radio

communication can be performed with this code.

Note: This setting is to set identification code for radio communication. Original unique

module identification code of slave unit itself remains unchanged. When the unit was

used for slave is set to

master and perform communication, identification number is different from former

communication. Therefore interface does not occur.

 293

Figure A.6: Master & Slave Units

Ack Auto Response Setting

Delimiter, Ack/Nck code and auto response character string (max. 16 characters) for

recognition of Ack auto response can be changed from RS232 port using software like

Windows Hyper Terminal.

 Procedure

1. Connect MB-STD-RS232 and PC with RS232 cable. Set SW1 and SW2 on the MB-STD-

RS232 to “9”, “9”, then power ON.

2. Start up the Hyper Terminal and set communication condition as below.

 4800bps, Bit = 7, Parity = Odd, Stop Bit = 1, Flow control = Hard ware.

3. At first, type “/A CrLf” and return. Check if the MB-STD-RS232 modern return the

product name and program version.

4. Set up with reference to the following table.

Command Transmission format Correct Response Description

 294

 Data (example)

 “/A” “/A CrLf” “/A MB-STD-RS232,

 221.222 CrLf”

Product name, Program ver.

 “/I”

 “/I 26, 2D, 2A CrLf”

“Ok CrLf”

Set and check of Ack response

character sting (HEX)

Max. 12 character (prohibit to include

ASCII code “22”)

 “/I CrLf”

“/I 26, 2D, 2A CrLf”

 “/K” “/K 26 CrLf”

“OK CrLf” Set and check of Ack response detect

code 1 (HEX).

Example : 06H = Ack
 “/K CrLf”

“/K 26 CrLf”

 “/L” “/L 15 CrLf”

“/L OK CrLf” Set and check of Ack response detect

code 2 (HEX).

Example : 15H = Nck
 “/L CrLf”

“/L 15 CrLf”

 “/M” “/M 2A CrLf”

“OK CrLf” Set and check of delimiter (HEX)

Example : 0AH = Lf

 “/M CrLf”

“/M 2A CrLf”

 295

Circuit diagram for the MB-STD-RS232

10.9 Annex B

 STD-402 [Direct Mode Operation Guide]

General Description

The STD-402 is a short range device stipulated by CEPT/ERC recommendation 70-03

and is a radio module complying with ETSI standard EN300-220-1 with a transceiver

built into its compact case.

The built-in PLL synthesizer circuit enables both transmission and receipt through 64

pre-set channel frequencies between the 433 to 434 MHz bands.

The transmit mode / receive mode settings and the frequency channel settings can be

made easily with dip switches or jumpers without the use of an external

microcomputer.

As the system operates on low voltage and low current consumption in consideration

of mobile communications, battery operation is also possible.

 296

The FSK modulation enables transmission at a maximum of 9,600bps. Also, when

multiple channels are to be used simultaneous or if high communication standards

are required, the

MSK modulation enables transmission at a maximum of 2,400bps. However, it is

necessary to install an MSK modem IC externally for this purpose.

The radio module has been designed with high levels of reliability cultivated

through long-term results, and this provides excellent levels of selectivity receiving

sensitivity and radio interference capabilities.

Features

 Comply with EN 300 220

 Compact size (53mm * 35mm * 12mm) with built-in transceiving

functions (STD-402)

 Baud rate of maximum 9,600bps

 Simple channel setting with switches

 Continual “2” or “1” data transmission for a maximum of 02msec.

 High-level endurance capabilities against the effects of antenna

reflection and surrounding equipment

 Low-voltage operations : 3.6 V to 12 V

 Low-current consumption : 36mA (transmit mode), 26mA (receive mode)

Applications

 Telecommand and Telecontrol

 Telemetry

 Alarms

 Data terminals

 297

Pin description

Number Pin Name I/O Description Equivalent circuit

 1

 CAR

(STATUS)

 O

Carrier sense output of the receiver.

The RSSI signal (receiving level)

Will become “H” when the signal

exceed the threshold.

 2 RSS

 O The receiving level output of the

receiver. The strength of the RF

level is converted to the direct

current voltage.

 3

 AF O

The AF output of the receiving

section.

 4 DO O

The data output for the receiving

section. The port uses FET buffer

output, the “H” level is Vcc.

 5 T/R I TX(transmit mode) / RX (receive

mode) setting. The port is pulled

up with resistor.

TX mode: L (GND)

RX mode: H (Open)

 298

 6 DI I Data input for the transmission

section. The port uses transistor

input, the digital “H” level is Vcc

and the digital “L” is GND.

 7 VCC - The power supply terminal.

Operates on 3.5V to 12V, but the

same Vcc level as the surrounding

circuits must be used.

 8 GND - The ground.

Extend the pattern over the widest

area possible on the printed circuit

board.

 9 LD

 O The LOAD signal output for
External parallel -> serial register

 The RESET signal is output with
 The receive mode.

 The port uses FET buffer output,

the “H” level is Vcc.

 10 LE I/O The LATCH ENABLE signal

output for external serial ->

Parallel register.

 Setting mode switch input.

 11 RDY

 (CLK)

 O The READY signal output. RDY is

 Active when at “L”. The following

 Conditions apply when RDY is “H”.

(1) Initial status.

(2) CAR is “H”

Call name being transmitted.

 299

 12

 13

 14

 15

 16

 17

 CH5

 CH4

 CH3

 CH2

 CH1

 CH0

 I Set the various conditions when

in the setting mode.

 Sets the ID address with normal

operations. 63 address types

between 1 and 63 are available.

 Pulls up each port.

Electrical characteristics

 Common characteristics

 Item Rating Conditions/remarks

Communication form Semi-duplex

Modulation F1D FSK

Oscillation system PLL controlled VCO

Frequency range 433.200 – 434.775 MHz

Channel step 25 kHz

Number of RF channel 64 channels

Baud rate 4800, 9600bps FSK

Modulation polarity Positive

Demodulation polarity Positive

Antenna impedance 50 Ohm

1st IF 21.7 MHz

2nd IF 450 kHz

Range 200m or more F1D 9600bps

Operation temperature -10 to 55C

Operation power voltage 3.6 – 5V

Supply current 36mA TX mode

 300

 26mA RX mode

Dimensions 53*35*12mm

Weight 34g

 Transmission section characteristics

 Item Rating Conditions

Transmitter type PLL synthesizer

RF output power 9.0mW ± 1.0mW 10mW

Frequency stability

± 4ppm -10 to + 55C

Spurious emission < -60dBm < 1GHz

< -50dBm > 1GHz

Deviation ±1.9 to 2.1 kHz *1

S/N ratio > 25dB *1

Adjacent channel

power

> 40dB Spectrum analyzer act. *1

Carrier sense level -107 dBm Fixed

Transmitter start-up

time

< 30msec PLL data setting

Channel switching

time

< 15msec 25KHz

< 30msec 100KHz

*1: 9,600bps, 511 bit (Pseudo Noise)

 Receiving section characteristics

 Item Rating Conditions

Receiver mode Double super heterodyne

Sensitivity < -117 dBm 25C, *2

 301

Spurious response > 45d *3

Selectivity > 45dB *3

Local frequency stability ± 4ppm -10 to +55C

Radiation from local oscillator

< -65 dBm < 1GHz

< -60 dBm > 1GHz

Output level 350m Vp-p 100Kohms terminate *4

Carrier sense level -113 dBm Fixed

Carrier sense response time < 30msec PLL data setting

Channel switching time < 15msec 25KHz

< 25msec 100KHz

Bit error rate 1 10^-2 Less than –110dBm

1 10^-4 Less than –107dBm

*2: AF = 1KHz, fmod = 2KHz, CCITT filter ON

*3: Jamming waves AF = 400Hz, fmod = 40%

*4: Dev:= 2Khz, AF = 1KHz

*5: 256bit / 4800bps

Modes

The STD-402 can be controlled manually with a simple set of external switches and jumpers,

or with microcomputer controller.

 302

Figure B.1: Models & Modes

Modulation mode

 The maximum baud rate is 9,600bps with FSK. The data format may be

decided by the user.

 The MSK modulation is recommended when stable operations are

required during the use of multiple channels within the same area.

However, the MSK mode requires an external MSK modem IC

(MSM6882 manufactured by OKI or an equivalent model). Restrictions

in the performance of this IC mean that the maximum baud rate is

2,400bps.

Figure B.2: Modulation Mode

For more details about the channel table and the Manual Mode, refer to Data Sheet

(page 2...18).

Transceiver mode with microcomputer

 Connection method

 More complex settings are made available when the STD-402

 modes and channels are controlled by microcomputer.

 By developing microcomputer software that monitors the STD-402 READY ports,

it is possible to avoid channels already occupied by

 other radios in the same way as MCA (Multi-Channel Access) and

 automatically set up empty channels.

 303

Figure B.3: Connection Method

Timing for transmit mode setting

 The flow chart and timing chart for transmit mode setting when under

microcomputer control are provided below.

Figure B.4: Timing for transmit mode setting

 304

Timing for receiving mode setting

 The flow chart and timing chart for receive mode setting when under

microcomputer control are provided below.

Figure B.5: Timing for receiving Mode

MSK Modulation mode

 Modem IC

 The MSM6882 MSK modem IC manufactured by OKI is recommended for the MSK

(Minimum Shift Keying) modulation mode.

 Modulation MSK waves are emitted by loading transmission data into

 the encoder.

 The decoder converts MSK waves into receiving data.

 Examples for the application of the MSM6882 terminal function, the

 transmission mode and the receiving mode are provided in the Data

 305

 Sheet. For more details, refer to STD-402 Direct Mode Operation Guide (page 21, 22,

23)

Cautions

 Power supply

 The operating voltage range for the STD-402 is between 3.6V and 12.0V.

 A voltage exceeding the maximum of 12.0V will result in damage to the

 device.

 Ensure that an open drain or open collector port is connected when the

 TX/RX, CH0 to CH5 and external circuits are connected together.

Figure B.6: Power Supply

 Reverse connection protection circuit

 When using low-voltage with battery operations

Figure B.7: Protection Circuit

 As the maximum battery supply current will flow into the diode

 306

 when the battery is connected in the reverse position, much

 consideration must be given to the PC (heat loss) in the diode.

 Although this method is the simplest, long-term heat emission

 may result in the outbreak of fire. Take extreme caution when

 handling this.

 When using high-voltage mains power for stable operations

Figure B.8: High Power

 Although this method will not result in the buildup of heat in the

 diode, it will result in a lowering of the forward voltage in the

 diode and the efficiency rate of the mains power will be lower

 with batteries and other low voltages.

 The forward voltage will differ depending on the type of the

 diode, but the general rectification is approximately 0.6 to 0.7V.

 307

Antenna

 Antenna and radial

 the STD-402 antenna is approximately 17cm with a one quarter

wavelength in the 434MHz band. The units metal case not only acts as

the ground but is also known as the radial to radiate the electronic radio

waves from the antenna and radial. The phase is in inverted with the

redial and antenna.

 Increase the modules ground pattern as much as possible. The

electronic wave radiating power is strongest at the tip of the antenna,

and when brought close to the units case, or radial, will work to cancel

each other out, causing dramatic effect to the arrival distance.

Figure B.9: Antenna

 Incorporating into equipment

 A direct line is ideal for the antenna, but it should be separated from the

case as much as possible when space for incorporating it into the

equipment is limited.

 308

Measured data

 309

10.9.1 Block diagram of the STD-402 transceiver in Direct Mode

 310

10.10 Annex C

 STD-402TR [Auto Mode Operation Guide]

10.10.1 General

The STD-402 auto mode is a operation mode that is equipped with automatic link

function and an encoding/decoding function. Automatic link searches vacant

channels in order to use forty six channel frequencies without hindrance or

interference. The encoding/decoding function establishes an interface between the

data I/O circuit and radio assembly and executes the necessary communication

protocols.

The transmitters input circuit and the receivers output circuit can easily be

connected together with a general-purpose IC.

Note: The STD-402 auto mode supports only one-way communication (uni-

directional) transmissions (transmitter -> receiver) but support for simplex

communications (bi-directional) is planned for the future.

 311

10.10.2 Features

 The automatic link function automatically connects to channels that do

not cause interference.

 Simple I/O circuits with the built-in encoder/decoder.

 The I/O connections can be expanded to a maximum of 63 bytes

 The built-in micro-computer greatly reduces the cost of new

development.

 Perfect for combining with other equipment.

10.10.3 Application Examples

 One-way system

 Tele-control

 For controlling cranes, concrete pump vehicles, golf carts, remote

opening/closing for various purposes, traffic lights for road works, etc...

Support for the following applications is planned for the future.

 Simplex systems

 Data transmission

 Handy terminals, bar-code readers

 Security

 Transmission of anti-theft alarms, immobilizes for cash delivery trucks,

notification of customers entering retail shops, etc.....

 Telemeter

 Water level monitoring for canals and dams, etc..., monitoring of

various alarms, etc... .

10.10.4 Configuration

 The auto mode automates numerous functions with the use of the built-

in micro-computer.

Figure C.1: Configuration

 The features of both modes are shown in the table below

 312

Figure C.2: Mode

Explanation for internal processes (1) [Automatic channel search]

 the automatic channel search is a system that detects the carrier level of

the channel in use to search for vacant channels in order to avoid

interference with other radios. This is controlled automatically by the

built-in micro-computer.

 The channel search is executed by the module from the pre-determined

starting channel.

 For example, if the channel search was executed from [0ch], the

procedure would be as follows :

1. The STD-402 is set in the receiving mode.

2. Set as channel 0 (433.200MHz)

3. The carrier level is detect and compared with the standard level

4. If the channel is occupied, the frequency is increased by two channels

(50KHz).

5. If the channel is vacant, the system is switched across to the transmission

mode.

6. The vacant channel is set.

7. Transmission is started.

 313

Figure C.3: Automatic Channel Search

Explanation for internal processes (2) [Automatic link]

 This is controlled automatically by the built-in micro-computer in the

same way as the automatic channel search.

 All modules are started from [0ch] in the case of the automatic link.

 The channel search is executed by the module from the pre-determined

starting channel.

 For example, if the channel search was executed from [0ch], the

procedure would be as follows :

1. The transmitter set for the vacant channel commences transmission.

2. The receiver is set at channel 0 (433.200MHz).

3. The carrier level is detected and compared with the reference level.

 314

* the reference level is different for the transmitter and

receiver.

4. If it is below the standard level, the frequency is increased by one

channel (25KHz).

* Increased by two channels for transmitter, but only one

channel for the receiver.

5. The ID data is received and compared with the ID register.

6. Increased by one channel (25KHz) if the ID number matches.

7. Switched across to the communication mode if the ID number

matches.

Figure C.4: Automatic Link

Explanation for internal processes (3) [ID number registration]

 It is necessary to register an ID number for the transmitter and receiver

in order to enable the STD-402 to establish an automatic link between

two devices.

 If the transmission is performed on the same frequency from another

radio or an STD-402 with a different ID number, the receiver will

 315

continue to search the channels until it finds an ID number that matches

its own.

10.11 Registration of ID

 The serial number is unique number set in the factory at the time of

shipment and can only be read.

 The ID register is a register for storing the ID number.

Figure C.5: ID Number Registration

 As shown above, the number registered in the ID register remains the

same even when switching between the transmitter and receiver, so it is

not necessary to register a new ID number.

Explanation for internal processes (4) [Encoder]

 Connection method

 The illustration below shows the basic circuit when the STD-402 is used

in the TX mode (transmitter).

 The 74HC165 is a general-purpose 8-bit parallel input -> serial output

converter.

 316

 The STD-402 detects disconnection, so ensure that a DO is connected to

the SI.

Figure C.6: Encoder

 Timing chart

 The timing for the STD-402 TX mode is shown below.

 The micro-computer built into the STD-402 is equipped with an

encoding function and communication protocols to convert the

automatic link ID numbers, the various control data and the transmitted

data into FSK data.

 The entire data is called as a frame, and the transmission data is

inserted once into a single frame. The data is transmitted continually

until the power supply is switched off.

 The length of the control data is fixed, but the transmission data can be

changed between 1 byte to a maximum of 63 bytes in accordance with

the application.

Figure C.7: Timing chart for STD-402 TX mode

 317

(1) The parallel data is latched onto the clock asynchronously when the LD

signal is “L”

(2) Serial data is shifted at the RDY (clock) rises when the LD signals is

“H”.

Explanation for internal processes (5) [Decoder]

 Connection method

 The illustration below shows the basic circuit when the STD-402 is used

in the RX mode (receiver).

 The 74HC595 is a general-purpose serial input -> 8-bit parallel output

converter.

 The STD-402 detects disconnection, so ensure that a QH is connected to

the DI.

 The 74HC595 latch data is cleared when LD is L

Figure C.8: Decoder

 Timing chart

 The timing for the STD-402 RX mode is shown below.

 The micro-computer built into the STD-402 is equipped with a

decoding function and communication protocols to convert the received

FSK data into control data and the transmitted data (serial data).

 The transmission data is output once into a single frame. The data is

received continually until the power supply is switched off.

 318

Figure C.9: Timing chart for STD-402 RX mode

(1) The serial data is shifted when the RDY (clock) rises.

(2) The parallel data is latched onto the clock asynchronously when the LE

signal rises.

Explanation for internal processes (6) [Data format]

 Communication data format

 The STD-402 control data is of fixed length and comes in a unique

format that includes the ID code for radio links and special codes.

 The user data (transmission data, receiving data) is between 1 byte and

63 bytes depending on the number of I/O connections, and the

transmission time will be extended in accordance with the length of the

transmission data.

 The communication data format is shown below.

Figure C.10: Data Format

 319

 Transmitting data between Transmitter and receiver

 The communication data is transmitted continually during

transmission. However, the transmission data will not actually travel

continuously at 4,800bps owing to the fact that the control data is

transmitted by frame by the encoder.

 Using 1 byte of data as an example, the data volume (number of bytes)

transmitted within a one-second period is as follows.

D = 1000msec {20msec + (1.67msec 1)} 46 bytes.

Figure C.11: Transmitting Data between TX and RX

For more details about the Encoder/Decoder and the setting mode, refer to Data

Sheet (page 13...19)

Communication mode

 the communication mode enters normal operation when the power

supply is switched on after all transceiver settings have been made in

the setting mode.

 First of all with the communications mode, a link is established with the

transmitter and receiver with the same ID number in accordance with

the procedure explained for the automatic link, and data transmission is

then started.

 Once a link has been established, communication will be carried out on

the same channel unless the power supply is switched off.

Local ID numbers

 320

 It is possible to transmit the data from one transmitter to a maximum of

63 different receivers with the STD-402 auto mode.

 Local ID numbers must be set for each of the receivers for identification

purposes. The ID numbers are set with the CH0 to CH5 ports.

 The (LD = L) reset signal is output and the data is cleared under normal

conditions when the ID number of the transmitter and receiver do not

match. [LD] is invalidated and the receiving data is output if the ID

numbers do match. However, if the ID number for the data and clock

matches, it is output regardless of the local ID.

 If the ID number for the transmitter is [0 (ALL)], the receiver will output

the data regardless the ID number.

Figure C.12: Local ID Numbers

Figure C.13: Communication 1:N

 321

Figure C.14: Communication 1:1

To see the ID address table, refer to Data Sheet (page 22).

10.11.1 diagram of the STD-402 transceiver in Auto Mode

 322

10.12 Annex D

 STD-402 [Auto Mode Operation Guide for CPU Interface]

Or the board used to equips the STD-402 is the MB-STD-RS232, so the this

mode (Auto Mode Operation Guide for CPU Interface) is used like mode of the

STD-402 transceiver.

Auto mode : CPU interface conceptual illustration

 Wired Communication

Figure D.1: Wired Communication

Above image shows basic construction of data communication with SIO

(Synchronous Serial Input Output)

 Radio Communication through STD-402 Auto mode

 323

Figure D.2: Radio Communication

Above figure shows the communication that replaces the wire with the radio module

(STD-402). Radio communication is not stable as wired communication.

In addition, the procedure in the beginning of radio communication link (connection

between transmitter and receiver), TX/RX switching and the disconnection of radio

communication are unique for radio communication therefore specific protocol is required

for radio communication.

STD-402 auto mode provides such specific protocol as the function of radio link,

frequency channel selection and encode/decode.

Transmission concept

 324

Figure D.3: Transmission Concept

Data from SO (Serial Output) of CPU, which is shifted on the raising edge of clock signal

is imputed to DI (Data Input) of STD-402. User data can be set with any data size in byte

from 1-63 byte. STD-402 internal CPU adds identification code, error correction code and

other internal process code and then transmit them as modulation data in frame.

Reception concept

Figure D.4: Reception Concept

When the receiver receives data of which ID code, error correction and code and other

internal process code are matched, only user data is outputted from DO by byte in

synchronism on the rising edge of clock. If no signal is received or any of ID code, error

correction or other process code is not matched, CLK and data signal does not appear.

 325

Connection between STD-402 and CPU

Figure D.5: Connection between STD-402 & CPU

STD-402 Terminal Description

Terminal Description

DI Transmission data input terminal

Connect to SO (Serial Output) of CPU

DO Receive data terminal

Connect to SI (Serial Input) of CPU

 326

RDY (CLK) Shift clock output for SO and SI serial data

T/R Transmitter/Receiver function select terminal

L: TX, H: RX

CAR Status signal for transmission/receive and multiplex switching signal for

CH0-5. The port shows L when TX and H when RX.

Multiplex switching signal comes at end of frame. It can be used for frame

status signal.

CH0 – 5 Input ports for Mode & data rate, frequency channel selection mode

(Auto/Fix) and data length (1 – 63 byte) for initial setting.

Input port for local ID (0 – 63) and frequency channel (0 – 64 channel)

during normal operation.

10.13 Communication Protocol

10.13.1 STD-402 Data Format

Figure D.6: Communication Protocol

STD-402 communication data format is shown as above. STD-402 internal CPU will

make above data automatically except User data. Data connection is possible by

feeding user data (1 – 63 bytes) to 3 wire SIO ports of CPU in synchronism with CLK.

In each frame, STD-402 process the data internally and Input/Output user data. In

general, data is sent and received as “packet”.

Initial Setting

Initial setting configures STD-402 internal setting.

1. MODE

 327

 Direct mode

 Auto mode: (Logic interface)

 Auto mode: CPU interface

2. FREQUENCY CH (channel)

 Auto channel mode STD-402 automatically search vacant channel and

make radio link.

 Fixed channel mode – Set frequency channel to 0 – 63 channel.

3. DATA LENGTH

 User data length per frame (1 to 63 byte)

Setting to transmitter (master) and receiver (slave) is different. MODE is set to both

transmitter (master) / receiver (slave). FREQUENCY CH and DATA LENGTH are

firstly set to transmitter (master) then these data are transmitted to receiver (slave)

and then the receiver (slave) memorizes the data.

Above three setting data (MODE, FREQUENCY CH and DATA LENGTH) are

inputted to CH0 – 5. MODE and FREQUENCY CH data are inputted to the ports in

multiplex process, and DATA LENGTH data are inputted from the port for Mode in

sequence.

Initial setting process will start with LE port “L” at power ON and complete with LE

port “H”. In normal operation, power supply of the module must turn ON with LE

port “H”.

It is recommended to use regulator with controller terminal for STD-402 power

supply control.

Completion of initial setting can be confirmed with LD port output.

For more details about setting parameter, refer to Data Sheet (page 9)

 328

10.13.2 Transmitter : Initial setting flow chart

Figure D.7: TX Initial Setting Flow chart

 329

10.13.2.1 Receiver : Initial setting flow chart

Figure D.8: RX Initial Setting Flow chart

Normal Operation

Local ID and Frequency CH can be set at CH0 – 5 in Normal operation.

1. Local ID

Set Local ID (0 to 63)

2. Frequency CH

Fixed channel mode (0 to 63 CH)

 330

 In normal operation, CLK will be outputted when STD-402 internal set-up is

completed and data communication is ready after power ON, TX/RX switch

and frequency CH change. CPU needs to check interruption.

 Set up and communication link between TX and RX.

Approximately 10msec of frequency setting time is needed because STD-

402 uses a synthesizer system. Also, demodulation circuit in the receiver

work in AC

 operation, DC drift occurs specially when power is supplied. Thus, RF

communication is not stabilized during approx. First 100msec. It is therefore

recommended to send dummy data (example 00H) few times before sending

actual data.

 Carrier Sense

STD-402 performs carrier sense function to check the set channel is busy

or vacant. When module is set fixed channel mode and the set channel is

occupied, a clock is not outputted from STD-402. In this case, please wait

for interruption or change the other frequency channel.

Transmitter: Timing at power ON

 Following shows transmitter timing chart at the time of STD-402 power

supply ON. Set to T/R port to “L” (transmit).

 Transmission cycle of data is defined as frame. Following timing figure shows

one byte transmission. It can be set any byte from 1 to 63 bytes. Time of 1

frame is (20 + the number of byte * 1.7) msec.

 Data transmission is not possible during module setting time (240msec). It is

recommended to send 1 to 5 frame dummy data (example 00H) at the

beginning of transmission to help initial radio communication link.

 T/R port, frequency CH and local ID data will be read at the end of frame.

 331

Figure D.9: TX, Timing at power ON

 332

Transmitter: Flow chart at power ON

Figure D.10: TX, Flow chart at power ON

 333

Receiver: Timing at power ON

Following shows Receiver timing chart at the time of STD-402 power supply ON. Set T/R

port to “H” (Receiver).

 Receiving cycle of data is defined as frame. Following timing figure shows one

byte transmission. It can be set any byte from 1 to 63 bytes. Time of 1 frame is

(20 + the number of byte * 1.7) msec.

 Data can not be received during module setting (approx. 165 msec).

 T/R port, Frequency CH, and Local ID data will be read at the end of frame.

 Following shows timing that receiver turns ON when radio signal from

transmitter has been transmitted.

Figure D.11: RX, Timing at Power ON

 334

10.13.3 Receiver: Flow chart at power ON

Figure D.12: RX, Flow chart at Power ON

Transmitter: Frequency channel change timing

Following shows timing chart at time when the transmitter frequency channel is changed

from 7 to 39 channel.

 335

 Channel data will be read at the end of frame and the data will be set at next

frame. If channel data is changed at 1 msec or later after final clock (CLK), the

data will be read at next frame.

 The figure shows the example that data size is one byte. Data will be read by

22 msec span.

 Data transmission is not possible during channel switching and setting period

(approx. 210 msec.). The channel switching time is same at any channel set.

 Transmission will stop and CLK will not be outputted during channel

switching and setting period.

 Frequency channel change must be done at the same time for both TX and RX.
Figure D.13: TX,

Frequency CH

change timing

Transmitter: Frequency CH change flow chart

Figure D.14: TX, Frequency CH change Flow chart

 336

 Frequency CH data is read at the end of data frame. See timing chart for detail.

 After frequency CH is switched, transmission become possible when CLK is outputted.

Receiver: Frequency channel change timing

 Following shows timing chart at time when the receiver frequency channel is

changed from 15 to 32 channel.

 Channel data will be read at the end of frame and the data will be set at next

frame. If channel data is changed at 1 msec or later after final clock (CLK), the

data will be read at next frame.

 The figure shows the example that data size is one byte. Data will be read by

22 msec span.

 Data reception is not possible during channel switching period (approx. 210

msec.). The channel switching time is same at any channel set.

 Reception will stop and CLK will not be outputted during channel switching.

 Frequency channel change must be done at the same time for both TX and RX.

Figure D.15: RX, Frequency CH change timing

Receiver: Frequency CH change flow chart

 337

Figure D.16: RX, Frequency CH change Flow chart

 Frequency CH data is read at the end of data frame. See timing chart for detail.

 After frequency CH is switched, reception become possible when CLK is outputted.

Timing at Transmitter -> Receiver switching

 Following shows timing chart at time when the module switches from

transmitter to receiver.

 T/R port will be read at the end of frame and the data will be set at next frame.

If T/R port is changed at 1 msec or later after final clock (CLK), the data will be

read at next frame.

 The figure shows the example with one byte data size and 4800bps data rate.

 Data reception is not possible during the receiver setting period (approx. 365

msec.).

 Reception become possible when CLK is outputted.

Figure D.17: Timing at TX –> RX switching

 338

Timing at Receiver -> Transmitter switching

 Following shows timing chart at time when the module switches from receiver

to transmitter.

 T/R port will be read at the end of frame and the data will be set at next frame.

If T/R port is changed at 1 msec or later after final clock (CLK), the data will be

read at next frame.

 The figure shows the example with one byte data size and 4800bps data rate.

 Data transmission is not possible during the receiver setting period (approx.

200 msec.).

 Transmission become possible when CLK is outputted.

 As described in timing at power ON, send dummy data “22H” for 1 – 5 frame

at beginning of transmission to make radio link with receiver.

Figure D.18: Timing at RX -> TX switching

Transmitter <-> Receiver switching flow chart

 339

Figure D.19: TX <-> RX switching Flow chart

 TX -> RX or RX -> TX change data will be read at end of frame.

 After switching TX/RX, transmission and reception is possible when CLK is

outputted.

 340

 341

10.14 Annex E: Visual Basic code for the user interface program

1 ' Parameters using to do a Zoom on the PictureMap

2 Dim r1 As Integer, X1 As Integer, X2 As Integer, Y1 As Integer, Y2 As Integer

3 Dim ULeftX As Integer, ULeftY As Integer, Target As PictureBox

4 Private Sub C_Close_Click()

5 'Close the Serial Port

6 MSComm1.PortOpen = False

7 'Close the Receive_File

8 Close #1

9 'Close the Send_file

10 Close #2

11 'Close the Solar_file

12 Close #3

 342

13 'Close the User Interface Program

14 'Close the FormMap Program

15 'Close the FormDirection Program

16 Unload FormMap

17 Unload FormDirection

18 Unload Me

19 End

20 End Sub

21 Private Sub C_Connection_Click()

22 'Wait for Data (Sensors Data) to come to the Serial Port

23 ' 116 is the length of the Receive_Message

24 Do

25 DoEvents

26 Loop Until MSComm1.InBufferCount >= 116

28 ' Call the function used to Read Data from Serial Port (Read_Data)

29 ' and in this function, we will test the Begin and the End Flag

30 Read_Data

31 End Sub

32 Private Sub C_Send_Cancel_Click()

33 'Enable the timer used for Receive Data form serial Port

34 TimerRun_R.Enabled = True

35 'Disable the SDF (Sending Data Frame)

36 SDF.Visible = False

37 'clear the TextBoxes from the data

38 T_newPos_inX.Text = ""

39 T_newPos_inY.Text = ""

40 T_newPos_inZ.Text = ""

41 T_newVel_inX.Text = ""

42 T_newVel_inY.Text = ""

 343

43 T_newVel_inZ.Text = ""

44 End Sub

45 Private Sub C_Send_Commands_Click()

46 'Enable le SDF (Send_Data_Frame)

47 SDF.Visible = True

48 'Clear the Transmit Buffer

49 MSComm1.OutBufferCount = 0

50 'Clear the TextBoxes from Data

51 T_newPos_inX.Text = ""

52 T_newPos_inY.Text = ""

53 T_newPos_inZ.Text = ""

54 T_newVel_inX.Text = ""

55 T_newVel_inY.Text = ""

56 T_newVel_inZ.Text = ""

57 'Set the Cursor in the first TextBox (new_Position inX)

58 T_newPos_inX.SetFocus

59 End Sub

60 Private Sub C_Send_OK_Click()

61 'Testing the status of the new information (TextBoxes)

62 If (UserInterface.T_newPos_inX.Text = "" Or UserInterface.T_newPos_inY.Text = "" Or 63

UserInterface.T_newPos_inZ.Text = "" _

64 Or UserInterface.T_newVel_inX.Text = "" Or UserInterface.T_newVel_inY.Text = "" Or 65

UserInterface.T_newVel_inZ = "") Then

66 MsgBox (" SORRY, but you should put a number in these TEXTBOXES !!!!!")

67 T_newPos_inX.SetFocus

68 Else

69 'Disable the Timer using for Read_Data

70 TimerRun_R.Enabled = False

71 'call the function used for writing Commands in the Transmit Buffer

72 Write_Commands

 344

73 'Disable the SDF (Send_Data_Frame)

74 SDF.Visible = False

75 'Enable the Timer used for Reading Data

76 TimerRun_R.Enabled = True

77 End If

78 End Sub

79 Private Sub C_Solar_Radiation_Click()

80 'Close the Solar_file.rad

81 Close #3

82 'Execute the Program used to draw the Position of the

83 'ALTERNATIVE-Lotte in the 3D (three Dimensions) with

84 ' the value of the Solar Radiation

85 Shell "C:\3D\Jet.exe", vbNormalFocus

86 End Sub

87 Private Sub Form_Load()

88 'Initialisation the form of the User Interface

89 UserInterface.Width = Screen.Width

90 UserInterface.Height = Screen.Height

91 'Initialisation of the position of the ALTERNATIVE-Lotte on the MAP

92 CenterX0 = 3

93 CenterY0 = PictureMap.Height - 1702

94 'Initialisation of the Counter used for drawing

95 ' the Wind Vector and the Solar

96 CountW = 1

98 'Initialisation of the Value used to display

99 'the position and the direction in the large view

 345

100 CLK_M = False

101 CLK_D = False

102 'Open the file (Send_file) that the user used it to put the Telegram (Message) that he will 103

send to the ALTERNATIVE-Lotte

104 Open "C:\User Interface\Data\Send_file.snd" For Binary Access Write As #2

105 SI = 0

106 ' Open the file (Receive_file) that the user used it to put the Telegram (Message) that he 107

will recevie from the ALTERNATIVE-Lotte

108 Open "C:\User Interface\Data\Receive_file.rcv" For Binary Access Write As #1

109 RI = 0

110 'Open the file (Solar_File) that the user used it to put the value of the Solar Radiation

111 Open "C:\User Interface\Data\Solar_file.rad" For Binary Access Write As #3

112 SRI = 0

113 'Set the drive an path for the JPG or BMP image and the Mouse icon

114 ChDrive Left$(App.Path, 2)

115 ChDir App.Path

116 'The shape control for the ZoomBox or frame is loaded dynamically

117 'at runtime

118 Controls.Add "vb.shape", "shpZoomBox", PictureMap

119 Set Target = FormMap.PictureMap_Z

120 Target.Width = FormMap.PictureMap_Z.Width

121 Target.Height = FormMap.PictureMap_Z.Height

122 'Disable the SDF (Send_Data_Frame)

123 SDF.Visible = False

124 'Disable the Solar Radiation Command

125 C_Solar_Radiation.Enabled = False

126 'Test the Status of the serial Port

127 If (Status_Port(MSComm1, 3) = False) Then

 346

128 MsgBox "SORRY!!!, This port is not Available (used by another application)"

129 End

130 Else

131 ' Initialisation of the serial port

132 MSComm1.CommPort = 3

133 MSComm1.Settings = "9600,E,8,2"

134 MSComm1.Handshaking = comRTSXOnXOff

135 MSComm1.RTSEnable = True

136 MSComm1.InputMode = comInputModeText

137 MSComm1.InputLen = 116

138 MSComm1.PortOpen = True

139 'Initialisation of the value of the Recevie_Message

140 RMessage.DataIn_AX = "0"

141 RMessage.DataIn_AY = "0"

142 RMessage.DataIn_AZ = "0"

143 RMessage.DataIn_AVX = "0"

144 RMessage.DataIn_AVY = "0"

145 RMessage.DataIn_AVZ = "0"

146 RMessage.DataIn_Azt = "0"

147 RMessage.DataIn_WX = "0"

148 RMessage.DataIn_WY = "0"

149 RMessage.DataIn_WZ = "0"

150 RMessage.DataIn_SX = "0"

151 RMessage.DataIn_SY = "0"

152 RMessage.DataIn_SZ = "0"

153 RMessage.DataIn_Temp = "0"

154 'Set the Interval of the timer

155 TimerRun_R.Interval = 500

156 'Enable the Timer used for Reading Data

157 TimerRun_R.Enabled = True

158 End If

159 End Sub

 347

160 Private Sub PictureDir_Click()

161 'Enable the From_Direction

162 FormDirection.Visible = True

163 'Disable the SDF (Sending_Data_Frame)

164 SDF.Visible = False

165 FormDirection.SetFocus

166 'Close the FormMap

167 Unload FormMap

168 CLK_D = True

169 If (Azimuts < 0) Then

170 YD_Z = 1900 - (1650 * Cos((Azimuts * PI) / 180))

171 XD_Z = 2450 + (1650 * Sin((Azimuts * PI) / 180))

172 FormDirection.PictureDir_Z.Line (2450, 1900)-(XD_Z, YD_Z), RGB(255, 0, 0)

173 Else

174 YD_Z = 1900 - (1650 * Cos((Azimuts * PI) / 180))

175 XD_Z = 2480 + (1650 * Sin((Azimuts * PI) / 180))

176 FormDirection.PictureDir_Z.Line (2480, 1900)-(XD_Z, YD_Z), RGB(255, 0, 0)

177 End If

178 End Sub

Private Sub PictureMap_MouseDown(Button As Integer, Shift As Integer, X As

 Single, Y As Single)

180 'Get the Position of the Mouse_Down

181 X1 = X

182 Y1 = Y

183 'Get the position of the MouseDown.It is mean get

184 'the X and Y when the User press the MouseDown

185 Controls("shpZoomBox").Left = X1

186 Controls("shpZoomBox").Top = Y1

 348

187 Controls("shpZoomBox").Width = 0

188 Controls("shpZoomBox").Height = 0

189 Controls("shpZoomBox").BorderStyle = 3

190 Controls("shpZoomBox").Visible = True

191 End Sub

Private Sub PictureMap_MouseMove(Button As Integer, Shift As Integer, X As

 Single, Y As Single)

193 'Call the function used to do a Zoom

194 ZoomBoxArea X1, X, Y1, Y

195 If Controls("shpZoomBox").Visible = True Then

196 'Change the Mouse Icon

197 PictureMap.MousePointer = vbCustom

198 PictureMap.MouseIcon = LoadPicture("cursor20.ico")

199 Controls("shpZoomBox").Width = minX(X1, X)

200 Controls("shpZoomBox").Height = minY(Y1, Y)

201 End If

202 End Sub

Private Sub PictureMap_MouseUp(Button As Integer, Shift As Integer, X As Single,

 Y As Single)

204 'Enable the FormMap

205 FormMap.Visible = True

206 FormMap.SetFocus

207 'Close the FormDirection

208 Unload FormDirection

209 FormMap.C_ZoomMap.Visible = True

210 CLK_M = True

 349

211 Controls("shpZoomBox").Visible = False

212 PictureMap.MousePointer = vbArrow

213 'Get the position of the Mouse_Up

214 X2 = X

215 Y2 = Y

216 ZoomBoxArea X1, X2, Y1, Y2

217 'The StretchBlt API function copies a bitmap from a source

218 'rectangle into a destination rectangle.

219 r1 = StretchBlt(Target.hdc, 0, 0, Target.Width, Target.Height, PictureMap.hdc,

ULeftX, 220 ULeftY, minX(X1, X2), minY(Y1, Y2), SRCCOPY)

221 ' show the updated image

222 Target.Refresh ' show the updated image

223 'Disable the SDF (Sending_Data_Frame)

224 SDF.Visible = False

225 End Sub

226 Private Sub T_newvel_inX_KeyPress(KeyAscii As Integer)

227 'Testing the status of the TextBoxes, so if it is not clear, jump to the other

228 If (T_newVel_inX.Text <> "" And KeyAscii = 13) Then

229 T_newVel_inY.SetFocus

230 ElseIf (KeyAscii = 27) Then

231 T_newPos_inZ.SetFocus

232 T_newVel_inX.Text = ""

233 ElseIf (T_newVel_inX.Text = "") Then

234 T_newVel_inX.SetFocus

235 End If

236 End Sub

237 Private Sub T_newvel_inY_KeyPress(KeyAscii As Integer)

238 'Testing the status of the TextBoxes, so if it is not clear, jump to the other

239 If (T_newVel_inY.Text <> "" And KeyAscii = 13) Then

 350

240 T_newVel_inZ.SetFocus

241 ElseIf (KeyAscii = 27) Then

242 T_newVel_inX.SetFocus

243 T_newVel_inY.Text = ""

244 ElseIf (T_newVel_inY.Text = "") Then

245 T_newVel_inY.SetFocus

246 End If

247 End Sub

248 Private Sub T_newvel_inZ_KeyPress(KeyAscii As Integer)

249 'Testing the status of the TextBoxes, so if it is not clear, jump to the other

250 If (T_newVel_inZ.Text <> "" And KeyAscii = 13) Then

251 C_Send_OK.SetFocus

252 ElseIf (KeyAscii = 27) Then

253 T_newVel_inY.SetFocus

254 T_newVel_inZ.Text = ""

255 ElseIf (T_newVel_inZ.Text = "") Then

256 T_newVel_inZ.SetFocus

257 End If

258 End Sub

259 Private Sub T_newPos_inX_KeyPress(KeyAscii As Integer)

260 'Testing the status of the TextBoxes, so if it is not clear, jump to the other

261 If (T_newPos_inX.Text <> "" And KeyAscii = 13) Then

262 T_newPos_inY.SetFocus

263 ElseIf (T_newPos_inX = "") Then

264 T_newPos_inX.SetFocus

265 End If

266 End Sub

267 Private Sub T_newPos_inY_KeyPress(KeyAscii As Integer)

268 'Testing the status of the TextBoxes, so if it is not clear, jump to the other

269 If (T_newPos_inY.Text <> "" And KeyAscii = 13) Then

270 T_newPos_inZ.SetFocus

271 ElseIf (KeyAscii = 27) Then

 351

272 T_newPos_inX.SetFocus

273 T_newPos_inY.Text = ""

274 ElseIf (T_newPos_inY.Text = "") Then

275 T_newPos_inY.SetFocus

276 End If

277 End Sub

278 Private Sub T_newPos_inZ_KeyPress(KeyAscii As Integer)

279 'Testing the status of the TextBoxes, so if it is not clear, jump to the other

280 If (T_newPos_inZ.Text <> "" And KeyAscii = 13) Then

281 T_newVel_inX.SetFocus

282 ElseIf (KeyAscii = 27) Then

283 T_newPos_inY.SetFocus

284 T_newPos_inZ.Text = ""

285 ElseIf (T_newPos_inZ.Text = "") Then

286 T_newPos_inZ.SetFocus

287 End If

288 End Sub

289 Private Sub TimerRun_R_Timer()

290 'Wait for Data (Sensors Data) to come to the Serial Port

291 '116 is the length of the Receive_Message

292 Do

293 DoEvents

294 'Enable The Solar Radiation Command

295 'because when the program stop here

296 'It is mean that the travel of the

297 'ALTERNATIVE-Lotte is finished

298 C_Solar_Radiation.Enabled = True

299 Loop Until MSComm1.InBufferCount >= 116

300 'Disable the Solar Radiation Command

301 'because when the program continue

302 'It is mean that the ALTERNATIVE-Lotte

303 'continue its tavel

 352

304 C_Solar_Radiation.Enabled = False

305 'Call the function used to Read Data

306 Read_Data

307 End Sub

308 'these 3 functions minX, minY and ZoomBoxArea are used

309 'to do a Zoom on the position of the ALTERNATIVE - Lotte

310 Public Function minX(X1, X2)

311 If X1 < X2 Then

312 minX = X2 - X1

313 Controls("shpZoomBox").Left = X1

314 Else

315 minX = X1 - X2

316 Controls("shpZoomBox").Left = X1 - minX

317 End If

318 End Function

319 Public Function minY(Y1, Y2)

320 If Y1 < Y2 Then

321 minY = Y2 - Y1

322 Controls("shpZoomBox").Top = Y1

323 Else

324 minY = Y1 - Y2

325 Controls("shpZoomBox").Top = Y1 - minY

326 End If

327 End Function

328 Public Sub ZoomBoxArea(X1, X2, Y1, Y2)

329 If X1 < X2 And Y1 > Y2 Then

330 ULeftX = X1

331 ULeftY = Y2

 353

332 ElseIf X1 > X2 And Y1 > Y2 Then

333 ULeftX = X2

334 ULeftY = Y2

335 ElseIf X1 > X2 And Y1 < Y2 Then

336 ULeftX = X2

337 ULeftY = Y1

338 Else

339 ULeftX = X1

340 ULeftY = Y1

341 End If

342 End Sub

Visual Basic code for the library (Library_RW) used in the user interface program

343 Public Const PI = 3.141592

344 'Declare Sub Sleep Lib "kernel32" (ByVal dwMilliseconds As Long)

345 'these two functions are used to do a Zoom for a picture

346 Public Declare Function BitBlt Lib "gdi32" (ByVal hDestDC As Long, ByVal X

As

347 Long, ByVal Y As Long, ByVal nWidth As Long, ByVal nHeight As Long,

ByVal

hSrcDC As Long, ByVal xSrc As Long, ByVal ySrc As Long, ByVal dwRop As

349 Long) As Long

350 Public Declare Function StretchBlt Lib "gdi32" (ByVal hdc As Long, ByVal X As Long, 351

ByVal Y As Long, ByVal nWidth As Long, ByVal nHeight As Long, ByVal hSrcDC As 352 Long,

ByVal xSrc As Long, ByVal ySrc As Long, ByVal nSrcWidth As Long, ByVal 353 nSrcHeight As

Long, ByVal dwRop As Long) As Long

354 Public Const SRCAND = &H8800C6 ' (DWORD) dest = source AND dest

355 Public Const SRCCOPY = &HCC0020 ' (DWORD) dest = source

355 Public Const SRCERASE = &H440328 ' (DWORD) dest = source AND (NOT dest)

356 Public Const SRCINVERT = &H660046 ' (DWORD) dest = source XOR dest

357 Public Const SRCPAINT = &HEE0086 ' (DWORD) dest = source OR dest

 354

358 'Structure of the Receive_Message

359 Public Type Struct_RMessage

360 Begin_RFlag As String ' The really type is Byte

361 Length_RMessage As String ' The really type is Interger

362 DataIn_AX As String ' The really type is Single

363 DataIn_AY As String ' The really type is Single

364 DataIn_AZ As String ' The really type is Single

365 DataIn_AVX As String ' The really type is Single

366 DataIn_AVY As String ' The really type is Single

367 DataIn_AVZ As String ' The really type is Single

368 DataIn_Azt As String ' The really type is Single

369 DataIn_WX As String ' The really type is Single

370 DataIn_WY As String ' The really type is Single

371 DataIn_WZ As String ' The really type is Single

372 DataIn_SX As String ' The really type is Single

373 DataIn_SY As String ' The really type is Single

374 DataIn_SZ As String ' The really type is Single

375 DataIn_Temp As String ' The really type is Single

376 End_RFlag As String ' The really type is Byte

377 End Type

378 Public RMessage As Struct_RMessage

379 'String (Variable) used for Read Data from Serial Port

380 Public Receive_Message As String

381 'Structure of the Send_Message

382 Public Type Struct_SMessage

383 Begin_SFlag As String ' The really type is Byte

384 Length_SMessage As String ' The really type is Interger

385 DataOut_PX As String ' The really type is Single

386 DataOut_PY As String ' The really type is Single

387 DataOut_PZ As String ' The really type is Single

388 DataOut_VelX As String ' The really type is Single

389 DataOut_VelY As String ' The really type is Single

 355

390 DataOut_VelZ As String ' The really type is Single

391 End_SFlag As String ' The really type is Byte

392 End Type

393 Public SMessage As Struct_SMessage

394 'String (Variable) used for Send Data to Serial Port

395 Public Send_Message As String

396 'Parameters used to save the Old Data

397 Public Acc_inX As Single

398 Public Acc_inY As Single

399 Public Acc_inZ As Single

400 Public Ang_vel_inX As Single

401 Public Ang_vel_inY As Single

402 Public Ang_vel_inZ As Single

403 Public Azimuts As Single

404 Public Wind_inX As Single

405 Public Wind_inY As Single

406 Public Wind_inZ As Single

407 Public Solar_inX As Single

408 Public Solar_inY As Single

409 Public Solar_inZ As Single

410 Public Temp As Single

411 'Parameters used to get the Velocity and the Position

412 Public Vel_inX As Single

413 Public Vel_inY As Single

414 Public Vel_inZ As Single

415 Public Pos_inX As Single

416 Public Pos_inY As Single

417 Public Pos_inZ As Single

418 ' Parameters used for drawing the Position

419 ' of the ALTERNATIVE-Lotte on the MAP

 356

420 Public CenterX As Single

421 Public CenterY As Single

422 Public CenterX0 As Single

423 Public CenterY0 As Single

424 Public CLK_M As Boolean

425 ' Parameters used for drawing the Direction

426 ' of the ALTERNATIVE-Lotte

427 Public XD As Single

428 Public YD As Single

429 Public XD_Z As Single

430 Public YD_Z As Single

431 Public CLK_D As Boolean

432 'Parameters used to put the Wind Vector

432 Public RW As Single 'Wind Power

433 Public CountW As Integer

434 'Parameters used to put the Solar Radiation

435 Public RS As Single 'Solar Radiation

436 'Paramters used to put the Telegram in the file

437 Public RI As Integer

438 Public SI As Integer

439 Public SRI As Integer

440 Public Function Read_Data() As Boolean

441 ' Read the Contain of the Receive Buffer

442 Receive_Message = UserInterface.MSComm1.Input

443 If (Read_Data) Then

444 'Save the old position

445 Acc_inX = Val(RMessage.DataIn_AX)

446 Acc_inY = Val(RMessage.DataIn_AY)

447 Acc_inZ = Val(RMessage.DataIn_AZ)

 357

448 Ang_vel_inX = Val(RMessage.DataIn_AVX)

449 Ang_vel_inY = Val(RMessage.DataIn_AVY)

450 Ang_vel_inZ = Val(RMessage.DataIn_AVZ)

451 Azimuts = Val(RMessage.DataIn_Azt)

452 Wind_inX = Val(RMessage.DataIn_WX)

453 Wind_inY = Val(RMessage.DataIn_WY)

454 Wind_inZ = Val(RMessage.DataIn_WZ)

455 Solar_inX = Val(RMessage.DataIn_SX)

456 Solar_inY = Val(RMessage.DataIn_SY)

457 Solar_inZ = Val(RMessage.DataIn_SZ)

458 Temp = Val(RMessage.DataIn_Temp)

459 End If

460 ' Call the function used to convert from Hex Format to Decimal Format

461 UserInterface.SC1.Reset

462 UserInterface.SC1.AddCode UserInterface.txtCodeHex2Dec.Text

463 RMessage.Begin_RFlag = Val("&H" & Left(Receive_Message, 1))

464 RMessage.Length_RMessage = Val("&H" & Mid(Receive_Message, 2, 2))

465 RMessage.DataIn_AX = UserInterface.SC1.Run("compute",

Mid(Receive_Message, 4, 8))

466 RMessage.DataIn_AY = UserInterface.SC1.Run("compute",

Mid(Receive_Message, 12, 8))

467 RMessage.DataIn_AZ = UserInterface.SC1.Run("compute",

Mid(Receive_Message, 20, 8))

468 RMessage.DataIn_AVX = UserInterface.SC1.Run("compute",

Mid(Receive_Message, 28, 8))

469 RMessage.DataIn_AVY = UserInterface.SC1.Run("compute",

Mid(Receive_Message, 36, 8))

470 RMessage.DataIn_AVZ = UserInterface.SC1.Run("compute",

Mid(Receive_Message, 44, 8))

471 RMessage.DataIn_Azt = UserInterface.SC1.Run("compute",

Mid(Receive_Message, 52, 8))

472 RMessage.DataIn_WX = UserInterface.SC1.Run("compute",

Mid(Receive_Message, 60, 8))

473 RMessage.DataIn_WY = UserInterface.SC1.Run("compute",

Mid(Receive_Message, 68, 8))

 358

474 RMessage.DataIn_WZ = UserInterface.SC1.Run("compute",

Mid(Receive_Message, 76, 8))

475 RMessage.DataIn_SX = UserInterface.SC1.Run("compute",

Mid(Receive_Message, 84, 8))

476 RMessage.DataIn_SY = UserInterface.SC1.Run("compute",

Mid(Receive_Message, 92, 8))

477 RMessage.DataIn_SZ = UserInterface.SC1.Run("compute",

Mid(Receive_Message, 100, 8))

478 RMessage.DataIn_Temp = UserInterface.SC1.Run("compute",

Mid(Receive_Message, 108, 8))

479 RMessage.End_RFlag = Val("&H" & Right(Receive_Message, 1))

480 ' Testing the Begin_Flag and the End_Flag for each Receive_Message

481 If (RMessage.Begin_RFlag <> 2 Or RMessage.End_RFlag <> 3) Then

482 ' In this section the Begin_Flag or the End_Flag is NOT Correct

483 Read_Data = False

484 ' Display the Old Data

485 UserInterface.L_Acc_inX.Caption = Acc_inX

486 UserInterface.L_Acc_inY.Caption = Acc_inY

487 UserInterface.L_Acc_inZ.Caption = Acc_inZ

489 UserInterface.L_Ang_inX.Caption = Ang_vel_inX

490 UserInterface.L_Ang_inY.Caption = Ang_vel_inY

491 UserInterface.L_Ang_inZ.Caption = Ang_vel_inZ

492 UserInterface.L_Wind_inX.Caption = Wind_inX

493 UserInterface.L_Wind_inY.Caption = Wind_inY

494 UserInterface.L_Wind_inZ.Caption = Wind_inZ

495 UserInterface.L_Solar_inX.Caption = Solar_inX

496 UserInterface.L_Solar_inY.Caption = Solar_inY

497 UserInterface.L_Solar_inZ.Caption = Solar_inZ

498 UserInterface.L_Temp.Caption = Temp

499 UserInterface.L_Vel_inX.Caption = Vel_inX

500 UserInterface.L_Vel_inY.Caption = Vel_inY

501 UserInterface.L_Vel_inZ.Caption = Vel_inZ

501 UserInterface.L_Pos_inX.Caption = Pos_inX

502 UserInterface.L_Pos_inY.Caption = Pos_inY

 359

503 UserInterface.L_Pos_inZ.Caption = Pos_inZ

503 'display the status of the connection to the user

504 UserInterface.L_Connection.Caption = " TAKE CARE !!!! , there is NO

connection 505 between the Base Station and the ALTERNATIVE-Lotte"

506 UserInterface.Pic_statusOK.Visible = True

507 UserInterface.Pic_statusNO.Visible = False

508 Else

509 ' In this Section the Begin_Flag and the End_Flag are Correct

510 Read_Data = True

511 UserInterface.Text1.Text = Val(UserInterface.Text1.Text) + 1

512 ' Display the sensors data in the RDF (Receive_Data_Frame)

513 UserInterface.L_Acc_inX.Caption = Left(RMessage.DataIn_AX, 8)

514 UserInterface.L_Acc_inY.Caption = Left(RMessage.DataIn_AY, 8)

515 UserInterface.L_Acc_inZ.Caption = Left(RMessage.DataIn_AZ, 8)

516 UserInterface.L_Ang_inX.Caption = Left(RMessage.DataIn_AVX, 8)

517 UserInterface.L_Ang_inY.Caption = Left(RMessage.DataIn_AVY, 8)

518 UserInterface.L_Ang_inZ.Caption = Left(RMessage.DataIn_AVZ, 8)

519 UserInterface.L_Wind_inX.Caption = Left(RMessage.DataIn_WX, 8)

520 UserInterface.L_Wind_inY.Caption = Left(RMessage.DataIn_WY, 8)

521 UserInterface.L_Wind_inZ.Caption = Left(RMessage.DataIn_WZ, 8)

522 UserInterface.L_Solar_inX.Caption = Left(RMessage.DataIn_SX, 8)

523 UserInterface.L_Solar_inY.Caption = Left(RMessage.DataIn_SY, 8)

524 UserInterface.L_Solar_inZ.Caption = Left(RMessage.DataIn_SZ, 8)

525 UserInterface.L_Temp.Caption = Left(RMessage.DataIn_Temp, 8)

526 'Save the Data

527 Acc_inX = Left(RMessage.DataIn_AX, 8)

528 Acc_inY = Left(RMessage.DataIn_AY, 8)

529 Acc_inZ = Left(RMessage.DataIn_AZ, 8)

530 Ang_vel_inX = Left(RMessage.DataIn_AVX, 8)

531 Ang_vel_inY = Left(RMessage.DataIn_AVY, 8)

532 Ang_vel_inZ = Left(RMessage.DataIn_AVZ, 8)

533 Azimuts = Left(RMessage.DataIn_Azt, 8)

534 Wind_inX = Left(RMessage.DataIn_WX, 8)

 360

535 Wind_inY = Left(RMessage.DataIn_WY, 8)

536 Wind_inZ = Left(RMessage.DataIn_WZ, 8)

537 Solar_inX = Left(RMessage.DataIn_SX, 8)

538 Solar_inY = Left(RMessage.DataIn_SY, 8)

539 Solar_inZ = Left(RMessage.DataIn_SZ, 8)

540 Temp = Left(RMessage.DataIn_Temp, 8)

541 'Put the Sensors_Data in the Recevie_File

542 'Put #1, (1 + 60 * RI), Begin_RFlag

543 'Put #1, (2 + 60 * RI), Length_RMessage

544 Put #1, (4 + 60 * RI), Acc_inX

545 Put #1, (8 + 60 * RI), Acc_inY

546 Put #1, (12 + 60 * RI), Acc_inZ

547 Put #1, (16 + 60 * RI), Ang_vel_inX

548 Put #1, (20 + 60 * RI), Ang_vel_inY

549 Put #1, (24 + 60 * RI), Ang_vel_inZ

550 Put #1, (28 + 60 * RI), Azimuts

551 Put #1, (32 + 60 * RI), Wind_inX

552 Put #1, (36 + 60 * RI), Wind_inY

553 Put #1, (40 + 60 * RI), Wind_inZ

554 Put #1, (44 + 60 * RI), Solar_inX

555 Put #1, (48 + 60 * RI), Solar_inY

556 Put #1, (52 + 60 * RI), Solar_inZ

557 Put #1, (56 + 60 * RI), Temp

558 'Put #1, (60 + 60 * RI), End_RFlag

559 RI = RI + 1

560 'Call the function used to Calculate the Velocity of the ALTERNATIVE-Lotte

 Calculate_Velocity

561 'Call the function used to Calculate the Position of the ALTERNATIVE-Lotte

 Calculate_Position

562 'Get the position of the Center of the Circle

563 'used to put the position of the ALTERNATIVE-Lotte

 361

564 CenterX = CenterX0 + CSng(UserInterface.L_Pos_inX.Caption)

565 CenterY = CenterY0 - CSng(UserInterface.L_Pos_inY.Caption)

566 'Put the Position on the MAP

567 UserInterface.PictureMap.PSet (CenterX, CenterY), RGB(255, 0, 0)

568 'Clear he old direction of the ALTERNATIVE-Lotte

569 UserInterface.PictureDir.Cls

570 FormDirection.PictureDir_Z.Cls

571 'Put the Direction in the PictureDir

572 If (Azimuts < 0) Then

573 YD = 850 - (700 * Cos((Azimuts * PI) / 180))

574 XD = 920 + (700 * Sin((Azimuts * PI) / 180))

575 UserInterface.PictureDir.Line (920, 850)-(XD, YD), RGB(255, 0, 0)

576 Else

577 YD = 850 - (700 * Cos((Azimuts * PI) / 180))

578 XD = 960 + (700 * Sin((Azimuts * PI) / 180))

579 UserInterface.PictureDir.Line (960, 850)-(XD, YD), RGB(255, 0, 0)

580 End If

581 'Testing if the user click in the pictureDirection (ZOOM)

582 If (CLK_D) Then

583 'Put the Direction on the PictureDirection in large View (ZOOM)

584 If (Azimuts < 0) Then

585 YD_Z = 1900 - (1650 * Cos((Azimuts * PI) / 180))

586 XD_Z = 2450 + (1650 * Sin((Azimuts * PI) / 180))

587 FormDirection.PictureDir_Z.Line (2450, 1900)-(XD_Z, YD_Z), RGB(255, 0, 0)

588 Else

589 YD_Z = 1900 - (1650 * Cos((Azimuts * PI) / 180))

590 XD_Z = 2480 + (1650 * Sin((Azimuts * PI) / 180))

591 FormDirection.PictureDir_Z.Line (2480, 1900)-(XD_Z, YD_Z), RGB(255, 0, 0)

592 End If

593 End If

 362

594 'Put the Wind Vector (Wind Power) in the PictureWind

 RW = (Val(UserInterface.L_Wind_inX.Caption) ^ 2 +

 Val(UserInterface.L_Wind_inY.Caption) ^ 2 +

 Val(UserInterface.L_Wind_inZ.Caption) ^ 2) ^ (1 / 2)

 UserInterface.PictureWind.PSet (CountW, UserInterface.PictureWind.Height - 1365

 – (RW / 13)), RGB(255, 0, 0)

597 'Put the Solar Vector (Solar Radiation) in the PictureSolar

 RS = (Val(UserInterface.L_Solar_inX.Caption) ^ 2 +

 Val(UserInterface.L_Solar_inY.Caption) ^ 2 +

 Val(UserInterface.L_Solar_inZ.Caption) ^ 2) ^ (1 / 2)

 UserInterface.PictureSolar.PSet (CountW, UserInterface.PictureSolar.Height - 1365

 – (RS / 13)), RGB(255, 0, 0)

599 CountW = CountW + 2

600 'Put the Solar Radiation Data in the Solar_file

601 Put #3, (1 + 17 * SRI), Pos_inX

602 Put #3, (5 + 17 * SRI), Pos_inY

603 Put #3, (9 + 17 * SRI), Pos_inZ

604 Put #3, (13 + 17 * SRI), RS

605 SRI = SRI + 1

606 'Display the Status of the Connection to the User

607 UserInterface.L_Connection.Caption = "There is a connection between the Base Station 608

and the ALTERNATIVE-Lotte"

609 UserInterface.Pic_statusNO.Visible = True

610 UserInterface.Pic_statusOK.Visible = False

611 End If

612 'After reading the receive message, we clean the receive buffer

613 UserInterface.MSComm1.InBufferCount = 0

614 End Function

615 Public Function Write_Commands() As Boolean

616 ' Call the function used to convert from Decimal format to Hex format

 363

617 UserInterface.SC1.Reset

618 UserInterface.SC1.AddCode UserInterface.txtCodeDec2Hex.Text

619 'configure the Send Message

620 SMessage.Begin_SFlag = Hex$(2)

621 SMessage.Length_SMessage = Hex$(28)

622 If (Val(UserInterface.T_newPos_inX.Text) =

 CInt(Val(UserInterface.T_newPos_inX.Text))) Then

623 UserInterface.T_newPos_inX.Text = (UserInterface.T_newPos_inX.Text & ".000001")

SMessage.DataOut_PX = UserInterface.SC1.Run("compute", UserInterface.T_newPos_inX.Text)

625 Else

626 SMessage.DataOut_PX = UserInterface.SC1.Run("compute",

 UserInterface.T_newPos_inX.Text)

627 End If

628 If (Val(UserInterface.T_newPos_inY.Text) =

 CInt(Val(UserInterface.T_newPos_inY.Text))) Then

628 UserInterface.T_newPos_inY.Text = UserInterface.T_newPos_inY.Text & ".000001"

 SMessage.DataOut_PY = UserInterface.SC1.Run("compute",

 (UserInterface.T_newPos_inY.Text))

630 Else

631 SMessage.DataOut_PY = UserInterface.SC1.Run("compute",

 (UserInterface.T_newPos_inY.Text))

632 End If

633 If (Val(UserInterface.T_newPos_inZ.Text) =

 CInt(Val(UserInterface.T_newPos_inZ.Text))) Then

634 UserInterface.T_newPos_inZ.Text = UserInterface.T_newPos_inZ & ".000001"

 SMessage.DataOut_PZ = UserInterface.SC1.Run("compute",

 (UserInterface.T_newPos_inZ.Text))

637 Else

 SMessage.DataOut_PZ = UserInterface.SC1.Run("compute",

 (UserInterface.T_newPos_inZ.Text))

 364

639 End If

640 If (Val(UserInterface.T_newVel_inX.Text) =

 CInt(Val(UserInterface.T_newVel_inX.Text))) Then

641 UserInterface.T_newVel_inX.Text = UserInterface.T_newVel_inX.Text & ".000001"

 SMessage.DataOut_VelX = UserInterface.SC1.Run("compute",

 (UserInterface.T_newVel_inX.Text))

643 Else

644 SMessage.DataOut_VelX = UserInterface.SC1.Run("compute",

 (UserInterface.T_newVel_inX.Text))

645 End If

645 If (Val(UserInterface.T_newVel_inY.Text) =

 CInt(Val(UserInterface.T_newVel_inY.Text))) Then

646 UserInterface.T_newVel_inY.Text = UserInterface.T_newVel_inY.Text &

".000001"

 SMessage.DataOut_VelY = UserInterface.SC1.Run("compute",

 (UserInterface.T_newVel_inY.Text))

648 Else

649 SMessage.DataOut_VelY = UserInterface.SC1.Run("compute",

 (UserInterface.T_newVel_inY.Text))

650 End If

 If (Val(UserInterface.T_newVel_inZ.Text) =

 CInt(Val(UserInterface.T_newVel_inZ.Text))) Then

652 UserInterface.T_newVel_inZ.Text = UserInterface.T_newVel_inZ.Text & ".000001"

653 SMessage.DataOut_VelZ = UserInterface.SC1.Run("compute",

 (UserInterface.T_newVel_inZ.Text))

654 Else

 SMessage.DataOut_VelZ = UserInterface.SC1.Run("compute",

 (UserInterface.T_newVel_inZ.Text))

656 End If

657 SMessage.End_SFlag = Hex$(3)

658 'Put the Data (Commands) in the Send_Message

 365

659 Send_Message = SMessage.Begin_SFlag & SMessage.Length_SMessage & _

 SMessage.DataOut_PX & SMessage.DataOut_PY & _

 SMessage.DataOut_PZ & SMessage.DataOut_VelX & _

 SMessage.DataOut_VelY & SMessage.DataOut_VelZ & _

 SMessage.End_SFlag

660 'Put the Telegram (Send_Message) in the Send_File

661 Put #2, (1 + 60 * SI), Send_Message

662 SI = SI + 1

663 'send the Message to the Transmit Buffer

664 UserInterface.MSComm1.Output = Send_Message

665 'Set the Status of the Write_Commands function

665 Write_Commands = True

666 End Function

667 ' the Goal of this function is to calculate the Velocity

668 ' of the ALTERNATIVE - Lotte in X, Y and Z

 ‘ The Velocity is the Integration of the Acceleration

670 Public Function Calculate_Velocity() As Boolean

671 Vel_inX = (RMessage.DataIn_AX) * (UserInterface.TimerRun_R.Interval / 1000)

672 Vel_inY = (RMessage.DataIn_AY) * (UserInterface.TimerRun_R.Interval / 1000)

673 Vel_inZ = (RMessage.DataIn_AZ) * (UserInterface.TimerRun_R.Interval / 1000)

674 UserInterface.L_Vel_inX.Caption = Vel_inX

675 UserInterface.L_Vel_inY.Caption = Vel_inY

676 UserInterface.L_Vel_inZ.Caption = Vel_inZ

677 Calculate_Velocity = True

678 End Function

679 ' the Goal of this function is to calculate the Positon

680 ' of the ALTERNATIVE - Lotte in X, Y and Z

681 ' The Position is the Integration of the Velocity

 366

682 Public Function Calculate_Position() As Boolean

683 Pos_inX = Vel_inX * (UserInterface.TimerRun_R.Interval / 1000)

684 Pos_inY = Vel_inY * (UserInterface.TimerRun_R.Interval / 1000)

685 Pos_inZ = Vel_inZ * (UserInterface.TimerRun_R.Interval / 1000)

686 UserInterface.L_Pos_inX.Caption = Pos_inX

687 UserInterface.L_Pos_inY.Caption = Pos_inY

688 UserInterface.L_Pos_inZ.Caption = Pos_inZ

689 Calculate_Position = True

690 End Function

691 Public Function Status_Port(cComm As MSComm, lPort As Long) As Boolean

692 'This function Test the Status of the Serial Port

693 'NOTE : Do not try to send/receive data while executing this function...!

694 Dim oldState As Boolean

695 Dim oldPort As Long

696 ' Get current MSComm Info

697 oldState = cComm.PortOpen

698 oldPort = cComm.CommPort

699 ' Change Info

700 On Error Resume Next

701 cComm.PortOpen = False

702 cComm.CommPort = lPort

703 ' See if Port is Available

704 Err.Clear

705 cComm.PortOpen = True

706 If Err Then

707 Status_Port = False

708 Debug.Print Err.Description

709 Else

710 Status_Port = True

 367

711 End If

712 cComm.PortOpen = False

713 ' Set Info Back To Old Data

714 cComm.CommPort = oldPort

715 cComm.PortOpen = oldState

716 On Error GoTo 0

717 End Function

 368

10.15 Annex F: C program code

/**

**

** Project : Diploma Thesis

**

** The goal of this program is to initialise the serial port

** and read from one serial port and write to another.......

**

***/

/*-- Include files --*/

1 #include <stdio.h> /* Standard input/output definitions */

2 #include <string.h> /* String function definitions */

3 #include <unistd.h> /* UNIX standard function definitions */

4 #include <fcntl.h> /* File Control definition */

5 #include <errno.h> /* Error number definitions */

6 #include "vxWorks.h"

7 #include "ioLib.h"

8 #include <sioLib.h>

/**

**

** COMM_init

**

** initialize COM-device

**

**---- Parameters ---

**

**

**---- Returnvalue --

**

** int : 0 if success

** int : -1 if error

**

**/

 369

9 int COMM_init(char *c_device, int *fd)

10 {

11 int id_com_dev; /* filename descriptor for the COM */

12 int speed = 9600; /* speed for COM */

13 int SerialControl;

14 int Parity;

15 int CharacterSize;

16 int ioctlvalue;

 /*--

 ** Open the COM-Device

 */

17 id_com_dev = open (c_device, O_RDWR ,0);

18 if (id_com_dev == ERROR)

19 {

20 perror ("Open_Port : Unable to open /dev/ ---");

21 return(-1);

 /*

 * Could not open the port

 */

22 }

23 *fd = id_com_dev;

 /*--

 ** setting the BAUD-rate to 9600

 */

24 if (-1 == ioctl (id_com_dev,FIOBAUDRATE , speed))

25 {

26 return(-1);

27 }

 /*--

 ** Setting the Parity, the Stop bit

 */

 370

28 SerialControl = (CLOCAL | CREAD);

29 Parity = PARENB ;

30 CharacterSize = CS8;

if (-1 == ioctl (id_com_dev,SIO_HW_OPTS_SET,SerialControl | Parity |

 CharacterSize))

32 {

33 return(-1);

34 }

 /*--

 ** Setting the new options of the serial port

 ** with setting the handshaking protocol

 */

35 ioctlvalue = ioctl (id_com_dev, FIOFLUSH, 0);

ioctlvalue = ioctl (id_com_dev,FIOSETOPTIONS,OPT_TANDEM &~

 OPT_MON_TRAP);

 38 }

/**

**

** Main

**

** main program of RWCOM

**---- Returnvalue --

** 0

**/

39 int maincomRW(int argc, char *argv[])

40 {

41 char pathserial0[] = "/tyCo/0"; /* Path of the port 2....*/

42 char pathserial1[] = "/tyCo/1"; /* Path of the port 3....*/

43 int ui_byte; /* Number of bytes readed */

44 int uo_byte; /* Number of bytes writed */

 371

45 char *ur_buff; /* Buffer used to get the bytes from the serial port */

46 char *uw_buff; /* Buffer used to set the bytes to the serial port */

47 int fd1; /* file descriptor for the first port */

48 int fd2; /* file descriptor for the second port */

49 int len_mess; /* Length of message */

50 COMM_init(pathserial0, &fd1);

51 COMM_init(pathserial1, &fd2);

52 len_mess = 116;

53 ui_byte = 0;

54 ur_buff = (char*)malloc(116);

55 uw_buff = (char*)malloc(116);

56 while(1)

57 {

58 /* Wait until the all message arrive -------------------*/

59 while (ui_byte < len_mess)

60 {

 /*--

 ** read from the COM-Device

 */

61 ui_byte = read (fd1, ur_buff,len_mess);

62 }

 /*---

 ** Copy the read buffer to the write buffer

 */

63 strcpy(uw_buff,ur_buff);

 /*--

 ** send to the COM-Device

 */

64 uo_byte = write (fd2, uw_buff,len_mess);

 372

65 }

66 close (fd1);

67 close (fd2);

68 return (0);

69 }

10.16 Annex G

/**

**

** Project : Diploma Thesis

**

** The goal of this program is to initialise the serial port

** and read from one serial port and write to another.......

**

***/

/*-- Include files --*/

#include <stdio.h> /* Standard input/output definitions */

#include <string.h> /* String function definitions */

#include <unistd.h> /* UNIX standard function definitions */

#include <fcntl.h> /* File Control definition */

#include <errno.h> /* Error number definitions */

#include "vxWorks.h"

#include "ioLib.h"

#include <sioLib.h>

/**

** COMM_init

**

** initialize COM-device

**

**---- Parameters ---

**---- Returnvalue --

**

** int : 0 if success

** int : -1 if error

**

**/

int COMM_init(char *c_device, int *fd)

{

 int id_com_dev; /* filename descriptor for the COM */

 int speed = 9600; /* speed for COM */

 int SerialControl;

 int Parity;

 int CharacterSize;

 int ioctlvalue;

 373

 /*--

 ** Open the COM-Device

 */

 id_com_dev = open ("/tyCo/1", O_RDWR ,0);

 if (id_com_dev == ERROR)

 {

 perror ("Open_Port : Unable to open /dev/ ---");

 return(-1);

 /*

 * Could not open the port

 */

 }

 *fd = id_com_dev;

 /*--

 ** setting the BAUD-rate to 9600

 */

 if (-1 == ioctl (id_com_dev,FIOBAUDRATE , speed))

 {

 return(-1);

 }

 /*--

 ** Setting the Parity, the Stop bit

 */

 SerialControl = (CLOCAL | CREAD);

 Parity = PARENB ;

 CharacterSize = CS8;

if (-1 == ioctl (id_com_dev,SIO_HW_OPTS_SET,SerialControl | Parity | CharacterSize))

 {

 return(-1);

 }

 /*--

 ** Setting the new options of the serial port

 ** with setting the handshaking protocol

 */

 ioctlvalue = ioctl (id_com_dev, FIOFLUSH, 0);

 ioctlvalue = ioctl (id_com_dev,FIOSETOPTIONS,OPT_TANDEM &~

 OPT_MON_TRAP);

}

/***

**

** Main

**

** main program of RWCOM

 374

**

**---- Returnvalue --

** 0

**/

 int maincom(int argc, char *argv[])

 {

 char pathserial0[] = "/tyCo/1"; /* Path of the port 2....*/

 int us_byte; /* Number of bytes writed */

 int ui_byte; /* Number of bytes read */

 char *us_buff0; /* Buffer used to set the bytes to the serial port */

 char *us_buff1; /* Buffer used to set the bytes to the serial port */

 char *us_buff2; /* Buffer used to set the bytes to the serial port */

 char *us_buff3; /* Buffer used to set the bytes to the serial port */

 char *us_buff4; /* Buffer used to set the bytes to the serial port */

 char *us_buff5; /* Buffer used to set the bytes to the serial port */

 char *us_buff6; /* Buffer used to set the bytes to the serial port */

 char *us_buff7; /* Buffer used to set the bytes to the serial port */

 char *us_buff8; /* Buffer used to set the bytes to the serial port */

 char *us_buff9; /* Buffer used to set the bytes to the serial port */

 char *ur_buff; /* Buffer used to get the bytes from the serial port */

 int fd1; /* file descriptor for the serial port 2 */

 int len_mess; /* Length of the send message */

 int i;

 COMM_init(pathserial0, &fd1);

 len_mess = 116;

 us_byte = 0;

 ur_buff = (char*)malloc(52);

 us_buff0 = (char*)malloc(116);

 us_buff1 = (char*)malloc(116);

 us_buff2 = (char*)malloc(116);

 us_buff3 = (char*)malloc(116);

 us_buff4 = (char*)malloc(116);

 us_buff5 = (char*)malloc(116);

 us_buff6 = (char*)malloc(116);

 us_buff7 = (char*)malloc(116);

 us_buff8 = (char*)malloc(116);

 us_buff9 = (char*)malloc(116);

 /*---

 ** send to the COM-Device

 */

us_buff0="21C40C6D0E540C3EF9D40C3EF9D416418934282A5E341752F1A414420C4415251EB4179EF9D4189B

4394143DB224161C28F4173687241A1B4393";

us_buff1="21C411251EB41126E97411224DD41CA978D4278FDF3427D09374189ED91417522D0418A9BA5419A

0C494161A1CA418299994189AE1441CA978D3";

us_buff2="21C4143B22D4143374B4143DB2241C28F5C41819BA542940FDF4200CDD2418A916841999BA541AA

68724181B645419268724199ED9141F99BA53";

 375

us_buff3="21C41740000417445A141741062422547AE427547AE41C270A342115D2F41991EB841A9B43941BC20

C44194FDF341A2BA5E41A83F7C422168723";

us_buff4="21C4192624D4192687241924BC641A845A142780A3D41C000004234000041AA916841B9ED91000000

0041A1126E41B41A9F41BB4BC6423548B43";

us_buff5="21C41AA937441AB020C41AABC6A41C5000042AAA5E34282A5E34279418941B8E35341C8000041D

9B43941B0D2F141C0EB8541CA978D48B43";

us_buff6="21C41C3020C41C3374B41C32F1A423548B44282A5E342513439425948B441CA687241DBE35341E816

8741C2916841D19BA541D9D9164280A3D73";

us_buff7="21C41DB49BA41DBB85141DB3D7041D9B64541EA916841F1B8514286A45A41DA916841E99BA541F

1B85141D453F741E1AE1441EA68724288A45A3";

us_buff8="21C41F39FBE41F3EF9D41F39DB2424148B44296A6E942BEA5E342A8764541E9F5C241F9A3D74204

DC2841E1A3D741F0F5C241FA126E428CA6663";

us_buff9="21C4205F4BC420615814205F6C842614BC6425948B4424C178D42B4000041F9A3D742068312420E9168

41F2020C4200FBE742051374429007AE3";

 /* Wait until the all message arrive -------------------*/

 if (ui_byte < len_mess)

 {

 /*--

 ** read from the COM-Device

 */

 ui_byte = read (fd1, ur_buff,len_mess);

 }

 us_byte = write (fd1, us_buff0,len_mess);

 delayedEval(500);

 us_byte = write (fd1, us_buff1,len_mess);

 delayedEval(500);

 us_byte = write (fd1, us_buff2,len_mess);

 delayedEval(500);

 us_byte = write (fd1, us_buff3,len_mess);

 delayedEval(500);

 us_byte = write (fd1, us_buff4,len_mess);

 delayedEval(500);

 us_byte = write (fd1, us_buff5,len_mess);

 delayedEval(500);

 us_byte = write (fd1, us_buff6,len_mess);

 delayedEval(500);

 us_byte = write (fd1, us_buff7,len_mess);

 delayedEval(500);

 us_byte = write (fd1, us_buff8,len_mess);

 delayedEval(500);

 us_byte = write (fd1, us_buff9,len_mess);

 delayedEval(500);

 close (fd1);

 return (0);

}

 376

11 Some repairs on the sensor card and first step integration

 377

 378

 379

 380

 381

 382

 383

 384

 385

 386

 387

 388

 389

 390

 391

 392

 393

 394

 395

 396

 397

 398

 399

 400

 401

 402

 403

 404

 405

 406

 407

 408

 409

 410

12 Integration

Based on Mohammed Yassir Mikou, "Integration und Test eines Board-Computers für ein alternatives

Luftschiff", Master Thesis (Diplomarbeit)

Supervisors:

Samir Mourad, Verein für alternative Energieforschung

Prof. Dr. –Ing. Habil Albrecht Zur, Fachhochschule Kiel - University of Applied Sciences, Fachbereich

Informatik und Elektrotechnik

12.1 Abstract

This work deals with the development of software for controlling an airship, the weather data (solar

radiation, temperature and wind) to determine. The aim of this thesis is to integrate control cards,

ie To allow communication between the Sensors, Actuators and transceiver card. The integration

should be carried out as part of a Linux platform. It has gained acceptance because of the embedded

system and the specific processor type, the RedHat distribution.

TABLE OF CONTENTS

List of Figures .. 2

LIST OF TABLES .. 2

1. Introduction to the airship project 4

1.1 . The Lotte-project and the "Alternative LOTTE" 4

1.2 . Development method .. 4

1.3 . Activity and REALISIERUNGSANNaeHERUNG 5

1.4 Overview .. 5

2. Basics of Work ... 6

2.1 The V-model .. 6

2.2 . Structured Analysis (SA) /structured design (SD) 8

3. Development environment 10

4. Architectural design, and implementation 11

4.1 . The implementation of the BASISSTATIONSPROGRAMMS
14

4.2 . The implementation of the LUFTSCHIFFPROGRAMMS
15

Section 4.2.1 , the

sensors .. 16

4.2.2 . The actuators ... 17

Point 4.2.3 .. The Transceiver

... 18

Point 4.2.4 .. The Board Computer .. 20

5. Operating System Installation .. 22

5.1 . Problem ... 22

5.2 22 implementation of the installation

 411

5.2.1 . . configuration of the core .. 23

5.2.2 . . Modules creating and installing ... 38

5.3 . .. 39 development environment

5.4 41 Real

5.4.1 . . latency and fluctuation .. 42

Item 5.4.2 above . hard

and soft real-time conditions .. 43

5.4.3 . . embedded applications 46

5.4.4 . . Installation of Linux-Echtzeit .. 47

6. Description of PORTZUGRIFFSARTEN 49

6.1 . Direct Access ... 49

6.1.1 , ... rights awarded 49

6.1.2 . . Einlesen/Ausgeben ... 51

6.2 . ACCESS about GERaeTEDATEIEN ..
54

6.2.1), . Ports Opened and closed .. 54

Item 6.2.2 , . canonical and non-canonical Input/Output 56

6.2.3 . . synchronous and asynchronous transfer .. 67

6.3 . THREADPROGRAMMIERBEISPIEL ..
72

7. ... 75
LITERATURREFERENZ

 412

 2

List of figures:

Figure 2- 1: V-model [1] .. 6

Figure 2- 2: SA/SD [4] ... 9

Figure 4- 1: The connections of the system ... 12

Figure 4- 2: overall system of the "alternative Lotte" .. 13

Figure 4- 3: Diagram of the correlations .. 14

Figure 4- 4: airship as embedded system .. 15
Figure 4- 5: : The sensors through the serial interface with the Board

Computer 16 connected
Figure 4- 6: The actuation system through the serial interface to the Board Computer

Angeschlossen...

Figure 4- 7: The transceiver through the serial interface with the Board

Computer 18 connected

Figure 4- 8: Graphical User Interface .. 19

Figure 4- 9: The Board Computer ... 20

Figure 5- 1: make config(1 Option: Code maturity level) 24

Figure 5- 2: make config(2 Option: Loadable module support) 25

Figure 5- 3: make menuconfig(1, half of the Optionen) .. 25

Figure 5- 4: make menuconfig(2, half of the Optionen) .. 26

Figure 5- 5: make xconfig(everything on Einmal) ... 27

Figure 5- 6: Option Processor type and features 29

Figure 5- 7: Call the assistance of the submenus Processor family 29

Figure 5- 8: sub-menu (CPU frequency scaling) from option 3 30

Figure 5- 9: General setup(1, Haelfte) .. 31

Figure 5- 10: submenu PCI Hotplug support .. 31

Figure 5- 11: submenu PCMCIA/CardBus support .. 32

Figure 5- 12: 42 The Ereignislatenz ...

Figure 5- 13: periodic fluctuation .. 42

Figure 5- 14: Schadensaenderung in dependence of the response time 43

Figure 6- 1: Terminal E/A-functions in the Overview .. 66

Figure 6- 2: asynchronous data transfer with 7 bits Datenlaenge 68

LIST OF TABLES

Table 5- 1: Comparison of the performance of Linux with the commercial Echtzeitkernen.
..

 413

Table 6- 1: macros to access I/O-Ports .. 52

Table 6- 2: The five different Modi-Eigenschaften a terminal 61

Table 6- 3: Possible Steuerzeichenvarianten for the non-canonical input 63

Table 6- 4: POSIX-functions to query and change the Terminalattribute..66

 414

 3

Thanksgiving

This thesis was developed at the Association for alternative energy research in Karlsruhe in

cooperation with the University of Applied Sciences in Kiel. At this juncture I would like to thank

for Prof. Dr. -Ing. habil Albrecht to, this thesis by the University of Applied Sciences and betreuet

has had so much patience, and I would like to thank Mr Ing. Murad, Samir for the enabling of the

thesis and the furnishing of the laboratory with its entire Hardwareinhalt thank you.

My special thanks to the German state, has given me the opportunity to continue my education and

to acquire new perspectives.

Last I would like to thank my parents, stood side by side to me, despite the distance, and with my

friends, the me morally and actually have supported.

12.2 Introduction

12.2.1 The Lotte-Projekt and the "alternative Lotte"

At the Institute of statics and dynamics of the air and Raumfahrtkonstruktion at

the Universitaet Stuttgart was built a Solarluftschiff in February 1992 the project "Solarluftboot"

initiated and the purpose of this project was, new materials, new methods and a new concept for the

control to develop an airship, the is operated by a Solarenergiemaschine.

The "Alternative Lotte", a joint project of the VaEf e.V. , the Universities of Karlsruhe and Stuttgart

and Karlsruhe University of Applied Sciences, was planned as an experimental airship, it is to be

controlled directly from the ground (first step of the implementation) or automatically to specified

coordinates (the second step of the implementation) fly, the energy will be the first step guaranteed

by conventional batteries, but it is planned, and later to switch to solar power, with the "alternative

Lotte" specific data will be during the flight through collected different sensors (sensors), the on the

airship can be installed in the first step is the speed of the wind, the temperature and the solar

radiation measured. In addition to such a flight data, such as angular velocity and acceleration are

navigational to azimuth angle measured.

1.2 . Development Method

The complete system of the airship was in a laboratory with a Board

Computer, and a sensory system-, a actuators and a Transceiverkarte

provided as embedded system.

The Software is with the C-programming language developed under Linux, the

complete development process follows in general the well-known V-model.

 415

 5

1.3 . Activity and Realisierungsannaeherung

The task is to provide a software interface for the communication to develop, the on

the board computer running, which in turn with the three hood (sensors, actuators,

and transceiver) is connected on the airship, the purpose of this program is, the

communication between the sensors and the motors and the transceiver on the

"alternative Lotte" sensor platform to produce, the sensors is used to the solar

radiation, and the speed and the direction of the airship to measure and the data to

send to the board computer, the actuation system is to control the direction and the

acceleration (speed, position) of the airship (engines) used by the data from the Board

Computer dependent on the data received from the sensors will receive the

Transceiverkarte is used, to the data in the A direction by the Board computer to send

to the local computer and, in the other direction to receive from the local computer.

So the thesis can be divided into the following tasks:

 Preparation, configuration, and translation of the core.

 Installation of Linux and real time extension.

 Programming of the communication protocol between the cards and the

Board Computer with the C-programming language.

1.4 Overview

After a brief introduction in a concise form is basic knowledge of the given

development methods used.

The V-model, and some general information about (SA/SD) are in Chapter 2 gives.

Chapter 3, there are a impression of what tools have been used in 4 chapter is a

detailed description of the full system, Chapter 5 discusses the operating system and

the real, Chapter 6 provides the necessary information on the serial interface, as well

as the approach to the programming and the tests that have been carried out to the

functionality of the system to check.

 416

 6

12.3 Development environment

The development is on a computer with GX1-AMD K6 300MHz Processor, 32MB

RAM, 16 MB Flash Disk is done by the hardware (hood) to each other with the Board

Computer was connected via R232 order.

The following are software tools for the development have been used:

 SUSE and RedHat Linux.

 KDevelop: C/C++ development environment under Linux.

 "GCC" and "GDB" Compiler and Debugger for C-programs under Linux.

 Microsoft Word to word processing and the representation of the design structure.

 Two computers each with a RS232 connection for testing purposes.

 Null Modem Cable for the connection of the RS232 serial interfaces.

 Hyperterminal under Windows and minicom on Linux.

 417

 11

12.4 Architecture Design and Implementation

The task is to provide a software interface to develop to the integration with integration

is the communication between the control cards, i.e. the sensors, the actuators, and

the transceiver, this Communication is to be in the form of a C-program take place on

the board computer, the then the exchange of data between the control monitors and

controls, these four components are located on the "Alternate Lotte" and will be the

serial interface connected to each other.

Each of these hood was for either as a thesis,

Thesis or Ingenieurpraktikum designed, developed, and tested up on

The Board Computer, of the company Arcom was purchased [5]. The Cards

Each contain a microcontroller, the RS232 serial data for either to send provides or is

ready to data from RS232 to receive.

The sensor collects data and sends it to the Board Computer go, it will be the

Sonnenstrahlstaerke, speed and direction of the airship measured (sunlight in

dependency of the coordinates and the season), for example by sensors be used for

each coordinate: X-direction, y-direction, and z-direction (the temperature, angular

velocity and azimuth angle will also be identified).

The actuation system is used to control the operation of the "alternative Lotte", i.e. the

direction, speed, and angle indicate, dependent on the information from the board

computer, either the then this data from the sensors or but from the transceiver

receives.

For its part the Transceiverkarte to the exchange of data between the "Alternate Lotte"

guarantee and the ground station and wireless, by a modem for use with an antenna,

this has already been successfully tested, since the Transceiverkarte via a graphical

user interface, it is possible, comman417s manually from the ground and enter

corrections.

 418

 12

The full system connections between the hood with the airship and the ground station

(Benutzerschnittstellencomputer) are shown in the following figure:

Figure 4- 1: The connections of the system.

The figure describes both the connections between the board computer and the three

hood (sensors, actuators, and transceiver) in the "alternative Lotte" as well as the

connection to the computer in the ground station.

Similarly, the figure shows that the overall system is divided into two parts:

1. The ground station: with a computer, of the airship from the ground and can

control monitored. For this task is a graphical user interface uses. This GUI

hardwaremaessig accesses to the

 13

 419

Transceiverkarte back. The transceiver in turn is based on a modem, the other

with a wireless modem on the airship (by antennas) data in both directions may

or should replace. By this graphical user interface it will be possible, wind

speed, solar radiation, temperature, Luftschiffgeschwindigkeit

Luftschiffkoordinaten or to receive and at the same time in the other direction

wind speed, acceleration, and azimuth angle to send.

2. The airship: Here is the actual task of the present work, the integration of the

three hood in the embedded computer, this is a null-modem cable by each

connected with the hood, the embedded computer contains four serial interfaces,

and the hood itself, are at least equipped with a serial interface. In the next section

will be discussed in more detail the individual cards or presented.

Figure 4- 2: overall system of the "alternative Lotte".

 420

4.1 And The implementation of the Basisstationsprogramms

Figure 4- 3: Diagram of the correlations.

 The display is the screen of a computer in the ground station, it is used to to

observe the received data gathered by these data gathered by the sensors are in the

"alternative Lotte" detected.

 The keyboard is used by the user, to write to the commands, the he to "alternative

Lotte" wants to send commands to the "alternative Lotte" sent by the serial interface,

whenever the user commands to "alternative Lotte" wants to send, will be the data to

the Board Computer passed from the transceiver.

 The serial port, the peripherals between the user interface and the "Alternate

Lotte". By we use the user interface, we can tell, that the user receives data (from the

"Alternate Lotte") and data or commands (to "alternative Lotte") sends.

 The added security layer is the communication protocol, the commands that the

ground station to "alternative Lotte" send, will be confirmed, if the confirmation

predictions, the commands are returned.

 421

 15

4.2 And The implementation of the Luftschiffprogramms

Figure 4- 4: airship as embedded system.

 422

 16

Section 4.2.1 The sensor system.

This card is one of the most important components of the "alternative Lotte". The

sensors monitor the overall system, the fact that sensors are attached to this card,

which capture the acceleration, the speed, the coordinates (the position of the airship),

the angular velocity, the azimuthal angle and the direction of the then to the Board

Computer via the serial interface will be transferred, this in turn, sends the data and/or

information wirelessly to the ground station go. In addition provides us with the

sensors other data, such as the solar radiation (solar radiation, and wind) and the

temperature.

Figure 4- 5: : The sensors through the serial interface with the Board
connected to your computer.

 423

 17

4.2.2 . The actuators

The sensors allows, flight information to collect, to bear the Veraenderlichkeit of the

data to be able to be used must be the actuation system, i.e. the control card contains

e.g. a stepper motor and a servo motor, in order, on the one hand, the speed of the

airship and, on the other hand to control the direction, the motion and by the Board be

Flugelbefehle received to your computer, these commands are either from the

sensors or from the ground station and then the board computer made available to the

actuators.

Figure 4- 6: The actuation system through the serial interface with the Board
connected to your computer.

 424

 18

Point 4.2.3 .. the Transceiver

This map consists of both hardware and software, the hardware is in the form of a

modems, the wireless communication between the local computer to the ground

station and the board computer, on the "alternative Lotte" guaranteed. This

communication means data exchange between the ground station and the airship, by

a graphical user interface (the software p. Fig. ?) is made available, in order, for

example enter the speed, this is by the Board Computer and forwarded to the

actuators according to the speed increased or lowered, depending on which value has

been entered or what is better.

Figure 4- 7: The transceiver by the serial interface with the Board connected to
your computer.

 425

 19

If the transceiver is receiving data gathered by the Embedded System, these

data will be (in the Receive Data frame displayed) to the ground station with a

frequency between 433.200 and 434.775 MHZ sent, and the same happens

when the transceiver data from the ground station to the "alternative Lotte" and

then send the actuators wants to (in the other direction you send commands by

sending the data frame is written).

Figure 4- 8: Graphical User Interface.

 426

 20

Point 4.2.4 .. The Board Computer

The Board Computer is the embedded computer in the "alternative Lotte". This

computer closes the three hood through the serial interfaces (RS232 together.

Specification of the embedded computer [5]: EBX AMD Geode® GX1 Embedded

Computer

The SBC-GX1 is a low profile, without fan, the EBX Format board, is based on the

300MHz MMX-increased AMD Geode GX1 processor, it includes all

Rechnerstandard-Schnittstellen and a full range of Multimediaeigenschaften: VGA-

screen (National XpressGraphics), Ethernet 10/100BASETX (PCI 2.1 compatible),

integrated 16Mbyte FLASH, double-USB, compatible interface of the sounds and four

serial interfaces.

Figure 4- 9: The board computer.

 427

 21

Specification
Processor

Memory

Cache

Video

Without fan, Pentium class, 300MHz AMD Geode™ GX1

SDRAM 144-pin SODIMM socket low-profile, 256Mbytes

Max.

Flash: 16Mbytes Intel strata Flash

SRAM: 128K battery backed (factory fit option)

16k L1 write-back cache

TFT flat panel & CRT XVGA, 1 - 4MB SDRAM video

memory

Drive Support FDD, HDD, Silicon Disk in Flash, Compact Flash

Networking Support 10/100BASETX Ethernet via RJ-45
USB interfaces

I/O Interfaces

PC peripheral

Additional I/O

Watchdog timer

Enlargement

Sound

BIOS

MTBF

Format

2 X USB ports (USB 1.1)

4 X; 16550-compatible fast serial ports (3 x RS-232,

1 x RS 232/422/ 485)

Keyboard, Mouse, Printer Port

8 General purpose digital I/O signal and two user defined

Jumper

Real Hardware Watchdog (2 or 8 seconds) with Reset

output.

Compact Flash socket, PC/104 bus, PCI slot

16-bit SoundBlaster/Per compatible interface

Award BIOS (in accordance with Millennium)

90.000 Hrs

EBX format, size 5.75 " x 8.00 " (146 mm x 203 mm)
Power Requirement +5V only for operation (@ 1.5A Type)
Temperature
Range

From: -20 to 60 °C processor fed with a low profile (no fan)

temperature drop.

 428

 22

5. Operating System Installation

5.1 Problem .

The Board Computer hood is to manage the communication between.

He comes from the company Arcom [5]. on him is no operating system installed, since only

A 16MB Flash Disk is present (embedded computer), it is useful, to use Linux as the

embedded operating system, Linux offers the advantage that the core (the core of the

operating system) can be created the desired configuration of. This saves space on

one hand, on the other hand, the system or the hardware be optimally set up.

5.2 Implementation of the installation.

At the beginning of the configuration options were the most disabled, because only a

small core as soon as possible or a general operating system was needed, the

following options were disabled: Parallel support, Plug and Play configuration,

Enterprise Volume Management System, multi-device support (RAID and LVM),

cryptography support (CryptoAPI), networking options, Telephony Support,

ATA/IDE/MFM/RLL support, SCSI support, Fusion MPT device support, IEEE 1394

(FireWire) support (experimental), I2O device support, network device support,

amateur radio support, IrDA (infrared) support, ISDN subsystem, Input core support,

multimedia devices, sound, USB support, Bluetooth support, kernel hacking, library

routines, plug in CPU scheduler that support resource management modules and

build options.

In total, 33 options are disabled, they were divided in part, in several sub-menus, and

also partly in only in a single sub-menu, and the majority of options contained two to

three sub-menus, and the pictures show some screenshots, which an impression of

the number of options is to communicate.

In this way although the configured core is small, did however, he is only after some

effort compiling.

Due to the large number of submenus in peace had to be considered options, so that

you can be more clearly understood.

 429

 23

The configuration steps are available everywhere on the Internet, however, the

configuration of the core is not comparable with the installation of Windows, and even

people, the experience with the installation of Linux, had difficulties with security with

the core configuration.

The following examples are intended to illustrate Embedded operating systems, such

as embedded operating systems such as PDAs, organizer, and mobile phones

present, including WindowsCE or embedded Linux but also on this hardware is not,

for example hard disk, but only a Flash Disk, on which the operating system is

charged.

The installation of the core is actually a sequence of six commands. It is the first

command the One who, of the most processing time takes or configuration in. The

other need then depending on computational power and memory up to a few days

processing time.

These commands are as follows:

 Make menuconfig

 Make DEP

 Make bzImage

 Make modules

 Make modules_install

 Configure the boot loader.

5.2.1 . . configuration of the Core

Only the administrator (root) or the user, which these rights were granted, the

appropriate access rights to perform this configuration, this is done with the command

sudo "command", previously the administrator must the user all rights in the file

/etc/sudoers assign.

If the Kern-Quelldateien are not yet installed, this should be done as the first, because

otherwise the configuration does not can be started, the present source files were

208.19 MB in size, and also the Help files are included in the directory /usr/src/linux-

2.4.21.99 /documentation.

 430

 24

There is a big help file with 1.2 MB for the core configuration, and each small help files

to almost every option.

In order to now in the correct directory (/usr/src/linux-2.4.21.99 in this case) one of the

three possible enter commands, there are far more than 1,000 options to choose from,

with these options you can influence, which functions directly be integrated into the

core, which as a module and which are not available to:

 Make config: a couple with Y(yes) /N(No) or M (modules) to answer questions

one at a time (P. image. ? and ?), without the

Possibility to have, reenable remote access or umzuaendern (textbased),

EN few questions previously answered questions hangs up with together!

Figure 5- 1: make config(1 Option: Code maturity level).

 431

 25

Figure 5- 2: make config(2 Option: Loadable module support).

 Make menuconfig: is also text-based in the process, there is also the

opportunity, before and reverse to jump and to correct, i.e. , the initially to make

amendments reenable remote access to edit or even new (see image, 5.3 and 5.4

).

Figure 5- 3: make menuconfig(1 half of the options).

 432

 26

Figure 5- 4: make menuconfig(2 half of the options).

 Make xconfig: is not more text oriented, but simply can be operated with the

mouse (see image, 5.5), (xconfig only if the programming language Tcl/Tk is

installed), but they will need the X11-surface, i.e. the necessary libraries and the

support for the Graphical User Interface, or KDE, and that is why this alternative is

usually only at the beginning to test and/or used learning, one hand, because the

core is compiled only for this reason, to a minimum to ensure demand for storage

space, so this is not a recommended alternative, unless you want to compile the

core to its Linux distribution (Suse, RedHat, …) to its special requirements of

hardware and security to adapt and optimize. without sufficient basic knowledge

can play a to the configuration of the core the existing installation or even make the

whole system unusable.

 433

 27

Figure 5- 5: make xconfig(everything all at once).

After menuconfig has started, there are options to the "Y" for Yes or "N" for "no" to

answer Are, partly you can with "M" for module answers, and in some cases, values

are specified.

First, one should the current configuration under a different name save as a

precaution, the last option: Save Configuration to alternative file), as it can happen

that the changes in the preconfigured file be stored, which can lead to problems, if the

file does not compile due to e.g. Unvollstaendigkeit cannot be, i.e. it comes to the

problems of the Kernladens when the computer is restarted.

What are modules and their benefits?

A module may be, in so far as is necessary, be integrated into the core, these

modules are available but only then, when the core is loaded, loaded to the core

modules can be unloaded or which modules are trying to start to find your hardware

(autoprobing).

When the computer is a Basiskern loaded, the contains only those functions to Start

are required, these belong firmly to the core, if in the current operation functions will

be needed (e.g. , for the new hardware), is the required code as a module connected

to the core, and if this

 434

 28

Additional functions not a while more will be needed again the module can be

removed from the core, this modularized approach has many advantages:

 Kern-Module can be integrated as needed, and if a specific module only rarely

is needed, can be saved on this memory, i.e. , the heart of the matter is not greater

than is essential, and to the hardware of the optimally adapted user.

 For a change of the hardware (such as a new network card) must be compiled

no new core, but only the new module will be involved.

 In the development of a Kern-Moduls constantly of the computer must not be

restarted in order to made to test changes to the core.

It is enough, to recompile the module, then there it can be tested while the

system is running.

Under the Options, you will find for example, physical resources, such as drives,

serial/parallel ports, Audio, and Videogeraete, network interfaces, keyboard, mouse,

etc…

1. Code maturity level options: here you have the
possibility, even the Core

Components that are not yet mature as apply, in the kernel config file

To be taken into account, in the other case, these options will not be active, or

are not displayed. This option was chosen, as a module cannot be you are not

elect.

2. Loadable module support: you determine whether

this modularized

Concept supports, whether or not some of the options as loadable modules

must be available or only with Yes/No the core are to be tied.

3. Processor type and features (p. image. 5.6):

Here you have the type of processor

Specify what the speed and size of the Code will affect.

Code in this case is on-, but not as usual abwaertskompatibel (p.

Image. 5.7), e.g. , a K6-processor can a K7-processor support

 435

 29

But not vice-versa, here was an Athlon/Duron/K7-processor was elected.

Math emulation and symetric-multiprocessing support were not elected,

Figure 5- 6: Option Processor type and features.

Figure 5- 7: Call the assistance of the submenus Processor family.

 436

 30

Figure 5- 8: sub-menu (CPU frequency scaling) of Option 3.

4. General setup: Networking support (see

image, 5.9 and 5.10): This option

In any case it is needed, since some internal commands to build the network

protocol, the correct networking options are only for item 13 (Networking

options) discussed PCI support was chosen (p. image." field 5.11), on

PCMCIA/CardBud support (see image, 5.12) has been omitted, SystemV IPC

had to each case because of the needed inter-process communication are

selected in the programming, Elf and a.out Kernel Core format are also set to

"yes", Power Management Support for laptops with "yes" answers, but

answered in ACPI support.

 437

 31

Figure 5- 9: General setup(1 half).

Figure 5- 10: submenu PCI Hotplug support.

 438

 32

Figure 5- 11: submenu PCMCIA/CardBus support.

5. Binary emulation of other systems: This option is necessary, in order to e.g.

SOM and/or Solaris-binaries to load and implement directly. SOM is a binary

executable format, the HP/UX is accepted, this option has been omitted.

6. Memory Technology Devices (MTD): so are e.g. Flash, RAM meant.

They are mostly for stable systems used in embedded systems, and that is why

this option is very important in the present case and had to be answered with

"yes" to any partition was selected, because only a Flash Disk is present, and

even the Flash Disk of Arcom is the company to enable specified here-the

driver for the SBC-GXn Board-Familie has also enabled.

7. Parallel port support: here it is to the parallel port to the

Normally, the printer is connected, in the present case, it is not planned to use

a printer, therefore, it was "no" selected.

8. Plug and Play configuration: is a standard for

plug-and-, the

In the Detection address decoder unit can be configured.

9. Block devices: a floppy drive in the present case is not

Needed, a RAID-controller also not normal (not SCSI) hard drives and CD-

ROM drives (among other things) are under Linux as a block devices detected.

 439

 33

10. Enterprise Volume Management

System: this is a plugin-based

Framework for Datentraegermanagement and combines the support for the

partitioning, software, RAID, LVM, and much more in a single interface, user

tools are necessary to the administration of EVMS logical magnetic media,

according to this option was enabled.

11. Multi-device support (RAID and

LVM): RAID and logical volume

Management will be in our Board Computer not needed, so if the "No" option

was elected.

12. Cryptography support (CryptoAPI): the

authentication and guaranteed

The encryption and probably the encrypted authentication and transfer over the

network (no help), according to, a "no" selected.

13. Networking options: Network packet filtering is

responsible for the firewalls.

In this project you are not needed, so "no" selected, select the TCP/IP

networking was answered with "yes".

14. Telephony Support: was not elected, for the case that

phone

Should be, must be a connected-associate.

15. ATA/IDE/MFM/RLL support: here offers the

possibility to appliances to

Support to the IDE-bus be connected such as IDE-disk drives and ATAPI CD-

ROMs.

16. SCSI support: Support for the SCSI hard drive is not necessary.

In contrast, the option SCSI CD-ROM with answers "yes". SCSI low-level

drivers should not be supported, as other SCSI-hardware not is present.

17. Fusion MPT device support: the option Message Passing Technology Offers

 440

As a machine name matches the possibility to activate a Systemhost

 441

 34

Either as a high-performance SCSI Host initiator or as a LAN (but not with

parallel SCSI-media). The Fusionsarchitektur is in the location, these protocols

bi-directionally in Hochgeschwindigkeitslaser (up to 2GHz * 2ports = 4GHz) and

parallel SCSI (up to Ultra-320) Physical Media process. These drivers need a

Systemhost installed in the MTP-compatible PCI-adapter, these adapters

contain special I/O processors, and thus was the option to "no" answers.

18. IEEE 1394 (FireWire) support (experimental): Fire Wire-Geraete are not

Present, therefore the fire Wire-Anschluss are not supported.

This option would be for example inactive, if the first option(Code maturity level)

answered with a "no" would have been, because the FireWire under Linux to

the core 2.4 has not yet been declared for maturity.

19. I2O device support: Is a intelligent input/output

architecture that it

Allowed, hardware drivers in two shares to parts: the OS module (OSM) and a

hardwarespezifisches module (HDM), but it needs a I/O and in the Computer

Schnittstellenadapterkarte. This card contains a special I/O processor, the high

speed creates, because the CPU is no longer with the I/O needs employ,

because the I/O Schnittstellenadapterkarte is not present, "no" selected.

20. Network device support: If you are in any way with

another

Computer wants to communicate, then this is the first option (network device

support) with "yes" to. In the track, the kind of communication and the hardware

be specified, all of the following submenus were answered with a "no": ARCnet

devices, Ethernet (1000 Mbps), FDDI driver support, HIPPI driver support

(experimental), wireless LAN (non-hamradio), TockenRing devices, Fiber

Chanel driver support, Red Hat Creek Hardware VPN (experimental), WAN

interfaces. In contrast, PPP (point-to-point protocol) support, SLIP (serial line)

support set to "Yes" under the Option Ethernet (10 or 100Mbit) were the

information on this network card in the affirmative.

 442

 35

21. Amateur Radio Support: This can cause the computer

communications via

Amateur radio operations. One of these protocols can be either for point-to-

point or as a institution for TCP/IP will be used, the option has not been in the

affirmative, since first, no appropriate hardware for this is present, and secondly

not on the radio with other computers to communicate.

22. IrDA (infrared) support: Here you can find drivers for

the infrared port.

This is not needed, according to the option has been denied.

23. ISDN subsystem: here are drivers for the Linux supported hardware

And options for various ISDN-apparatus compiled, therefore these options were

answered with a "no".

24. Input core support: Human Interface Device (HID) refers

to a

Certain Geraeteklasse the USB-standards for computer, with the description

are described such devices, the directly "interact with people". meant are

apparatus, with which the user directly communicate with the computer, such

as mice and keyboards, but also gamepads, tablets and joysticks, HID-

Geraetetreiber are usually included in the major operating systems, is a HID

device (during operation) is connected, it is usually directly as a type

Eingabegeraete (Human Interface Devices) recognized and then displayed in

the Device Manager, support for such Eingabegeraete is not needed and

therefore "no" selected.

25. Character devices: In order to anything at all to be displayed on the Monitor

Have the first two options (virtual terminal & Support for console on virtual

terminal) be answered with "yes". The same applies for the keyboard

standard/generic (8250/16550 and compatible UARTs) serial support should be

on every case, "affirmative" because, in the context of the present work is the

communication via serial interfaces should be guaranteed, a mouse is not

used, therefore the option is "Mice" with "no" have been answered.

 443

 36

26. Multimedia devices: here you have the possibility,

Audio/Video, and FM-

To support maps, different video cards and drivers are usually bound in the

core, this support and also those for radio are not needed.

27. File system: The first option (quota support) is used to the space

Restrict individual users, according to you can be denied,

Since there is only one user, it follows a number of options, the file systems of

different platforms and operating systems support, how ADFS, Amiga FFS,

Apple HFS/HFS+, NTFS (read only), OS/2 HPFS file system support and DOS

FAT fs support, these options were disabled, only the Linux file system was in

the affirmative, so reiserfs and ext3 support file system support JBD).. Second

extended fs support is the Linux file system, the Minix fs support has replaced.

The option 'ISO 9660 CD-ROM file system support is "yes" to, so that CD-ROM

drives can be used, and the Microsoft Joliet CD-ROM extensions is not needed,

the extension also not transparent decompression, this point needs a

comment:

The option is a Linux-specific extension, to data in a compressed form on CD-

ROMs and then to save transparent and these CDs to get uncompressed

displayed!

Under the option Native Language Support has been everything, up to code

page 437 (United States, Canada), page 850 (Europe) and NLS UTF8 was

denied, so that meant Zeichensaetze are to access foreign filesystems to be

supported, the default option NLS option has been with "iso8859-

1. Indicated, this Standard, the from of the HTML-world is known.

Network File System: The first option (Coda file system support (advanced

network fs)) allows, foreign computer via network file systems to use, which

provides in comparison to NFS a number of advantages: Support for captive

operations (e.g. , for Laptops), security models also by authentication and

encryption, both options have been activated as modules, root file system on

NFS was also activated and also CIFS support (advanced network file system

for Samba, window and other CIFS compliant), SMB file system support (to

mount Windows shares

 444

 37

Etc.) and NCP file system support (to mount NetWare Volumes) are not in the

present case of use.

The last sub-menu: Partition Types was not elected, but that means if you

would like to use hard drives, the under a different operating system to

waehlenden(e) have been partitioned.

28. Console drivers: here must be the VGA text console option

set to "Yes"

In order to Text on VGA-maps to be MDA text console (dual headed)

(EXPERIMENLAL) should also be answered in the affirmative, if e.g. you wants

to work with two monitors, in the context of this work however, this should not

be the case.

29. Sound: Here you will find both various sound cards as well as drivers for

Sound support offered, but these are not needed.

30. USB support: first here to USB-names briefly defined

Will be USB stands for Universal Serial Bus, up to 127 USB devices can

To a USB-port will be connected in a tree structure, the first USB-port is the

root (root) of the tree, the periphery includes the branches and the interior

nodes are special USB-devices, the so-called hubs, the definition is the Help

file has been removed, and the present embedded computer 1.1

contains two USB ports, but they are not used, according to the option will be

denied.

31. Bluetooth support: is the current alternative to infrared or

-Transmission. Here are up to 10 meters of distance in the free possible and 5

meters distance with objects in the transmission line, since such a

communication is not relevant in this case, the option has been disabled.

32. Kernel hacking: this detailed error messages for the

Persons, the Geraetetreiber letter, supports.

Kernel profiling support: Provides under /proc/profile information is

available, with which can be determined, how much time the core needs for

certain functions.

 445

 38

Profiles shift count: Determines the Adressabstand, with which the individual

from the core running commands in the /proc/profile will be listed.

To quote from the README-file from Linux:

The activation of the "kernel hacking" option would normally result in a bigger or

slower core (or even both), this may the core even definitely unstable because

some routines then be compiled a little differently, in order to target poor

routines to crash and uncover this error in the core (is complaining about

kmalloc()).

The core should be used completely normal, therefore you should here with

"no" answers.

The options library routines, plug in CPU scheduler that support resource

Management Modules, Build options in the core of this work were not present

And according to in the Help files are not represented, and consequently they were all

too clear.

5.2.2 . . Modules creating and installing

This is the configuration has been completed, you now have the addictions with the

command "make dep" were to be established, in the track the modules created (make

modules) and installed (make install_modules) will be. These commands can be run in

a row separated by semicolon.

Since everything is easily walked, it was the core (make bzImage) compiled the

generated bzImage and core means is located in the subdirectory arch/i386/boot/, he

was then to the boot directory with the name vmlinuz moved (you can also use the

root directory), from where he can by adding in the GRUB-configuration file (GRUB is

available for Grand Unified Boot loader, and the other alternative is to LILO) be

booted, GRUB must be called again, so that the changes be accepted, this step could

be under "yast" can conveniently be processed by the entry for Linux has been copied

and pasted, and then the new entry to this core has been adjusted, so the path of the

root partition, and the name of the new core.

 446

 39

At the beginning it was planned, the embedded computer IDE hard drive to add to this

should be the first time the whole be configured and installed, because this under

Suse could not be reached, was switched to RedHat. Here, the Flash Disk, and the

special processor supports. There is a other elegant and professional alternative. This

is the core of a host computer, in the next chapter should be elaborated this

alternative.

5.3 Development Environment.

Host computer test system

The test system consists of a desktop PC as a Embedded-Rechnerersatz , on the

other software or even a different operating system may be installed, of course, you

want a Linux distribution on the host computer (in this case it was RedHat) be installed

with all development tools, then where the core prepared, tested, and for the test

system is to be prepared.

By this is the variant of the core on the DATABACKUP not physically be present of the

trial system, but transferred through the network connection, using NFS, for help, and

the test system is only in the test phase as a replacement for the embedded

computer, because he have a keyboard, graphics card and monitor.

In addition to environment is a blank floppy disk needs, on which the boot loader is

installed, the the core in the memory to load.

1. Step: as a syslinux bootloader has been elected, three reasons for this:

1 Syslinux should be on every Linux already exist.

2 Syslinux cannot be on DOS-formatted floppy disks with the FAT file system

Install.

3 The boot loader provides a configuration file is available from the

Great benefit is.

 447

 40

The core itself must be copied to the disk, and this is done on the host computer, and

then the test system to boot from the diskette.

Blank floppy disk can with "mformat a:" be formatted, if this is not the case, and then

the following command to "syslinux /dev/fd0" as root, which on the floppy disk to install

syslinux, as /dev/fd0 is the name for the floppy drive under Linux is, if syslinux is not

installed, simply "yast" and install syslinux with source code.

Now if we could have been the test system from the disk boot (BIOS to adjust that the

computer boot from the floppy drive), then you get an error message "Could not find

kernel image", this indicates that SYSLINUX easily on the floppy disk has been

installed, as SYSLINUX a file called Linux (Kernel image) expected to boot, if you

otherwise called the core, there is the possibility, the prompt while holding down the

Shift key or Alt key during the boot a different name or to pass parameters, and a

different alternative, which also has been used here, is the syslinux.cfg configuration

file, then where are the boot parameters have been specified.

The following boot parameters have been specified:

The root filesystem is not written to the disk, but as mentioned before, via Network File

System (NFS) loaded from the host computer. SYSLINUX was instructs, the root file

system, NFS-server to get the IP-address of the test system is determined via DHCP:

append root= /dev/nfs ip=dhcpcd.

2. Step: now it has the core itself be transferred to the disk, as the kernel

is compiled, we have seen in the last section, and the file bzImage was the

result of the core configuration, testing of the addictions, the production and

installation of modules and as last of the compilation of the kernel, this I have

on the disk with the name linux stored to then of the floppy disk to start, this

boot process then leads to a different error message again: "kernel panic: vfs:

unable to mount root", what is the purpose of that syslinux.cfg configuration file

was stored on the disk.

So that the boot is made possible from the host computer, the host must be both as a

NFS-server, to the root filesystem to make available as well as DHCP

 448

 41

Server be configured to the test system a dynamic IP-address to be handed over.

If these steps are completed, the test system should be properly booted from the

floppy disk, the core of the disk loaded, rootfs of NFS-server mounted, and the IP-

address of the DHCP-server can be delivered, it was no longer necessary, carry out

the above-mentioned points.

The last step in the installation of the operating system is the real, this is elaborated in

the following section.

5.4 Real .

Modern applications usually have the requirement that all events in the automation

system time must be synchronized to each other, which is why Echtzeiterweiterungen

especially find increasing popularity of Linux in the industry, as well as in the

universities.

With Echtzeitfaehigkeit requirements are meant to Zeitablaeufen on a computer have

to do real-time applications, regardless of the cause may not be delayed or prevented.

In the context of this work must be on the events of the Transceiverkarte (Send/board)

for example are triggered, in a precisely defined time a reaction on the part of the

actuators, i.e. , the entire airship, are made.

The Echtzeitfaehigkeit is deactivated by default on the computers and the major

operating systems does not exist, but with RTAI and RTLinux exists the possibility, to

expand Linux so that a small real-time core runs is available, the guaranteed

guaranteed response times and one of the advantages of these Linux

Echtzeiterweiterungen is that Linux in the normal case (if the real-time core runs just

has nothing to do) with the normal pipped works.

 42

5.4.1 . . latency and fluctuation

The result of these changes is the Unterbrechungslatenz and fluctuation (see Figure 5-

12 and 5-13) between periodic interruptions in the microseconds and the area

to reduce and so faster responses to external events, and a higher Timing-Aufloesung

 449

to allow.

The pipped of Linux shows latency (latency) and turnover (jitter) of one millisecond,

the Echtzeitversionen of Linux have latency and turnover some microseconds to the

processors, with several hundred MHz running.

Figure 5- 12: The Ereignislatenz.

Figure 5- 13: periodic fluctuation.

 450

 43

The latency is the delay of an interruption to the beginning of the processing of this

interruption, the difference between a specified and tatsaechlichem value is known as

latency. (In practice, a desired time not always be exactly the same, also, as the

system time for internal processes needs). The fluctuation is the change of the timing

of the periodic cases or is the static distribution of latency.

Item 5.4.2 above hard and soft real-time conditions.

Are divided into the time-critical tasks in the following points (see Figure 5-14): soft

real-time conditions: Response times must be low

His, however, a short-term exceeded certain limits no greater consequences. That

means that the time is to be maintained in the funds.

Hard real-time conditions: certain response times by the system must be guaranteed

under all circumstances, if they are exceeded, damage to the system on.

Figure 5- 14: Schadensaenderung in dependence of the response time.

Linux is usually just like any other operating system, only for soft

Suitable Echtzeitaufgaben (see Table 5-1).

 451

 44

 Application Latency/ turnover

Standard BS.

No real time 10 μs – 100 ms

Standard Linux Soft real time 1 μs

IEEE 1003.1d

Hard real time 10 – 100 μs

Linux Microkernel

Hard real time 1 – 10 μs

RTOS-Kernels Hard real time 1 – 10 μs

Table 5- 1: Comparison of the performance of Linux with the commercial

Echtzeitkernen application latency/fluctuation

Standard BS. no real-time 10 µs - 100 ms standard

Linux soft real-time 1 µs

IEEE as 1003.1d hard real-time 10 - 100 µs

Linux microkernel hard real-time 1 - 10 µs

RTOS-cores hard real-time 1 - 10 µs and that is the response time for various

reasons not deterministic:

 The core functions of the operating system are not interruptible, with the result

that other requirements until the conclusion of the operation have to wait.

 The Zeitaufloesung on the x86 shall be 10ms, and is thus low e.g. for the

Scheduler, the very important, even necessary for Echtzeitaufgaben is.

 The access to hard drives and on communication equipment has in principle no

defined response time, can even the function to be called as long as block until all

data are available [?].

It is possible, standard Linux for soft Echtzeitsteueranwendungen to

Use, in which the sampling time of approximately 10 ms commensurate long and the

application is missing time schedules do allow it, this is an example using the video

processing, where an occasional flare-up is often not perceived.

When data loss can be approved, then standard Linux (especially the latest cores) for

soft real-time applications are used, the the Unterhaelfte (preemption logic) have.

 452

In the pipped Unterbrechungsverarbeitung wok containing some is divided in two, as

the Oberhaelften and be marked Unterhaelftenaufgaben. The Unterhaelfte meets the

tasks, the disruption to edit, and data from the physical medium accommodate in a

cache, the Oberhaelfte reads from the clipboard and sends the data to a accessible

buffer of the core, in the pipped (ICU) without, are all

 453

 45

Unsuitable interruptions, if the Unterhaelfte tasks. This means that it can be an

unpredictable delay (latency), before a second interruption can be made.

If that is not the case, then the hard Echtzeitimplementierungen needs.

The Echtzeitvarianten of Linux that are usable for such applications, since 1997, and

while it is true that there are mainly two implementations for the realization harder

Echtzeitfaehigkeit under Linux:

 RT-Linux was in New Mexico by a working group to Professor Victor Yodaiken

and Michael Barabanov developed. This variant is to a new layer of code in a

highly efficient between the hardware and the pipped form the additional layer of

code, called microkernel, controls the whole (total) Echtzeitfunktionalitaet,

including interrupts, and

Sets high aufloesendes timing. This microkernel cannot be the Pipped

Run in the background.

 RTAI was in Milano (Politecnico di Milano) of a working group developed by

Professor Paulo Mautegazza. This is the second variant should

Echtzeiterweiterungen to POSIX.1 within the structure of the Linux, Standardkerns

imports. You adds Timer, scheduling (Scheduling) and

Unterbrechungskontrolle (Preemption) directly in a single core

Together.

These implementations will be as a supplement (patch) made available to the pipped.

The microkernel starts the spends receiving (hardware interrupts) and also determines

the Echtzeitaufgaben hoechstmoeglichen priority with the firmly.

Handles the real-time core runs as a direct layer of the hardware the

Interruptverwaltung of the complete system from this real-time core runs the

guaranteed response time for real-time programs, normally Linux worked double shifts

(kernel space & User Space), but it is with the real time extension to a third layer

(Realtime Space) advanced: this new layer then monitors the kernel space and thus

has the possibility to interrupt the core code.

 454

 46

After the Echtzeitaufgaben have been processed, the realtime Space all registers

again, so that nothing of the Normalkern noticed, that it was interrupted.

If the realtime space no Echtzeitaufgaben needs to do, needs no

Computing time and thus makes for the normal Linux kernel unnoticed,

comparison of the advantages and disadvantages of the two variants:

RTLinux: the development team of Victor Yodaiken will decide whether the patches of

the users in the concept fit, otherwise they will be rejected patches, and while this is a

consistent model achieved, but find no possibility innovative ideas in the software to

be included.

RTAI: it is quite contrary to this other consistent model in which many users

developments in the form of core modules have added to the Software. On the other

hand this approach makes the whole system more flexible and innovative.

Although subject to both variants of the GNU-license, but at least RTAI is easy to get

nowadays.

5.4.3 . . embedded applications

Real-time systems can also be embedded systems, embedded applications run

usually in small hardware and/or cards, often without keyboards, Maeusen or

monitors, usually with no rotating media such as hard disks or CD-ROMs, the hard

working conditions could not resist and programrs can assemble Linux, so that it runs

without these peripheral devices and there are several popular embedded Linux

distributions, there are the pre-configured and useful tools for customer-related

specialty products to include [11].

The commonly used platform for standard Linux is an Intel-based computer or a

laptop computer, with the applications might not need real-time performance and the

latency and the fluctuation of standard Linux no restrictions for these applications are,

but there are embedded

 455

 47

Hardware components, the deterministic real-time performance and require for these

cases must be one of the embedded application in the Linux-

Echtzeitimplementierungen be used, so embedded Linux run on the hardware

components from the desktop computers up to Videoarmbanduhren rich, but an

embedded Linux is not necessarily Germany will present.

Since the normal Linuxkernel, real-time core runs not to be noticed, it must have the

opportunity, real-time and normal processes to communicate with each other can be,

and this is done with the following techniques: FIFOs, Shared Memory, mailboxes,

and message queues.

5.4.4 . . Installation of Linux-Echtzeit

The steps, the of the series to be run in order to install a Germany will present, are to

summarize as follows:

1. Selbstkonfigurierung of the patch:

Before you so that defended, the RTLinux to install them you have to get the

corresponding Linux and RT Linux versions to download, in the present work has

been working with the 2.4 kernel version, what this and the RT Linux version 3.1

have been downloaded (see download). As the C-compiler version also had to be

observed, as otherwise problems can arise, and the GCC 2.7.2.3 is a minimum

requirement, then the following steps must be taken:

 The downloaded files in a temporary folder must be cached, and under "

/var/tmp".

 Prepare a working folder and empty when it is present: md /usr/src/rtlinux

(rm -rf /usr/src/rtlinux), then unzip the downloaded files with the command:

tar -xzvf /var/tmp/linux-2.4.4 .tar.gz /var/tmp/rtlinux-3.1 .tar.gz.

 The core, and the RT Linux-Ergaenzung in the subfolder linux mending:

patch -p1 < rtlinux/kernel_patch-2.4.4 . .

 456

 48

 Then configure the core as follows, compile, and install, as in the last

chapter:" make menuconfig; make dep; make bzImage; make modules;

make modules_install;'

 The created file copy: cp arhc/i386/boot/bzImage /boot/rtlinux, and after

the boot loader has been adapted, restart the computer.

 Now the computer with the new core restarted and simplification will be

created a symbolic link: The folder

Ln -sf /usr/src/rtlinux/Linux /usr/src/linux, in the then of the RTLinux with

the command "make menuconfig; make dep; make; make and make

install' devices configured and must be compiled.

 Now, in order to be able to run real-time programs, must be the RT Linux

modules by the rtlinux start command will be loaded.

2. An existing supplement (patch) use.

 In this case, it was with the downloaded file rtlinux-2.4- prepached.tgz

worked, so configured, dekomprimiertt, etc. otherwise not much was changed.

In both cases, had to be observed that the "hard" real-time in the

Grundlagenkonfiguration set and the contrast that the APM support is disabled.

 457

 49

6. Description of Portzugriffsarten

There is a difference, as we will see in the following - between two I/O

Portzugriffsarten: On the one side of the direct access, which is also under the name

input/output falls deeper level (low level input and output), and the access of

Geraetedateien on the other side.

In fact, hardware-near programming in modern, complex operating systems on

modern computers unfavourable, requests to addresses outside of the assigned

memory or I/O-ports are the "normal user" denied by the operating system, which

previously was not the case, you could much easier access to the hardware and the

maximum performance of the programs and/or reach a component.

Let us first look at the direct access type. In the following, this direct access on the

example of the serial interface explained.

6.1 . Direct Access

Selfmade programs cannot readily directly on hardware access components, this is

prevented by the operating system for security reasons, direct (write-) requests to the

hardware of the computer to be able to system crashes and lead to data loss under

the circumstances.

However, in order to allow a direct access, must be given access rights, which create

the prerequisite for that then the actual requests government expenditures can be.

6.1.1 . Rights awarded

In Linux, there are in addition to the access rights read (R), write (W) and execute (x)

and the right "set user ID" (S), if this bit for an executable file is set, then receives the

exporting process for the duration of the execution, the user-ID of this file, i.e. if a

program the user

 458

 50

"Root" belongs, then the exporting process root-privileges, for example, with the

command line "chown root:root named myprog" the "owner" and the user group of the

file and changed with "chmod a+s named myprog" set the bit of the user, and if now

the program "named myprog" from the normal user (of course the user should be

allowed to run the program) is started, then it is running with root privileges, and can

again corresponding damage, and this is why such a program should these privileges

with the help of the function call "setuid (getuid()); (#include <sys/types.h> and

#include <unistd.h>)" return it as soon as you are no longer needed.

An additional safeguard against "unintended" requests to the hardware components of

the computer is that the user root yourself first, the access to the hardware is denied

(segmentation fault). The two functions IOPL() and ioperm() are meant for this, the

I/O-Portzugriffe explicitly release. These functions (or one of the two) must be at the

beginning (before that I/O-port access) of the program will be called the

Zugriffsbibliotheken on the I/O-ports are from the header file /usr/include/asm/io.h

provided. IOPL is available for I/O privileged level and ioperm for I/O permissions.

Both of these functions return the following values: the value of 0 on success, -1 on

failure, in the latter case, the Fehlerkonstante on errno is set.

Don't forget locks a setuid() is not the a normal user to do just that, by the ioperm()

has been granted, but a fork() (the child receives no access, but the parent keeps him)

could be used for this purpose.

The syntax of the first function is int ioperm(unsigned long from, unsigned long num,

int turn_on). It is from the first port number to be accessed, and num the number of

subsequent ports. For example, would call ioperm(0x3E8, 16,

1. Access to the Ports 0x3E8 to 0x3F8 grant (with 3F8 and 3E8 for the first and

second serial interface). The last argument is a boolean value that is either the

Program Access to the Ports (true (1)) or prohibits (false (0)). We must call ioperm()

repeatedly to not-following ports to allow multiple access.

 459

 51

You can withdraw the administrator again, after call ioperm() was called, in order to

gain access to the ports to be used to allow, at the end of the program you will not be

asked to the Portzugangsrechte with ioperm(... , 0) to remove explicitly; this is done

automatically, when the process is terminated.

The function call ioperm() can only access to the Ports 0x000 to 0x3ff give. For

additional ports must be IOPL(), the access to all ports immediately guaranteed

according to use, a limitation of the address range is unfortunately not possible, but

you can the level of the expert panel on the I/O-ports from 0 (no permission) to 3 (full

access) rank.

6.1.2 . . programming/Issue

Once the conditions are met, you can spend with the actual start and/or read, but are

the hardware components of the computer not just like the RAM on "normal" memory

accesses will be accessible, but only with the aid of special (assembler) commands

accessible for C-programs are a series of macros available to these commands to C-

map features, and these features are Inline-Makros : i.e. #include <asm/io.h> is

entirely sufficient, in order to involve you, and needs no additional libraries, Table 2.1

gives an overview of the features.

In order to have a byte (8 bits) to an I/O-port to spend, you need the function

outb(Port, value) in the correct order of the parameters (e.g. , under DOS are in the

reverse order you enter) to call up to read from a port in reverse, there is the function

unsigned char inb(unsigned short int from) to use, you are the bytes that you receive

has, and the most units are designed to do just that byteweisen. All

Portkommunikations way, instructions need to run at least about a microsecond. The

with the suffix "_P" reasoned macros work almost identical to the other macros, but

you grant an additional short delay (about a microsecond) after the do just that, you

can delay of about 4 microseconds with #define REALLY_SLOW_IO before the

#include <asm/io.h>

 460

 52

Force. The macros (unless you use #define SL0W_I0_BY_JUMPING, probably the

less exactly is) normally use a port output is switched to 0x80 for your delay, so you

must first access to the Port 0x80 with ioperm() Give. outputs to port 0x80 should not

affect part of the system.

macro description

inb (Adresse)
inw (Adresse)
inl (Adresse)
insb (Adrese)
insw (Adresse)
insl (Adresse)

The contents of the I / O area on the
Address address is read.
Here, depending on the extension of
the
Macros, or one byte (b), Word (w)
Long-word returned (1),
optionally with sign

outb (Wert, Adresse)
outl (Wert, Adresse)
outsb (Wert, Adresse)
outsw (Wert, Adresse)
outw (Wert, Adresse)
outsl (Wert, Adresse)

The value of value is in the I / upper
calibration
address to the address
written. Here, value per
after ending the macro as a byte
(b) Word (u) or Long-Word (1)
interpreted with either too
sign

inb_p(Wert, Adresse)
inw_p(Wert, Adresse)
inl_p(Wert, Adresse)
outb_p(Wert, Adresse)
outw_p(Wert, Adresse)
Outl_p(Wert, Adresse)

In contrast to the macros without

,, _p is "for these functions, the

Execution delayed so

"Slower" hardware bill

to wear

Table 6- 1: macros to access I/O-ports.
Macro Description

Due to a limitation in the GNU C-compiler (present in all versions, including the egcs),

must be each (possible) source program with the -o option will be compiled for the

optimization (gcc -O1 or higher), as an alternative, you can #define external static will

be inserted before #include <asm/io.h> is included (ultimately, the instruction #undef

externally equal then not to be forgotten).

 461

 53

For debugging gcc with the command - G - 0 be called (in any case in modern

versions of gcc), although the optimization the Debugger sometimes strange behavior

cannot be, you can work around this by the program, the The I/O-used do just that, in

a separate source file is saved, and only for the optimization is compiled with.

To begin the programming, the data via the serial interface is not correct, partially not

at all, will be sent and received, and then the cable should be tested, by using

Standardkommunikations programs has been attempted, data exchange with the null

modem cable, and the Standardkommunikationsprogramme are to a "Hyperterminal"

on Windows and to the other "minicom" under Linux, and if you two computers with

Windows Operating System or Linux via the serial interface connects and

Hyperterminal or MINICOM starts, then one has to be restored, i.e. baud rate,

Datenlaenge, Paritaetsart, stop bit and Data Flow Control with values to, after the right

COM-port was selected, and the baud rate receives values between 110 and 921,600

bits per second, the flow control can be either hardwaremaessig, address decoder unit

or but not be present, in the cable was no longer in order and should be replaced, and

it was that RS-232 no USB-port is, what means that the cable during operation should

not be switched, so only when the computer is turned off, do we have the right to use

the cable from the serial port Remove, and with the new cable could easily the

Standardkommunikationsprogramme send and receive data, even "Hyperterminal"

could be with "minicom" replace data, you must be careful only to initialize, e.g. , Linux

does not support 1.5 bits, stop bits, and if the baud rate is set to 115200, the data will

then be of Hyperterminal to minicom sent correctly, but in the other direction runs the

not. In 6 bits of data are transferred correctly only numbers, the characters (letters)

unfortunately, not the data are transferred by one character, which to a non-canonical

and non-blocking communication indicating.

 462

 54

6.2 Access via Geraetedateien

The other method I/O-ports to make accessible, is the "Device" /dev/port open to -

similar to what normal files either to read, write, or simultaneously to both the stdio

functions f * (), which usually for Blockgeraete (block device) are intended, can be

used here, too, but are due to an internal buffering to avoid the

Geraetedateifunktionen such as open() are available, as the ports under

Zeichengeraete (charactere device) can be divided.

It must also of course read/write permissions on /dev/port be present, and even if that

condition is met, by the access to /dev/port is released, that means that this method

does not yet beginning ioperm() and (even) are not "root" -access needs, but this type

of port sharing in relation to system security is not recommended, because it a system

breach

It is possible, it can even access to the root "surreptitiously" by putting it

/dev/port used to hard drives, network cards, etc, directly accessible power.

This method is far more extensive and finds frequent use in the development of (any

hardware access) of hardware-based access, it also offers much more possibilities in

the handling of threads, and real-time, and it is not possible select (p. 2 select) or

poll(you 2 poll) to use /dev/port to read, because the hardware no

possibilities to remember of the statuses of the CPU has, if a value changes in an

input port.

6.2.1), open and close

In order to provide data on a serial interface to be able send or receive, they must be

opened first. This is the function int open(const char * pathname, int openflag / *

,mode_t mode * /) is available, this function you determine, whether from this (or to

this) interface only is read or written or both at the same time, and this is done with the

flags: O_RDONLY, O_WRONLY or O_RDWR.

 463

 55

In this case, you must be read once (the single-board computer, the

Sonnenstrahlstaerke, the speed, the direction, the temperature, the angular velocity

and the Azimutgeschwindigkeit received from the sensors, reading), once

simultaneously read and write (the Transceiver passes the values to the single-board

computer and reads the desired values from the sensors from). Finally will be read by

the single-board computer communicated values of actuators, i.e. it is only written.

The following code example shows this step with the open() -Function:

#Include <sys/types.h> // Definition of primitive system data types

#include <sys/stat.h> // File Status

#Include <fcntl.h> // elementary E- /A-operations

#Include <errno.h> // with Konstantennummer Fehlerkonstantendefinition

#Include <string.h> // macros and functions for Zeichenkettenbearbeitung int fd;

FD = open(" /dev/ttyS0 ", O_WRONLY);

If (fd < 0)

Printf("Error ضeefff e ff fo1 ,%d ,%s" ,frrf ,
rfrr r(frrf)) ;fssf

Printf("COM1 has been successfully opened. \n");

This function returns the file descriptor fd back in case of success, in the other case

the function returns the value -1 is returned.

It is important to note that this code the serial port COM1 to write opens. is written but

it was only with the function "write". This function is explained in more detail below.

More important for this task, but optional constants are the following: O_NOCTTY:

The open terminal should not be the control terminal of the process.

 464

 56

O_NONBLOCK: The open serial port, on subsequent I/O operations is not

blocked.

O_ASYNC: Asynchronous input/output, it generates a signal (SIGIO) O_SYNC: After

each letter with the function write() is to be waiting for the write operation is

completely finished. This means that each call to the function write() First of all, all

data completely to the physical medium writes, before any of the other steps are

possible.

Once the communication is completed, you have the serial interface to be used for

other applications or users share, this is done by the serial interface with the Int

function close(int fd) closes. This function returns -1 if the port does not close cannot

be, otherwise it returns 0 on success back, by a small example:

#Include <unistd.h> / * Reduced UNIX Standard Library & symbolic constants * /

#Include <errno.h> // with Konstantennummer Fehlerkonstantendefinition

#Include <string.h> // macros and functions for Zeichenkettenbearbeitung if

((close(fd)) < 0)

Printf("Could not close the port. \n %d, %s", errno, perror(errno));

In the context of this work was the first serial interface closed as a precaution, to then

to open again, because otherwise the incoming data is not properly and completely

would be received, at the end of the program, the serial interface are not closed,

because the program endless to send and receive data.

Item 6.2.2 , . canonical and non-canonical Input/Output

The function ssize_t write(int fd, const void * buffer, size_t nbytes of the) is actually the

number of bytes written on success back. This number is way is not necessarily equal

to the variable "nbytes of the", you can be less, indicate what is to not error, but only

that the time has arrived no other data are. In error The function returns -1 back. In

POSIX.1 corresponds to ssize_t signed integer and unsigned integer corresponds to

 465

size_t, what our write-function in int write(int fd, char * buffer, int nbytes of the

converts.

Code sample:

#Include <stdio.h> // Standard Input/Output functions

#Include <unistd.h> / * Reduced UNIX Standard Library & symbolic constants * /

Int fd, iBuf;

Char buffer[] = "Now the output test";

If ((iBuf = (write(fd, buffer, sizeof(buffer)))) < 0)

Printf ("Could not write on fd! ");

Else if (iBuf == sizeof(buffer))

Printf ("All characters were successfully written! ");

Else

Printf(" %d characters could only write! ", iBuf);

A distinction can be two possibilities of communication: the one of the canonical

mode, and for other of the non-canonical mode.

Of the canonical mode means that the whole line at once sent (letter) or received

(read) will be, in the work with normal files one speaks of buffered input/output, and

the terminals, which are used in the canonical mode are deactivated by default

preconfigured. When writing to the port for the time being this will only be the

characters stored in the buffer, until either the full or to the end of the line is, which

means only then will the contents of the buffer was actually transferred to the physical

medium, if a linefeed LF(ASCII), new line or carriage NL retrun CR occurs. When

closing the ports is the rest of the Puffer-Inhalts only written automatically, then the

memory for the buffer released. In this mode you have to have the flag in the local

constant ICANON set c_lflag. It is called the canonical mode also blocking, because of

a read.

 466

 58

/Write-Operation of the application returns the control only, if a line of text has been

entered.

In the context of this work was written this code sample, in order to use the

canonical mode:

#Include <stdio.h> // Standard Input/Output functions

#Include <stdlib.h> / * Reduced standard C library & useful general

functions * /

#Include <unistd.h> / * Reduced UNIX Standard Library & symbolic constants * /

#Include <string.h> // macros and functions for

Zeichenkettenbearbeitung

#Include <fcntl.h> // elementary E- /A-operations

#Include <termios.h> // POSIX terminal functions and constants #include

<sys/types.h> // System Data Types Definitions of the primitive #include

<sys/stat.h> // File Status

#Include <errno.h> // Fehlerkonstantendefinition with Konstantennummer

#define FALSE 0

#Define TRUE 1

Int STOP = FALSE;

void init_port(int

FD)

{

Struct termios tio;

 467

 59

Tcgetattr(fd, &tio);

Tio.c_cflag = 0;

tio.c_iflag = 0;

tio.c_oflag = 0;

tio.c_lflag = 0;

Tio.c_cflag |= B38400;

Tio.c_cflag |= CRTSCTS;

Tio.c_cflag |= CS8;

Tio.c_cflag |= (CLOCAL | CREAD);

Tio.c_iflag = IGNPAR | ICRNL;

Tio.c_oflag = 0;

Tio.c_lflag = ICANON;

Tcflush(fd, TCIFLUSH);

Tcsetattr(fd, TCSANOW, &tio);

}

Int main()

{

Int fd, Iout;

Char buffer[] = "time a little bit send! ? ! ";

FD = open(" /dev/ttyS0 ", O_RDWR | O_NOCTTY);

If (fd < 0)

{

perror(" /dev/ttyS0 ");

Exit(-1);

}

Init_port(fd);

 468

 60

While (STOP= =false)

{

Iout = write(fd, buffer, sizeof(buffer));

If (Iout < 0)

{

Printf("on COM0 can not write: %d, %s\n", errno, strerror(errno));

Exit(-1);

}

Buffer[Iout] = 0;

Printf(" %d and has been written exactly %s\n", Iout, buffer); if

(buffer[0] == 'q') stop = TRUE;

}

Close(fd);

return 0;

}

A terminal has 5 different Modi-Eigenschaften : Input Mode (iflag), output mode

(oflag), control mode (he says), Local Mode (lflag) and control characters (cc), each

these modes manages a large number of symbolic constants, such as the following

table shows.

component description

c_iflag input flag

BRKINT Generate SIGINT at break

IGNBRK / IGNPAR Ignoring break / parity errors

INPCK Parity check allow

IGNCR Ignorieren von Carriage Return

ICRNL Converting CR to NL on input

INLCR Switching on the parity check when
entering

IXON / IXOFF Flow control, enable software-

PARMARK Mark parity errors

c_oflag issuance flag

OPOST Provide an implementation-defined
output type.

 469

If this option is disabled, then all other
Ignores options in c_oflag.

ONLCR NL to CR-NL Paare abbilden.

c_cflag control flag

B0-B115200 Terminal baud rate set.

CLOCAL Ignore the modem status symbol
or terminal only operate locally.

CREAD Character can be received.

CRTSCTS Enable hardware flow control

CSIZE Number of bits per character: CS5-8
for 5 to 8 bits per byte

CSTOP Use two stop bits. By default, one
stop bit.

PARENB Parity generation for output and
Enable parity checking for input.

PARODD Odd parity enable, otherwise just
default.

c_lflag Local flags

ECHO Each character you spend on the
terminal.

ICANON The canonical (row-oriented) mode
switch.

ISIG Generate a corresponding signal,
whenTerminal control characters are
entered (arrived).

 470

 61

Table 6- 2: The five different Modi-Eigenschaften a Terminal Component

Description

C_iflag Eingabeflag

BRKINT generate interruptible with SIGINT to break

IGNBRK / IGNPAR ignore break/ Paritaetsfehlern

Allow INPCK Paritaetsprufung

IGNCR ignore of Carriage Return

Convert ICRNL of CR in the NL when entering INLCR Paritaetsprufung

switch on when you enter the IXON / IXOFF address decoder unit data

flow allow highlight of Paritaetsfehlern PARMARK

C_oflag Ausgabeflag

Allow a OPOST implementierungsdefinierten output type, if this option is locked,

then all other

Options in c_oflag ignored.

ONLCR NL in CR-NL couples map.

C_cflag Kontrollflag

B0-B115200 set baud rate of the terminal.

Ignore the CLOCAL Modemstatuszeichen or the terminal only operate locally.

CREAD characters can be received.

Flow control hardwaremaessig CRTSCTS enable CSIZE bits per character:

CS5-8 for 5 to 8 bits per byte cstop use two stop bits, deactivated by default a

stop bit. PARENB Paritaetserzeugung Paritaetsprufung for the issue and allow

for the input.

Odd parity enable PARODD, otherwise it is just the default.

c_lflag Local flags

Also ECHO each character typed on the terminal output.

ICANON the canonical (CLI) mode, ISIG generate appropriate signal, if

Terminalsteuerzeichen has occurred (arrived) are.

 471

 62

c_cc[NCCS] Control characters

Vmin to read the minimum byte count before a read operation returns.

VTIME the minimum time that is to be serviced, up to a read operation

returns.

The function tcgetattr(int fd, struct termios * tio) allows for it, the tio to determine stored

Terminalattribute. The function tcsetattr(int fd, int flag, const struct termios * tio) in

contrast, the previously set flags, where fd for a file descriptor is to be, for example, if

the symbolic constant TSCANOW is used, this means that the changes are to be

activated immediately. In contrast, TCSAFLUSH the result is that the only changes are

to activate, after all pending expenditure were transferred.

The tcflush function(fd, flag) empties the A- /Output Buffer of the with fd open

Geraetedatei. This function are, in turn different symbolic constants are available:

TCIFLUSH, TCOFLUSH and TCIOFLUSH. You have the function that either one, off or

but a and output buffers are emptied, and the still in the respective buffers the data will

be deleted without processing.

The function ssize_t read(int fd, void * buffer, size_t nbytes of the) to read similar the

function write(), if you the header file <unistd.h> slipstreams, then it is defined as

follows in POSIX.1 int read(int fd, char * buffer, int nbytes of the) and returns the

number of bytes read back on success, the value 0 if EOF, otherwise a value of -1 is

returned.

When reading from a port (Zeichengeraet) with the functions read() or pread() is the

number of characters to read actually often less than the nbytes of the specified

number. This is just that at the moment no further characters are available [2].

The non-canonical mode, however, the input character immediately executed, i.e.

without buffering immediately forwarded. This is either a certain number of bytes or after

a certain period of time, the bytes is issued, the arrived. For this purpose the Array

c_cc[] (see Table 6-3) available to the termios structure.

 MIN > 0 MIN == 0

TIME > 0 The read operation returns

at least

MIN bytes when TIME is

not yet

The read operation returns

1 and

the number of required

bytes

 472

expired. It provides 1 or

MIN

Bytes if TIME has expired.

The timer is the only

first byte read is started.

So here is an infinite

Blocking can be achieved.

if TIME has not expired

is. Otherwise it returns 0.

The timer will start

the read operation started

TIME == 0 The read operation returns

MIN bytes

if they exist.

Blocking also possible if

No MIN bytes are

delivered.

The read operation returns

0 or

the number of required

bytes.

She returns in any case

without

Wait any immediate

return.

Table 6- 3: Possible Steuerzeichenvarianten for the non-canonical Input Min > 0

min =0

Time > 0, the read operation provides at least MIN

Bytes, if time is not yet

Has Expired, and provides 1 or MIN

Bytes, when time has expired.

The timer is only started when first

read bytes, therefore here can be

achieved an infinite block.

The Read operation returns 1

bytes or the number required,

If time has not yet expired

Is, otherwise provides you 0 back.

The timer is started at the

beginning of the read operation

Time =0 the read operation provides MIN bytes if

they are present.

Blocking also possible, if no MIN

bytes will be delivered.

The Read operation returns 0 or

the number of bytes, you will

return to every case without any

wait back immediately.

Non-canonical mode also means that an application can perform other tasks, as long

as it is on I/O waits. For this reason, this type also non-blocking called.

The following example illustrates a part of the in the context of this work

developed codes in the non-canonical mode:

#Include <stdio.h> // Standard Input/Output functions

#Include <stdlib.h> / * Reduced standard C library & useful general

functions * /

 473

#Include <unistd.h> / * Reduced UNIX Standard Library & symbolic constants * /

#Include <string.h> // macros and functions for Zeichenkettenbearbeitung #include

<fcntl.h> // elementary E- /A-operations

#Include <termios.h> // POSIX terminal functions, and constant #include

<sys/types.h> // Definition of primitive system data types #include

<sys/stat.h> // File Status

#Include <errno.h> // with Konstantennummer Fehlerkonstantendefinition

 474

 64

Struct coordinates {

Short speed;

Short direction;

Short temperature;

};

Void init_port(int FD)

{

Struct termios tio;

tcgetattr(fd, &tio);

Bzero(&tio, sizeof(tio));

Cfsetospeed (&tio, B38400);

Tio.c_cflag |= PARENB;

Tio.c_cflag &= ~PARODD;

Tio.c_cflag &= ~cstop;

Tio.c_cflag &= ~CSIZE;

Tio.c_cflag |= CRTSCTS;

Tio.c_cflag |= CS8;

Tio.c_cflag |= (CLOCAL | CREAD);

Tio.c_iflag = IGNPAR;

Tio.c_oflag = 0;

tio.c_lflag = 0;

Tio.c_cc[VMIN] = 5;

Tio.c_cc[VTIME] = 0;

Tcflush(fd, TCOFLUSH);

Tcsetattr(fd, TCSANOW, &tio);

}

 475

 65

Int main()

{

Int fd, Iin;

Struct coordinates * coordinates;

Char buffer[255] ;

FD = open(" /dev/ttyS0 ", O_RDWR | O_NOCTTY);

If (fd < 0)

{

fprintf(stderr, "Can COM0 will not be opened. \n");

Exit(-1);

}

Else

{

Init_port(fd);

Iin = write(fd, buffer, sizeof(buffer));

If (IIN < 0)

{

Printf("on COM0 can not write: %d, %s\n", errno, strerror(errno)); exit(-

1);

}

Buffer[iIn] = 0;

Printf(" %d, and have been read exactly %s\n", iIn, buffer);

}

Close(fd);

return 0;

}

 476

 66

The function bzero() sets the first n (sizeof()) bytes from the beginning of the terminal

tio to zero.

POSIX.1 offers the following summarized functions to ask and/or change the terminal

properties: tcgetattr, tcsetattr, cfgeti(o)speed, cfset(i)ospeed and tcflush.

Table 6- 4: POSIX-functions to query and change the Terminalattribute.
Function Description

Tcgetattr
Tcsetattr

Ask for the Terminalattribute
Set the Terminalattribute

Cfgetispeed
Cfgetospeed
Cfsetispeed
Cfsetospeed

Ask for the input speed
Ask for the output speed
Set the input speed
Set the output speed

Empty the tcflush A and/or output buffer

Function descrition

tcgetattr
tcsetattr

Check the terminal attributes

Set the terminal attributes

cfgetispeed
cfgetospeed
cfsetispeed
cfsetospeed

Call the input speed

Check the output speed

Set the input speed

Set the output rate

tcflush Empty the input and / or output buffer

Figure 6- 1: Terminal E/A-functions in the overview.

 477

 67

The function cfgeti(o)speed obtained from the A- /output speed, but it must be called

only after the termios structure with the function tcgetattr() has been determined.

The function cfsetospeed sets the baud rate in this case the value B38400. Here also

applies that the with cfseti(o)speed-functions set changes not be adjusted until the

function tcsetattr() is called.

6.2.3 . . synchronous and asynchronous transfer

The canonical or non-canonical mode can both synchronously and asynchronously be

programd.

So that the computer understands the incoming serial data, he needs a reference to

the place where a character ends and the following begins, in the Asynchronous Mode

Seriendatenleitung remains in the high-status (1) is transferred to a character, each

character is a start bit progress and will immediately of each bit in the character

followed - optional of a Paritaetsbit and at least one or two stop bits.

The start bit is always a low-signal (0) and tells the computer that new series data are

present, data can be sent or received at any time.

The duration of an individual bits by a clock is determined in the transmitter, by with

the next clock pulse will be the next bit is output in the incoming bit pattern recipients

is to the sender with a scanned asynchronous clock. If the recipients to the next

character is waiting, it recognizes this scanning the digits like 1-0-edge of the start bits

and knows that now is a new character, between the sender and recipients must be

the number of bits per character and with the regular transfer rate and the width of a

bits in the manufacture of the connection be firmly agreed.

The recipients know then, what is to be expected, and so can always be

approximately in the Bitmitte palpation and the values of the individual bits of a

character determine the optional Paritaetsbit is a simple sum of the bits, the view,

whether the data is a even or odd number of 1-bits contain. With Straight parity is the

Paritaetsbit 0, when there is an even number of ones in the characters, with odd parity

is the Paritaetsbit 0, when there is an odd number of ones in

 478

 68

The data is there. In addition, there are still three more Paritaetsvarianten:

Raumparitaet (space parity), where the Paritaetsbit is always 0, and the second type

is Markierungsparitaet (mark parity) called, with her is the Paritaetsbit is always 1. The

last version (no parity) sets no Paritaetsbit.

Figure 6- 2: asynchronous data transfer with 7 bits Datenlaenge.

It can be 1 or 2 stop bits between the characters to be and you always have a value of

1 (high-signal). This uebertragungsart is to remember that three bits each eight data

bits are added, and that therefore, of course, the uebertragungseffizienz is reduced,

and the time to transfer the "bagged" eight bits is to 3/8 longer than the time that one

for "naked" would have needed eight bits, which is the time for the transfer of data will

be lost, with longer telegrams is therefore offers a synchronous transfer to, when

asynchronous transfer (returns) is the reading (immediately) returned immediately and

sends a signal to the calling program, the following an application of the non-

synchronous communication:

#Include <termios.h>
#Include <stdlib.h> / * Reduced standard C library & useful general functions * /

#Include <stdio.h> // Standard Input/Output functions

#Include <unistd.h> // reduced UNIX Standard Library & symbolic constants

#Include <fcntl.h> // elementary E- /A-operations

#Include <sys/signal.h> // macros and functions to intercept Signals

#Include <errno.h> // with Konstantennummer Fehlerkonstantendefinition

#Include <string.h> // macros and functions for Zeichenkettenbearbeitung #define

FALSE 0

#Define TRUE 1

Int STOP=FALSE;

 479

 69

Int received=TRUE;

Void signal_handler (int s)

{

Printf("SIGIO receive. \n");

Received = FALSE;

}

Int main(int argc, char * argv[])

{

Int fd, iIn, i, key;

Char CIN, message[90];

Struct termios oldtio, newtio;

Struct sigaction SIGIO;

Char buffer[255];

If (argc != 2)

{

Printf("Please Port Number Ewhen ! \n");

Exit (-1) ;

}

Else

{

FD = open(argv[1], O_RDWR | | O_NOCTTY

O_NONBLOCK); if (fd < 0)

{

Printf("Error ضeefff% :d %s\f" ,frrf ,
sorfrr r(frrf)) ;fixo(-1);

}

SIGIO.sa_handler = signal_handler;

Sigemptyset(&SIGIO.sa_mask);

SIGIO.sa_flags = 0;

SIGIO.sa_restorer = NULL;

 480

 70

sigaction(SIGIO, &SIGIO, NULL);

FCNTL(fd, F_SETOWN, getpid());

FCNTL(fd, F_SETFL, FASYNC);

Tcgetattr(fd, &oldtio);

Newtio.c_cflag = B38400 | | CRTSCTS CLOCAL CS8 | | CREAD;

newtio.c_iflag = IGNPAR;

Newtio.c_oflag = 0;

newtio.c_lflag = 0;

Newtio.c_cc[VMIN] = 1;

Newtio.c_cc[VTIME] =

0; tcflush(fd,

TCIFLUSH);

Tcsetattr(fd, TCSANOW, &newtio);

tcsetattr(1, TCSANOW, &newtio);

While (stop == false)

{

If ((key = getc(STDIN_FILENO)) == true)

{

Switch (key)

{

Case 0x1b: / * Esc * /

STOP = TRUE;

Break;

Default:

Write(fd, &key, 1);

Break;

}

}

If (received == false)

 481

{

 482

 71

Iin = read(fd, buffer, 255);

If (IIN <= 0)

{

Printf("Error ضeefff% :d %s\f" ,frrf ,
sorfrr r(frrf)) ;fixo (-1);

}

Else

{

For (i= 0; i<Iin; i++) //for all chars in string

{

CIN = buffer[i];

If ((CIN< 32) || (CIN>125))

{

sprintf(message, " %x", CIN);

fputs(message, STDOUT_FILENO);

}

Else fputc ((int) CIN, STDOUT_FILENO);

}

}

Received = TRUE;

}

}

Tcsetattr(fd, TCSANOW, &oldtio);

Close(fd);

}

Return 0;

}

 483

 72

The transfer is deactivated by default synchronous (also known as blocking), i.e. with

the reading will be maintained as long as data to be available to spend and/or read,

unlike the asynchronous data will appear the synchronous data as a constant stream.

to the data on the data line to read, the computer must have a common Bittaktgeber

or made to provide, so that the sender and the recipients will be synchronized as

synchronous protocols no character by character Synchronisierungsbit use, usually for

at least a 25% improvement compared to the asynchronous communication and are

for connections with more than two serial interfaces better suited.

In spite of the gains of the synchronous communication method support most RS-232

this procedure is not due to the high expense of hardware and software.

Characteristic for the synchronous data transmission is that the recipients the same

clock speed as the sender uses in every telegram and his measure a synchronization

with the of the transmitter performs to to be able to scan correctly.

6.3 . Threadprogrammierbeispiel

The threads-programming happens to a with the POSIX-threads, and the second

possibility is the programming with the help of the common API of RTLinux, and each

of these variants has advantages and disadvantages, the RTLinux API is productive

as POSIX, but has the disadvantage that it is not in other operating systems cannot

be.

It is still to mention that the system can crash, for example, if the collaborative process

saturates the entire processor resources, i.e. no more time to run Linux (user space)

has, in general, it is the real-time programming (kernel space) with a very large care to

perform, as they do not offer security to Systemintegritaet.

If you would like to create threads, then it is a the function

Int pthread_create(pthread_t is * threadID, pthread_attr_t * attr, void * (* threadFct) (void

*),

 484

 73

Void * arg), this function returns 0 on success or is there a back in the other case

Exxx-Wert back. When creating the threads is him a unique thread ID that is assigned

to the pthread_t is one with the function pthread_self(void) can be obtained from the

threads are in the Standard POSIX.1b specified and under the Herder, file pthread.h

(prepared).

#Include <pthread.h>

Struct thread_data {
short speed;

Short direction;

Short temperature;

};

Void * read(void * data);

Void * Letter(void * data);

Int main(void)

{

pthread_t is assigned id1, ID2;

Struct thread_data data1, data2;

Data1.speed = " 123.4 ";

Data1.direction = "35.64 ";

Data1.temperature = 40;

Pthread_create(&assigned id1, NULL, &writing, &data1);

Pthread_create(&numcount id 2, NULL, &read; &data2);

Pthread_join(assigned id1, NULL);

Pthread_join(numcount id 2, NULL);

Return 0;

}

Void * Letter(void * data)

{

Int fd, Iin;

Char buffer[255];

FD = open(" /dev/ttyS0 ", O_RDWR | O_NONBLOCK);

If (fd < 0) error message;

Iin = write(fd, buffer, 255);

if (IIN < 0) error message;

Buffer[iIn] = 0;

fprintf(stderr, "were written %d characters \n", IIN);

Return 0;

}

 485

 74

In the present work, the thread parameter from the serial interface will be handed

over, this is the fourth parameter arg function in the pthread_create() is available.

The pthread_join(pthread_t is Id, void ** retval) suspended the implementation of the

paged thread until the thread with the identifier id is finished.

RT-Linux essentially consists of the following modules [?]:

 Rtl_sched.o: implies the System matching Echtzeitscheduler (single or dual

processor system).

 Rtl_fifo.o: API to manage the real-time FIFOs.

 Rtl_posixio.o: Application API to Geraeteverwaltung.

 Rtl_time.o: API for real time (accuracy in Nanoseconden). provides, the timer is

available.

 RTL.o: Echtzeit-Mikrokern , the the basic framework and provides the

Interrupthandler.

 A real time application is in the form of a Kern-Moduls programd, what also is

known as a collaborative process.

 A collaborative process is mostly built up from various Echtzeitteilen, the quasi-

run in parallel, the scheduler is the task, depending on the various computing time

to assign priority.

 This Echtzeitteile are in accordance with C-functions, the threads are called and

a Echtzeitcode include, the timely, with guaranteed response time, must be

performed.

How to get out of the C-programming knows, the processor looks (Praeprozessor) first, a main

function; when the Echtzeitmodulen are there two functions, which are expected, and although

init_module(), the loading of the module is called and is used to set up the function of the

Echtzeitprozesses and cleanup_module(), which guaranteed the opposite, that is in the unloading

the module is called and the clean-up is used.

487

487

 75

12.5 Literature

[1] http://www.sfb501.uni-kl.de/a1doc/glossary/v-model.html

[2] http://www.stsc.hill.af.mil/crosstalk/2000/06/hirschberg.html

[3] http://www.agilealliance.org/articles/articles/onAnalysis

[4] http://salmosa.kaist.ac.kr/~course/DrBae/cs550_2002/project.html

[5] http://www.arcom.com

[6]: http://www.easysw.com/~mike/serial/serial.html

[9]: http://en.tldp.org/HOWTO/IO- Port-Programming .html or

Http://ibiblio.org/pub/linux/docs/howto/io- Port-Programming

[10]: http://www.masoner.net/articles/async.html

[11]: http://www.masoner.net/articles/async.html

[12]: http://eavr.u-strassbourg.fr/library/teaching/rt/siframe.htm

[15]: http://www.linuxdevices.com/articles/AT2760742655.html

, Http://www.linuxdevices.com/articles/at9952405558.html

And http://www.linuxdevices.com/articles/AT8073314981.html

[16]: ftp://ftp.kernel.org/pub/linux/kernel/v2/linux-2.4.4.tar.gz ;

Ftp://ftp.rtlinux.com/pub/rtlinux/v3/rtlinux-3.1.tar.gz

[8]: Richard, Stevens (1992): Advanced Programming in the UNIX

environment, USA: Addison-Wesley.

 488

[7]: Graefe zu, Martin (2005): C and Linux) Munich: Hansen Verlag.

[14]: Embedded Linux: Manual for developers v. Robert Schwebel, 1 Edition :

with ap-Verlag, Bonn 2001.

[13]: Herold, Helmut (2004) :Linux Unix system programming, Munich:

Addison-Wesley. 7

 489

13 Integration code in C

 490

 491

 492

 493

 494

 495

497

497

Development of a communication system (2013)

IAP_ECS
Emergency Communication System to be

implemented into IAP Satellite System

IAP_ECS Demonstration Platform

Project duration: May 2013 – Jan 2014

Authors:

Mahmoud Zohby

Samir Mourad

All rights reserved © AECENAR

January 2014

498

498

Content

ABBREVATIONS ... 501

1 ABSTRACT ... 503

2 PROJECT MANAGEMENT ... 505

2.1 PROJECT DEFINITION HISTORY .. 505
2.2 SYSTEM BUDGET (TIME AND COST) FOR DEMO SYSTEM .. 505
2.3 AT 21 JAN STILL OPEN TASKS FOR IAP ECS DEMO SYSTEM WHEN USING (ONLY INTEGRATION) ... 505

3 BASICS ... 507

3.1 COMMUNICATION BASICS .. 507
3.1.1 Transmitter design from http://en.wikibooks.org/wiki/Electronics/Transmitter_design 519

3.1.1.1 Frequency synthesis and frequency multiplication ...520
3.1.1.2 Frequency mixing and Modulation ..521
3.1.1.3 RF power amplifiers ...527
3.1.1.4 Linking the transmitter to the aerial ..527
3.1.1.5 EMC matters ..528

3.2 RECEIVER DESIGN FROM HTTP://EN.WIKIPEDIA.ORG/WIKI/TUNER_(ELECTRONICS) ... 533
3.3 ANTENNA ... 534
3.4 SOFTWARE DEFINED RADIO (SDR) .. 536
3.5 HDSDR (HIGH DEFINITION SOFTWARE DEFINED RADIO) ... 536
3.6 EXTIO.DLL .. 537
3.7 HOW DO I DEVELOP AN EXTIO.DLL ? .. 537
3.8 VISUAL C++ 2008 EXPRESS ... 537
3.9 QT .. 537
3.10 RF HARDWARE (USB STICK) ... 537

3.10.1 TERRATEC ran T stick DVB-T/DAB/DAB + Stick USB 2.0 ... 537
3.10.2 Hackrf (an-open-source-SDR-platform) ... 538

3.11 RF OVERVIEW ... 538
3.12 RF FREQUENCIES POLICIES ... 539
3.13 RF MODULES ... 543

3.13.1 STD-402 .. 543
3.13.1.1 Special for MB-STD-RS232 ...543
3.13.1.2 Special for STD-402 (Transceiver) ..545

3.13.2 RFM42B-RFM31B 433MHz ... 547
3.13.3 BOWITZ W.T. .. 549
3.13.4 Comparison between modules ... 549

4 SPECIFICATION .. 551

4.1 SYSTEM REQUIREMENTS .. 551
4.2 HARDWARE REQUIREMENTS ... 551
4.3 SOFTWARE REQUIREMENTS .. 551

5 SYSTEM DESIGN .. 553

5.1 SYSTEM OVERVIEW... 553
5.2 CENTRAL STATION .. 553

5.2.1 Architecture .. 553
5.2.2 SDR development side ... 553
5.2.3 Graphical User Interface ... 554

Content

499

5.3 MOBILE STATIONS .. 555

6 MECHANICS ... 557

6.1 MECHANICAL DESIGN ... 557
6.2 PROTOTYPE WITHOUT COVER .. 557

7 SCS-SMS .. 559

7.1 ABSTRACT OF SCS-SMS .. 559
7.2 SYSTEM DESIGN ... 559
7.3 ARCHITECTURES ... 560
7.4 PIC SOFTWARE .. 566
7.5 TEST .. 579

8 AES ENCRYPTION ... 583

8.1 INTRODUCTION .. 583
8.2 AES ALGORITHM ... 583
8.3 CODING ... 586

9 HARDWARE OF ECS DEMO SYSTEM ... 599

9.1 REALIZATION OF RF MODULE ... 599
9.1.1 Using STD-402 ... 599
9.1.2 Realization of RF Module Using RFM42B-RFM31B – 433MHz .. 603

9.1.2.1 Serial Periferal interface (SPI) ..603
9.1.2.2 The new hardware design..603
9.1.2.3 MSSP module to establishing (SPI) ..605

10 FURTHER WORK: SYSTEM INTEGRATION AND INTEGRATION TEST OF ECS DEMO SYSTEM 611

APPENDIX A: ALTERNATIVE PROJECT PLANS .. 612

APPENDIX B: ALL ABOUT HACKRF .. 616

B.1 HackRF overview .. 616
B.2 Jawbreaker ... 618
B.3 Jellybean .. 618
B.4 Lemondrop ... 619

APPENDIX C: ALTERNATIVE SYSTEM DESIGNS .. 624

LITERATURE ... 625

501

Abbrevations

ECS Emergency Communication System

503

14 Abstract

505

15 Project Management

15.1 Project Definition History

First there were developed SMS-SCS and AES. (June – August 2013). Later on there was an

investigation about the possibility of using SDR (Software Designed Radio). (September, October).

Later on it was decided to make a demonstration system for an Emergency Communication

System. (October). IAP ECS was developed. SMS-SCS and AES were integrated into this system.

(October 2013 – January 2014).

15.2 System budget (time and cost) for Demo system

Part Task
Time

(week)

Cost

(USD)

Project Plan 1 engineer (Project manager) 3 weeks E.C.

Client Side SCS-SMS project hardware (components for 2

items)

2 week
30$ x 2

PIC program development (1 engineer) 3 weeks E.C.

RF transceiver for SCS-SMS (components for 3

sides)

2 weeks
12$ x 6

Base Station

Side

Know how of HDSDR 1/2 week E.C.

Know how of WinRad 1/2 week E.C.

Know how of HackRF 1 week E.C.

VC++ & Qt software tutorials 2 weeks E.C.

Qt GUI interface 2 weeks E.C.

SDR platform (2 USB stick) 1 week 40$ x 2

Overall

System

Documentation and report 1 week E.C.

Testing system and solving problem 1 week E.C.

Total: 19 weeks 212 $

One engineer cost 200$ each week. So, for 19 weeks he costs: 200$ x 19= 3800$

Summation with the hardware cost: 4012$

4000$ in approx. 5 months

15.3 At 21 Jan still open tasks for IAP ECS Demo System when using (Only

Integration)

Event Time

Using WinRad to receive Radio wave using ran T-stick+ 1 week

Complete the SCS-SMS project 1 of secured communication system 3 weeks

SW for connection SCS-SMS hardware to the RF module, testing 1 week

Take I and Q from WinRad to a file 1 week

Adapting GUI interface to read SMS from file 2 weeks

System testing 1 week

Planned time: approximately 6 weeks

507

16 Basics

16.1 Communication Basics6

Die Aufgabe der Nachrichtentechnik besteht darin, Informationen von einem Sender zu einem

Empfänger zu befördern. Die Nachrichtentechnik kann grob in zwei große Gebiete geteilt werden,

in die

• Übertragungstechnik und in die

• Vermittlungstechnik.

6 Many is taken from: Prof. Dr.-Ing. Gerhard P. Fettweis, Technische Universität Dresden, Fakultät

Elektrotechnik, Skript zur Vorlesung Einführung in die Nachrichtentechnik, Sommersemester 2012

Basics

508

Beispiele für nachrichtentechnische Anwendungen sind:

• Hörrundfunk und Fernsehen

– analog: AM-Radio (Mittelwelle), FM-Radio (UKW),

– digital: DAB (digital audio broadcasting), DVB (digital video broadcasting),

• Telefon

– Festnetz,

– Mobilfunk.

Nachrichtenübertragungssysteme
Man kann Nachrichtenübertragungssysteme durch das in Abb. 2.1 dargestellte Modell beschreiben.

Begriffe
Die Bausteine Quelle, Quellcoder, Kanalcoder, Modulator und Multiplexer werden unter dem

Begriff Sender zusammengefaßt. Dementsprechend gehören zu dem Empfänger die Baugruppen

Demultiplexer, Demodulator, Fehlerkorrekturelemente, Quelldecoder und eine Senke. Sender und

Empfänger können sowohl stationär (z.B. Fernsehsender) als auch mobil (z.B. Handy) sein, sind

aber immer leistungsbegrenzt. Der Kanal als Übertragungsmedium ist bandbreitenbegrenzt.

Durch Störrauschen, Amplitudenschwankungen (fading, verursacht durch Bewegung und

Abschattung), Interferenzerscheinungen, Zeit- (delay spread, verursacht durch

Mehrwegeausbreitung) und Frequenzdispersion (Doppler spread, verursacht durch Bewegung von

Sender, Empfänger und/oder Streuern/Reflektoren usw.) werden die gesendeten Informationen

beeinflußt.

Modulator

Communication Basics

509

analoge Amplitudenmodulation (AM) und Frequenzmodulation (FM) eines niederfrequenten Signals

Übertragungsmedien
Die Wahl des Übertragungsmediums hängt sehr stark von den Anforderungen an den

Übertragungskanal ab (z.B. bezüglich Frequenzbereich oder Signalbandbreite, aber auch

hinsichtlich der gleichzeitigen Anzahl der Nutzer). Mögliche Übertragungsmedien sind

• ”Twisted Pair“ (verdrillte Kupferkabel),

– z.B. Telefonkabel (Endgeräteanschluß)

• Koaxkabel,

– z.B. Antennenkabel, Kabelfernsehen

• Hohlleiter,

– z.B. Antenneneinspeisung bei hohen Frequenzen (Giga-Hertz-Bereich)

• Lichtwellenleiter,

– z.B. Übertragung mit sehr hohen Datenraten

• Funkkanal.

– z.B. Mobilfunk, Hörrund- und Fernsehfunk

Im Funkbereich unterscheidet man auch zwischen Indoor- und Outdoor-Anwendungen. Ein

typisches Beispiel für Indoor-Anwendungen könnte die Versorgung aller Räume eines

Bürogebäudes mit einem WLAN (wireless local area network) sein. Outdoor-Anwendungen sind

z.B. die bundesweit verbreiteten zellularen Mobilfunknetze, derzeit GSM-900, DCS-1800 (D1-, D2-,

Eplus- und E2-Netz) und zukünftig auch UMTS.

Auch die Frequenz- bzw.Wellenlängenbereiche werden unterschieden, angefangen von den

bekannten MW- und UKW-Bereichen bis hin zu den Millimeterwellen-Bereichen und weiter

Infrarot-Bereichen der optischen Nachrichtentechnik.

Eigenschaften

Basics

510

Im folgenden werden einige Eigenschaften von Nachrichtenübertragungssystemen aufgezählt.

Dabei wird keinerlei Anspruch auf Vollständigkeit erhoben.

Simplex/Duplex Ein Unterscheidungskriterium ist, ob Systeme im Simplex- oder

Duplexmodus betrieben werden. Simplexbetrieb bedeutet, daß Nachrichten nur in eine Richtung

übertragen werden (z.B. Rundfunk), während im Duplexbetrieb die Informationen in beide

Richtungen übertragen werden (z.B. Telefonie).

Single-Cast/Multi-Cast Es gibt Single-Cast-Systeme (Telefon: 1 Quelle, 1 Empfänger) und Multi-

Cast-Systeme (Rundfunk: 1 Quelle mit vielen Empfängern)

Paket/Leitungs-Vermittlung Ein weiteres Merkmal ist, ob Nachrichten leitungsvermittelt (z.B. ”das

gute alte“ Telefon) oder paketvermittelt (z.B. Datenübertragung im Internet – IP-Protokoll) übertragen

werden.

Signalpegel
Oftmals sind Signale mit großen Pegelunterschieden gegeben. Typische Werte für Signalleistungen

P liegen zwischen 1μW und 1kW. Das entspricht einem Unterschied von 109. Aus diesem Grund

ist eine logarithmische Skala vorteilhaft. Eine solche Skala ist die dBm-Skala, bei der die

Leistungspegel LP auf Pref = 1 mW normiert werden, also

• In der Tab. 2.1 sind einige absolute Leistungswerte und die dazugehörigen dBm-Werte

angegeben.

• 2 W-Handy (D-Netz): Pmax = 2 W, äquivalente Darstellung als Pegel LPmax = 10 lg 2W/1mWdBm = 10

lg(2 · 103)dBm = (10 lg(2) + 10 lg(103))dBm = 33dBm. Im GSM-Standard ist spezifiziert, daß

der Pegel an der Basisstation mindestens -102 dBm betragen muß, d.h. es können sich

Pegeldifferenzen von bis zu 135 dBm bzw. 1013 ergeben.

• 0.8 W-Handy (E-Netz): ≡ 29dBm. Da mit einer geringeren Leistung gesendet wird und bei 1.8

GHz wesentlich stärkere Dämpfungsverhältnisse vorliegen, ist im E-Netz eine größere Anzahl von

Communication Basics

511

Basisstationen gegenüber dem D-Netz erforderlich, was sich in den Infrastrukturkosten

niederschlägt.

• Auch Signalspannungen können im logarithmischen Maßstab angegeben werden. Als

Bezugsspannung wird meist 0.775 V verwendet und entspricht 0 dBu. (Wahl der

Referenzzpannung: Welche Spannung ist notwendig, um an einem 600 Normwiderstand eine

Leistung von 1 mW entstehen zu lassen? = 0.7752V2/600 = 1mW) Die Wahl eines anderen

Normwiderstandes bzw. Referenzspannung verschiebt die dB-Skala entsprechend.

Ebenso lassen sich Verstärkungsfaktoren von Systemen äquivalent als Pegel angeben. Bezeichnen

z.B. x und y den Ein- bzw. Ausgang eines Systems, so ergeben sich die Pegel zu

Besonders bei passiven Systemen werden oft Dämpfungs- statt Verstärkungsfaktoren angegeben.

Oftmals sind die Pegelverhältnisse zwischen Nutz- und Störsignalen von Interesse. Das Verhältnis

gibt das Nutzsignal-/Störsignalleistungsverhältnis (signal-to-noise-ratio) an. Beachten Sie bitte,

• daß Pegelangaben in dB immer Verhältnisse zweier Leistungen oder Amplituden (z.B.

Verstärkungsfaktor, Signal-Rausch-Abstand) bezeichnen

• daß Pegelangaben in dBm (Referenz: Leistung Pref = 1 mW), dbW (Referenz: Leistung

Pref = 1 W), dBu (Referenz: Spannung Uref = 0.775 V) usw. immer absolute Leistungen

oder Spannungen bezeichnen

• daß sich beim Rechnen mit Pegeln folgende Einheiten ergeben:

Basics

512

Quelle

Quell-coder

Kanal-coder/

Modulator/

Multiplexer

Kanal

Demodulator/

Demultiplexer/

Kanal-decoder

Senke

Quell-decoder

Communication Basics

513

From “Microwave and RF Design: A Systems Approach”, Chapter 1 (Modulation, Transmitters

and Receivers)(www.ece.ucsb.edu/yuegroup/Teaching/Lectures/steer_rf_chapter1.pdf):

Basics

514

Communication Basics

515

Basics

516

Communication Basics

517

Modern Transmitter Architectures

Basics

518

Modern Receiver Architectures

Communication Basics

519

Summary

This chapter presented the RF frontend architectures used from the beginnings of wireless

communications up to those used in modern systems. Similar architectures are used in the

frontends of radar and sensor systems. Wireless systems proliferate, and even in established

domains such as cellphones, architectures are evolving to achieve greater efficiency, greater

multifunctionality, and lower cost primarily by monolithically integrating and digitizing as much

as possible of the RF frontend. Size drives the replacement of superheterodyne architecture by

eliminating large intermediate filters.

16.1.1 Transmitter design from http://en.wikibooks.org/wiki/Electronics/Transmitter_design

Radio transmitter design is a complex topic which can be broken down into a series of smaller

topics.

Contents

1 Frequency synthesis and frequency multiplication

1.1 Synthesis

1.1.1 Fixed frequency systems

1.1.2 Variable frequency systems

1.2 Multiplication

2 Frequency mixing and Modulation

2.1 AM modes

2.1.1 Low level and High level

2.1.1.1 Low level

2.1.1.2 High level

http://en.wikibooks.org/wiki/Electronics/Transmitter_design
http://en.wikibooks.org/wiki/Electronics/Transmitter_design#Frequency_synthesis_and_frequency_multiplication
http://en.wikibooks.org/wiki/Electronics/Transmitter_design#Synthesis
http://en.wikibooks.org/wiki/Electronics/Transmitter_design#Fixed_frequency_systems
http://en.wikibooks.org/wiki/Electronics/Transmitter_design#Variable_frequency_systems
http://en.wikibooks.org/wiki/Electronics/Transmitter_design#Multiplication
http://en.wikibooks.org/wiki/Electronics/Transmitter_design#Frequency_mixing_and_Modulation
http://en.wikibooks.org/wiki/Electronics/Transmitter_design#AM_modes
http://en.wikibooks.org/wiki/Electronics/Transmitter_design#Low_level_and_High_level
http://en.wikibooks.org/wiki/Electronics/Transmitter_design#Low_level
http://en.wikibooks.org/wiki/Electronics/Transmitter_design#High_level

Basics

520

2.1.2 Types of AM modulators

2.1.2.1 Plate AM modulators

2.1.2.2 Screen AM modulators

2.2 Other modes which are related to AM

2.2.1 Single-sideband modulation

2.2.1.1 Filter method

2.2.1.2 Phasing method

2.2.2 Vestigial-sideband modulation

2.2.3 Morse

2.3 FM modes

2.3.1 Direct FM

2.3.2 Indirect FM

3 RF power amplifiers

3.1 Valves

3.1.1 Advantages of valves

3.1.2 Disadvantages of valves

3.2 Solid state

4 Linking the transmitter to the aerial

5 EMC matters

5.1 RF leakage (defective RF shielding)

5.2 Spurious emissions

5.2.1 Harmonics

5.2.2 Local oscillators and unwanted mixing products

5.2.3 Instability and parasitic oscillations

6 Reference

7 Further reading

16.1.1.1 Frequency synthesis and frequency multiplication

Synthesis

Fixed frequency systems

For a fixed frequency transmitter one commonly used method is to use a resonant quartz crystal in

a Crystal oscillator to fix the frequency. For transmitter where the frequency has to be able to be

varied then several options can be used.

http://en.wikibooks.org/wiki/Electronics/Transmitter_design#Types_of_AM_modulators
http://en.wikibooks.org/wiki/Electronics/Transmitter_design#Plate_AM_modulators
http://en.wikibooks.org/wiki/Electronics/Transmitter_design#Screen_AM_modulators
http://en.wikibooks.org/wiki/Electronics/Transmitter_design#Other_modes_which_are_related_to_AM
http://en.wikibooks.org/wiki/Electronics/Transmitter_design#Single-sideband_modulation
http://en.wikibooks.org/wiki/Electronics/Transmitter_design#Filter_method
http://en.wikibooks.org/wiki/Electronics/Transmitter_design#Phasing_method
http://en.wikibooks.org/wiki/Electronics/Transmitter_design#Vestigial-sideband_modulation
http://en.wikibooks.org/wiki/Electronics/Transmitter_design#Morse
http://en.wikibooks.org/wiki/Electronics/Transmitter_design#FM_modes
http://en.wikibooks.org/wiki/Electronics/Transmitter_design#Direct_FM
http://en.wikibooks.org/wiki/Electronics/Transmitter_design#Indirect_FM
http://en.wikibooks.org/wiki/Electronics/Transmitter_design#RF_power_amplifiers
http://en.wikibooks.org/wiki/Electronics/Transmitter_design#Valves
http://en.wikibooks.org/wiki/Electronics/Transmitter_design#Advantages_of_valves
http://en.wikibooks.org/wiki/Electronics/Transmitter_design#Disadvantages_of_valves
http://en.wikibooks.org/wiki/Electronics/Transmitter_design#Solid_state
http://en.wikibooks.org/wiki/Electronics/Transmitter_design#Linking_the_transmitter_to_the_aerial
http://en.wikibooks.org/wiki/Electronics/Transmitter_design#EMC_matters
http://en.wikibooks.org/wiki/Electronics/Transmitter_design#RF_leakage_.28defective_RF_shielding.29
http://en.wikibooks.org/wiki/Electronics/Transmitter_design#Spurious_emissions
http://en.wikibooks.org/wiki/Electronics/Transmitter_design#Harmonics
http://en.wikibooks.org/wiki/Electronics/Transmitter_design#Local_oscillators_and_unwanted_mixing_products
http://en.wikibooks.org/wiki/Electronics/Transmitter_design#Instability_and_parasitic_oscillations
http://en.wikibooks.org/wiki/Electronics/Transmitter_design#Reference
http://en.wikibooks.org/wiki/Electronics/Transmitter_design#Further_reading

Communication Basics

521

Variable frequency systems

An array of crystals—This approach uses several oscillators, each tuned to a different fixed

frequency.

Variable frequency oscillator (VFO)

Phase locked loop (PLL) frequency synthesizer

Multiplication

It is often the case for VHF transmitters that it is not possible to operate the crystal controlled or

variable frequency oscillator at the frequency of the final output. Also, for reasons including

frequency stability, it is better to multiply the frequency of the free running oscillator up to the

final frequency which is required.

If the output of a amplifier stage is tuned to a multiple of the frequency which the stage is driven

with, the stage is optimised to give a larger harmonic output than that found in a linear amplifier.

In a push-push stage, the output will only contain the even harmonics. This is because the currents

which would generate the fundamental and the odd harmonics in this circuit (if one valve was

removed) are canceled out by the second valve. Note that in these diagrams that the bias supplies

and the neutralization have been omitted for clarity. In a real system it is likely that tetrodes would

be used as plate to grid capacitance in a tetrode is lower so making the stage less likely to be

unstable.

Here in the push-pull stage

the output will only contain

the odd harmonics because of

the canceling effect.

16.1.1.2 Frequency mixing and Modulation

The task of many transmitters is to transmit some form of information using a carrier wave. This

process is called modulation. There are many types of RF modulation, and the choice of

modulation often depends on the type of information being transmitted.

For instance, audio information is continuous in time and value, and scaling by a constant (i.e.

signal inversion, volume control) is acceptable, so AM and FM transmission work. But for digital

communications, the signal is discrete in time and discrete in value, and inversion of the signal is

unacceptable, so AM and FM are not (on their own) satisfactory. For digital communications, a

modulation such as frequency shift keying (FSK) or on-off keying (OOK) over FM would be better.

http://commons.wikimedia.org/wiki/File:Freqdoublermade_using_triodes.png
http://commons.wikimedia.org/wiki/File:Freqtripliermade_of_triodes.png

Basics

522

AM modes

In many cases the carrier wave is mixed with another electrical signal to impose upon it the

information. This occurs in Amplitude modulation (AM).

Low level and High level

Low level

Here a small audio stage is used to modulate a low power stage, the output of this stage is then

amplified using a linear RF amplifier.

Advantages

The advantage of using a linear RF amplifier is that the smaller early stages can be modulated,

which only requires a small audio amplifier to drive the modulator.

Disadvantages

The great disadvantage of this system is that the amplifier chain is less efficient, because it has to

be linear to preserve the modulation. Hence class C amplifiers cannot be employed.

An approach which marries the advantages of low-level modulation with the efficiency of a Class

C power amplifier chain is to arrange a feedback system to compensate for the substantial

distortion of the AM envelope. A simple detector at the transmitter output (which can be little

more than a loosely coupled diode) recovers the audio signal, and this is used as negative feedback

to the audio modulator stage. The overall chain then acts as a linear amplifier as far as the actual

modulation is concerned, though the RF amplifier itself still retains the Class C efficiency. This

approach is widely used in practical medium power transmitters, such as AM radiotelephones.

High level

Advantages

One advantage of using class C amplifiers in a broadcast AM transmitter is that only the final stage

needs to be modulated, and that all the earlier stages can be driven at a constant level. These class

C stages will be able to generate the drive for the final stage for a smaller DC power input.

However in many designs in order to obtain better quality AM the penultimate RF stages will need

to be subject to modulation as well as the final stage.

Disadvantages

A large audio amplifier will be needed for the modulation stage, at least equal to the power of the

transmitter output itself. Traditionally the modulation is applied using an audio transformer, and

this can be bulky. Direct coupling from the audio amplifier is also possible (known as a cascode

arrangement), though this usually requires quite a high DC supply voltage (say 30V or more),

which is not suitable for mobile units.

Types of AM modulators

A wide range of different circuits have been used for AM. While it is perfectly possible to create

good designs using solid-state electronics, valved (tube) circuits are shown here. In general, valves

Communication Basics

523

are able to easily yield RF powers far in excess of what can be achieved using solid state. Most

high-power broadcast stations still use valves.

Plate AM modulators

In plate modulation systems the voltage delivered to the stage is changed. As the power output

available is a function of the supply voltage, the output power is modulated. This can be done

using a transformer to alter the anode (plate) voltage. The advantage of the transformer method is

that the audio power can be supplied to the RF stage and converted into RF power.

Anode modulation

using a transformer.

The tetrode is supplied

with an anode supply

(and screen grid

supply) which is

modulated via the

transformer. The

resistor R1 sets the grid

bias, both the input

and outputs are tuned

LC circuits which are

tapped into by

inductive coupling.

http://commons.wikimedia.org/wiki/File:Ammodstage.jpg

Basics

524

An example of a series

modulated amplitude

modulation stage. The

tetrode is supplied with an

anode supply (and screen

grid supply) which is

modulated by the

modulator valve. The

resistor VR1 sets the grid

bias for the modulator

valve, both the RF input

(tuned grid) and outputs

are tuned LC circuits

which are tapped into by

inductive coupling. When

the valve at the top

conducts more than the

potential difference

between the anode and

cathode of the lower valve

(RF valve) will increase.

The two valves can be

thought of as two resistors

in a potentiometer.

http://commons.wikimedia.org/wiki/File:Seriesmod.jpg

Communication Basics

525

Screen AM modulators

Under steady state conditions (no audio driven) the stage will be a simple RF amplifier where

the grid bias is set by the cathode current. When the stage is modulated the screen potential

changes and so alters the gain of the stage.

Other modes which are related to AM

Several derivatives of AM are in common use. These are

Single-sideband modulation

(SSB, or SSB-AM single-sideband full carrier modulation), very similar to single-sideband

suppressed carrier modulation (SSB-SC)

Filter method

Using a balanced mixer a double side band signal is generated, this is then passed through a very

narrow bandpass filter to leave only one side-band. By convention it is normal to use the upper

sideband (USB) in communication systems, except for HAM radio when the carrier frequency is

below 10 MHz here the lower side band (LSB) is normally used.

Phasing method

The phasing method is another way to generate of single sideband signals. One of the weaknesses

of this method is the need for a network which imposes a constant 90o phase shift on audio signals

throughout the entire audio spectrum. By reducing the audio bandwidth the task of designing the

phaseshift network can be made more easy.

Imagine that the audio is a single sine wave E = Eo sine (ωt)

The audio signal is passed through the phase shift network to give two identical signals which

differ by 90o.

http://en.wikibooks.org/w/index.php?title=Grid&action=edit&redlink=1
http://en.wikipedia.org/wiki/Single-sideband_modulation
http://en.wikipedia.org/wiki/Single-sideband_modulation
http://commons.wikimedia.org/wiki/File:Screenmodulator.jpg

Basics

526

So as the audio input is a single sine wave the outputs will be

E = Eo sine (ωt)

and

E = Eo cosine (ωt)

These audio outputs are mixed in non linear mixers with a carrier, the carrier drive for one of these

mixers is shifted by 90o. The output of these mixers is combined in a linear circuit to give the SSB

signal.

Vestigial-sideband modulation[]

Vestigial-sideband modulation (VSB, or VSB-AM) is a type of modulation system commonly used

in TV systems, it is normal AM which has been passed through a filter which removes one of the

sidebands.

Morse

Strictly speaking the commonly used 'AM' is double-sideband full carrier. Morse is often sent

using on-off keying of an unmodulated carrier(Continuous wave), this can be thought of as an AM

mode.

FM modes

Direct FM

Direct FM (true Frequency modulation) is where the frequency of an oscillator is altered to impose

the modulation upon the carrier wave. This can be done by using a voltage controlled capacitor

(Varicap diode) in a crystal controlled oscillator. The frequency of the oscillator is then multiplied

up using a frequency multiplier stage, or is translated upwards using a mixing stage to the output

frequency of the transmitter.

Indirect FM

Indirect FM employs varicap diode to impose a phase shift (which is voltage controlled) in a tuned

circuit which is fed with a plain carrier. This is termed Phase modulation, the modulated signal

from a phase modulated stage can be understood with a FM receiver but for good audio quality

the audio applied to the phase modulation stage.

http://en.wikipedia.org/wiki/Vestigial-sideband_modulation

Communication Basics

527

This is a solid state circuit, on the right a RF drive is applied to the base of the transistor, the tank

circuit (LC) connected to the collector via a capacitor contains a pair of varicap diodes. As the

voltage applied to the varicaps is changed the phase shift of the output will change.

Sigma-delta modulation (∑Δ)

16.1.1.3 RF power amplifiers

Valves

For high power systems it is normal to use valves, please see Valved RF amplifiers for details of

how valved RF power stages work.

Advantages of valves

Good for high power systems

Electrically very robust, they can tolerate overloads for minutes which would destroy bipolar

transistor systems in milliseconds

Disadvantages of valves

Heater supplies are required for the cathodes

High voltages (Threat of death) are required for the anodes

Valves have a shorter working life than solid state parts because the heaters tend to fail

Solid state

For low and medium power it is often the case that solid state power stages are used. Sadly for

high power systems these cost more per Watt of output power than a valved system.

16.1.1.4 Linking the transmitter to the aerial

The vast majority of modern equipment is designed to operate with a resistive load driven via

coaxial cable of one particular impedance, often 50 ohms. To connect the aerial to this coaxial cable

http://en.wikipedia.org/wiki/Sigma-delta_modulation
http://en.wikibooks.org/w/index.php?title=Watt&action=edit&redlink=1
http://commons.wikimedia.org/wiki/File:Indirectfmmodulator.jpg

Basics

528

transmission line a matching network and/or a balun may be required. Commonly a SWR meter

and/or a Antenna analyzer are used to check the goodness of the match between the aerial system

and the transmission line (feeder).

See Antenna tuner and balun for details of matching networks and baluns respectively.

16.1.1.5 EMC matters

While this section was written from the point of view of a radio ham with relation to Television

interference (radio transmitter interference) it applies to the construction and use of all radio

transmitters, and other electronic devices which generate high RF powers with no intention of

radiating these. For instance a dielectric heater might contain a 2000 Watt 27 MHz source within it,

if the machine operates as intended then none of this RF power will leak out. However if the

device is subject to a fault then when it operates RF will leak out and it will be now a transmitter.

Also computers are RF devices, if the cases is poorly made then the computer will radiate at VHF.

For example if you attempt to tune into a weak FM radio station (88 to 108 MHz, band II) at your

desk you may lose reception when you switch on your PC. Equipment which is not intended to

generate RF, but does so through for example sparking at switch contacts is not considered here,

for a consideration of such matters please see Television interference (electrical interference) for

further details.

RF leakage (defective RF shielding)

All equipment using RF electronics should be inside a screened metal box, all connections in or out

of the metal box should be filtered to avoid the ingress or egress of radio signals. A common and

effective method of doing so for wires carrying DC supplies, 50 Hz AC connections, audio and

control signals is to use a feedthrough capacitor. This is a capacitor which is mounted in a hole in

the shield, one terminal of the capacitor is its metal body which touches the shielding of the box

while the other two terminal of the capacitor are the on either side of the shield. The feed through

capacitor can be thought of as a metal rod which has a dielectric sheath which in turn has a metal

coating.

In addition to the feed through capacitor, either a resistor or RF choke can be used to increase the

filtering on the lead. In transmitters it is vital to prevent RF from entering the transmitter through

any lead such as a power, microphone or control connection. If RF does enter a transmitter in this

way then an instability known as motorboating can occur. Motorboating is an example of a self

inflicted EMC problem.

If a transmitter is suspected of being responsible for a television interference problem then it

should be run into a dummy load, this is a resistor in a screened box or can which will allow the

transmitter to generate radio signals without sending them to the antenna. If the transmitter does

not cause interference during this test then it is safe to assume that a signal has to be radiated from

the antenna antenna to cause a problem. If the transmitter does cause interference during this test

http://en.wikipedia.org/wiki/Antenna_tuner
http://en.wikipedia.org/wiki/balun

Communication Basics

529

then a path exists by which RF power is leaking out of the equipment, this can be due to bad

shielding. This is a rare but insidious problem and it is vital that it is tested for.

You are most likely to see this leakage on homemade equipment or equipment which has been

modified. It is also possible to observe RF leaking out of microwave cookers.

Spurious emissions

Early in the development of radio technology it was recognized that the signals emitted by

transmitters had to be 'pure'. For instance Spark-gap transmitters were quickly outlawed as they

give an output which is so wide in terms of frequency. In modern equipment there are three main

types of spurious emissions.

The term Spurious emissions refers to any signal which comes out of a transmitter other than the

wanted signal. The spurious emissions include harmonics, out of band mixer products which are

not fully suppressed and leakage from the local oscillator and other systems within the transmitter.

Harmonics

These are multiples of the operation frequency of the transmitter, they can be generated in a stage

of the transmitter even if it is driven with a perfect sine wave because no real life amplifier is

perfectly linear. It is best if these harmonics are designed out at an early stage. For instance a push-

pull amplifier consisting of two tetrode valves attached to an anode tank resonant LC circuit which

has a coil which is connected to the high voltage DC supply at the centre (Which is also RF

ground) will only give a signal for the fundamental and the odd harmonics.

Basics

530

Here is a slightly worse design which only has one tetrode, while perfectly good designs have been

made using this circuit it does have more potential shortcomings than the above circuit.

http://commons.wikimedia.org/wiki/File:Goodpoweramp.jpg
http://commons.wikimedia.org/wiki/File:Badpoweramp.jpg

Communication Basics

531

In addition to the good design of the amplifier stages, the transmitter's output should be filtered

with a low pass filter to reduce the level of the harmonics.

The harmonics can be tested for using a RF spectrum analyser (expensive) or with an absorption

wavemeter (cheap). If a harmonic is found which is at the same frequency as the frequency of the

signal wanted at the receiver then this spurious emission can prevent the wanted signal from be

received.

Local oscillators and unwanted mixing products

Imagine a transmitter, which has an intermediate frequency (IF) of 144 MHz, which is mixed with

94 MHz to create a signal at 50 MHz, which is then amplified and transmitted. If the local oscillator

signal was to enter the power amplifier and not be adequately suppressed then it could be

radiated. It would then have the potential to interfere with radio signals at 94 MHz in the FM

audio (band II) broadcast band. Also the unwanted mixing product at 238 MHz could in a poorly

designed system be radiated. Normally with good choice of the intermediate and local oscillator

frequencies this type of trouble can be avoided, but one potentially bad situation is in the

construction of a 144 to 70 MHz converted, here the local oscillator is at 74 MHz which is very

close to the wanted output. Good well made units have been made which use this conversion but

their design and construction has been challenging. This problem can be thought of as being

related to the Image response problem which exists in receivers.

One method of reducing the potential for this transmitter defect is the use of balance and double

balanced mixers. If the equation is assumed to be

E = E1 . E2

and is driven by two simple sine waves, f1 and f2 then the output will be a mixture of four

frequencies

f1

f1+f2

f1-f2

f2

If the simple mixer is replaced with a balanced mixer then the number of possible products is

reduced. Imagine that two mixers which have the equation {I = E1 . E2} are wired up so that the

current outputs are wired to the two ends of a coil (the centre of this coil is wired to ground) then

the total current flowing through the coil is the difference between the output of the two mixer

stages. If the f1 drive for one of the mixers is phase shifted by 180o then the overall system will be

a balanced mixer.

Basics

532

E = K . Ef2 . ΔEf1

So the output will now have only three frequencies

f1+f2

f1-f2

f2

Now as the frequency mixer has fewer outputs the task of making sure that the final output

is clean will be simpler.

Instability and parasitic oscillations

If a stage in a transmitter is unstable and is able to oscillate then it can start to generate RF at either

a frequency close to the operating frequency or at a very different frequency. One good sign that it

is occurring is if a RF stage has a power output even without being driven by an exciting stage.

Another sign is if the output power suddenly increases wildly when the input power is increased

slightly, it is noteworthy that in a class C stage that this behaviour can be seen under normal

conditions. The best defence against this transmitter defect is a good design, also it is important to

pay good attention to the neutralization of the valves or transistors.

http://commons.wikimedia.org/wiki/File:Goodmixer.jpg

Receiver Design from http://en.wikipedia.org/wiki/Tuner_(electronics)

533

Reference

Radiocommunication handbook (RSGB), ISBN 09006125847

16.2 Receiver Design from http://en.wikipedia.org/wiki/Tuner_(electronics)

 Inductively coupled crystal radio receiver

The simplest tuner consists of an inductor and capacitor connected in parallel, where the capacitor or

inductor is made to be variable. This creates a resonant circuit which responds to an alternating

current at one frequency. Combined with a detector, also known as ademodulator, (diode D-1, in the

circuit), it becomes the simplest radio receiver, often called a crystal set.

Practical radio tuners use a superheterodyne receiver. Older models would realize manual tuning by

means of mechanically operated ganged variable capacitors. Often several sections would be

provided on a tuning capacitor, to tune several stages of the receiver in tandem, or to allow

switching between different frequency bands. A later method used a potentiometer supplying a

variable voltage tovaractor diodes in the local oscillator and tank circuits of front end tuner, for

electronic tuning. Still later, phase locked loop methods were used, with microprocessor control.

In a self-contained radio receiver for audio, the signal from the detector after the tuner is run

through a volume control and to an amplifier stage. The amplifier feeds either an internal speaker

or headphones. In a tuner component of an audio system (for example, a home high-fidelity

system or a public address system in a building), the output of the detector is connected to a

separate external system of amplifiers and speakers.

The broadcast audio FM band (88 - 108 MHz in most countries) is around 100 times higher in

frequency than the AM band and provides enough space for a bandwidth of 50 kHz.This

bandwidth is sufficient to transmit both stereo channels with almost the full bandwidth of the

human ear. Sometimes, additional subcarriers are used for unrelated audio or data transmissions.

The left and right audio signals must be combined into a single signal which is applied to the

modulation input of the transmitter; this is done by the addition of an inaudible subcarrier signal

to the FM broadcast signal. FM stereo allows left and right channels to be transmitted. The

availability of FM stereo, a quieter VHF broadcast band, and better fidelity lead to the

specialization of FM broadcasting in music, tending to leave AM broadcasting with spoken-word

material.

7 http://en.wikibooks.org/wiki/Special:BookSources/0900612584

http://en.wikibooks.org/wiki/Special:BookSources/0900612584
http://en.wikipedia.org/wiki/Tuner_(electronics)
http://en.wikipedia.org/wiki/Crystal_radio
http://en.wikipedia.org/wiki/Inductor
http://en.wikipedia.org/wiki/Capacitor
http://en.wikipedia.org/wiki/Resonance
http://en.wikipedia.org/wiki/Detector_(radio)
http://en.wikipedia.org/wiki/Demodulator
http://en.wikipedia.org/wiki/Crystal_radio_receiver
http://en.wikipedia.org/wiki/Superheterodyne_receiver
http://en.wikipedia.org/wiki/Potentiometer
http://en.wikipedia.org/wiki/Varactor_diode
http://en.wikipedia.org/wiki/Phase_locked_loop
http://en.wikipedia.org/wiki/Microprocessor
http://en.wikipedia.org/wiki/FM_stereo
http://en.wikipedia.org/wiki/FM_broadcasting
http://en.wikipedia.org/wiki/File:Galena.svg

Basics

534

16.3 Antenna

An antenna (or aerial) is an electrical device which converts electric power into radio waves, and vice

versa.[1]
 It is usually used with a radio transmitter or radio receiver. In transmission, a radio transmitter

supplies an oscillating radio frequency electric current to the antenna's terminals, and the antenna

radiates the energy from the current as electromagnetic waves (radio waves). In reception, an

antenna intercepts some of the power of an electromagnetic wave in order to produce a tiny

voltage at its terminals, that is applied to a receiver to be amplified.

Antennas are essential components of all equipment that uses radio. They are used in systems such

as radio broadcasting, broadcast television, two-way radio, communications receivers, radar, cell phones,

and satellite communications, as well as other devices such as garage door openers, wireless

http://en.wikipedia.org/wiki/Electric_power
http://en.wikipedia.org/wiki/Radio_wave
http://en.wikipedia.org/wiki/Antenna_(radio)#cite_note-Graf-1
http://en.wikipedia.org/wiki/Transmitter
http://en.wikipedia.org/wiki/Receiver_(radio)
http://en.wikipedia.org/wiki/Transmission_(telecommunications)
http://en.wikipedia.org/wiki/Radio_frequency
http://en.wikipedia.org/wiki/Electromagnetic_radiation
http://en.wikipedia.org/wiki/Amplifier
http://en.wikipedia.org/wiki/Radio
http://en.wikipedia.org/wiki/Radio_broadcasting
http://en.wikipedia.org/wiki/Broadcast_television
http://en.wikipedia.org/wiki/Two-way_radio
http://en.wikipedia.org/wiki/Communications_receiver
http://en.wikipedia.org/wiki/Radar
http://en.wikipedia.org/wiki/Cell_phone
http://en.wikipedia.org/wiki/Satellite_communications
http://en.wikipedia.org/wiki/Garage_door_opener
http://en.wikipedia.org/wiki/Wireless_microphone

Antenna

535

microphones, bluetooth enabled devices, wireless computer networks, baby monitors, and RFID tagson

merchandise.

Typically an antenna consists of an arrangement of metallic conductors (elements), electrically

connected (often through atransmission line) to the receiver or transmitter. An oscillating current

of electrons forced through the antenna by a transmitter will create an oscillating magnetic

field around the antenna elements, while the charge of the electrons also creates an

oscillating electric field along the elements. These time-varying fields radiate away from the antenna

into space as a moving transverse electromagnetic field wave. Conversely, during reception, the

oscillating electric and magnetic fields of an incoming radio wave exert force on the electrons in

the antenna elements, causing them to move back and forth, creating oscillating currents in the

antenna.

Antennas may also include reflective or directive elements or surfaces not connected to the

transmitter or receiver, such as parasitic elements, parabolic reflectors or horns, which serve to direct

the radio waves into a beam or other desired radiation pattern. Antennas can be designed to transmit

or receive radio waves in all directions equally (omnidirectional antennas), or transmit them in a

beam in a particular direction, and receive from that one direction only (directional or high

gain antennas).

Diagram of the electric fields (blue) and

magnetic fields (red) radiated by adipole

antenna (black rods)during transmission.

Large parabolic antenna for communicating

with spacecraft

Antenna tuner

An antenna tuner, transmatch or antenna tuning unit (ATU) is a device connected between a radio

transmitter or receiver and its antenna to improve power transfer between them

by matching the impedance of the radio to the antenna. An antenna tuner matches a transceiver with

a fixed impedance (typically 50 ohms for modern transceivers) to a load (feed line and antenna)

impedance which is unknown, complex or otherwise does not match. An ATU allows the use of

one antenna on a broad range of frequencies. An antenna and transmatch are not as efficient as

a resonant antenna due to feedline losses due to the SWR (multiple reflections) and losses in the

ATU itself. An ATU is an antenna matching unit, and cannot change the resonant frequency of the

http://en.wikipedia.org/wiki/Bluetooth
http://en.wikipedia.org/wiki/Wireless_LAN
http://en.wikipedia.org/wiki/Baby_monitor
http://en.wikipedia.org/wiki/RFID_tag
http://en.wikipedia.org/wiki/Conductor_(material)
http://en.wikipedia.org/wiki/Driven_element
http://en.wikipedia.org/wiki/Transmission_line
http://en.wikipedia.org/wiki/Electron
http://en.wikipedia.org/wiki/Magnetic_field
http://en.wikipedia.org/wiki/Magnetic_field
http://en.wikipedia.org/wiki/Electric_charge
http://en.wikipedia.org/wiki/Electric_field
http://en.wikipedia.org/wiki/Passive_radiator
http://en.wikipedia.org/wiki/Parabolic_antenna
http://en.wikipedia.org/wiki/Horn_antenna
http://en.wikipedia.org/wiki/Radiation_pattern
http://en.wikipedia.org/wiki/Omnidirectional_antenna
http://en.wikipedia.org/wiki/Directional_antenna
http://en.wikipedia.org/wiki/High_gain_antenna
http://en.wikipedia.org/wiki/High_gain_antenna
http://en.wikipedia.org/wiki/Electric_field
http://en.wikipedia.org/wiki/Magnetic_field
http://en.wikipedia.org/wiki/Dipole_antenna
http://en.wikipedia.org/wiki/Dipole_antenna
http://en.wikipedia.org/wiki/Parabolic_antenna
http://en.wikipedia.org/wiki/Radio_transmitter
http://en.wikipedia.org/wiki/Radio_transmitter
http://en.wikipedia.org/wiki/Radio_antenna
http://en.wikipedia.org/wiki/Impedance_matching
http://en.wikipedia.org/wiki/Electrical_impedance
http://en.wikipedia.org/wiki/Ohm
http://en.wikipedia.org/wiki/Antenna_(radio)
http://en.wikipedia.org/wiki/Electrical_resonance
http://en.wikipedia.org/wiki/Standing_wave_ratio

Basics

536

aerial. Similar matching networks are used in other equipment (such aslinear amplifiers) to

transform impedance.

Basic network for a antenna tuner

16.4 Software Defined Radio (SDR)

Software Defined Radio is a Wireless communication in which the transmitter modulation is

generated or defined by a computer, and the receiver uses a computer to recover the signal

intelligence? To select the desired modulation type, the proper programs must be run by

microcomputers that control the transmitter and receiver

SDR block diagram

16.5 HDSDR (High Definition Software Defined Radio)

HDSDR (High Definition Software Defined Radio) is a freeware SDR program for Microsoft

Windows 2000/XP/Vista/7/8. Typical applications are Radio listening, Ham Radio, SWL, Radio

http://en.wikipedia.org/wiki/Linear_amplifier

ExtIO.dll

537

Astronomy, NDB-hunting and Spectrum analysis. HDSDR (former WinradHD) is an advanced

version of Winrad, written by Alberto di Bene

16.6 ExtIO.dll

The HDSDR software doesn't communicate with the SDR hardware directly. It communicates with

the SDR radio hardware through an External Input Output Dynamic Link Library (ExtIO-DLL)

file, which is a type of plug-in. Alberto di Bene designed the DLL interface so that Winrad can

operate with a wide range of SDR hardware. We extended the DLL-interface to support TX

switching. Winrad and HDSDR can support new hardware radios using an ExtIO-DLL file without

the need to change the HDSDR software. ExtIO DLL files are written by anyone who wishes to

provide support for any particular SDR hardware. In this manner, several radios can be used with

a single piece of software. The software in this case is HDSDR.

16.7 How do I develop an ExtIO.dll ?

We assume that you are a software developer familiar with C/C++ programming. Here is a

“hopefully” well documented header file 8, which specifies the interface between HDSDR and an

ExtIO-DLL. Here is also an example ExtIO DLL 9 with sources as public-domain, developed with

Microsoft Visual C++ 2008 Express ion.

16.8 Visual C++ 2008 Express

Visual C++ is part of the Visual Studio Programming Suite. A light express version is freely available.

Visual Studio is an Integrated Development Environment (IDE) for developing web applications,

client applications, and Windows Phone mobile applications. It supports C, C++, C#, Visual Basic

16.9 Qt

Qt is designed for developing applications and user interfaces once and deploying them across

several desktop and mobile operating systems. The easiest way to start application development

with Qt is to download and install Qt 5. It contains Qt libraries, examples, documentation, and the

necessary development tools, such as the Qt Creator integrated development environment (IDE)

16.10 RF hardware (USB Stick)

For the RF hardware there are some existing SDR USB sticks we can use it:

16.10.1 TERRATEC ran T stick DVB-T/DAB/DAB + Stick USB 2.0 10

8 Guide\LC_ExtIO_Types.h - reference: http://www.hdsdr.de/download/LC_ExtIO_Types.h

9 Guide\ExtIO_Demo_101\.. - reference: http://hdsdr.de/download/ExtIO/ExtIO_Demo_101.zip

10 Reference: http://www.amazon.de/Terratec-ran-T-Stick-DVB-T-schwarz/dp/B007EB995U/

http://www.amazon.de/Terratec-ran-T-Stick-DVB-T-schwarz/dp/B007EB995U/

Basics

538

Price: EUR 29.98

The ultimate all-rounder for the digital TV and radio

reception on your PC

USB stick for DVB-T (TV) and DAB / DAB + (radio). Direct

recording and programming via EPG recording Software for

both television and radio reception. Support for all major

DVB-T Features

16.10.2 Hackrf (an-open-source-SDR-platform) 11

Price: about 300$

Transmit or receive any radio signal from 30 MHz to

6000 MHz on USB power with HackRF.

HackRF is an open source hardware project to build a

Software Defined Radio (SDR) peripheral.

16.11 RF Overview

Radio Frequency (RF) is a rate of oscillation in the range of about 9 kHz to 300 GHz, which

corresponds to the frequency of radio waves, and the alternating currents which carry radio

signals. It is the use of radio signals to communicate real-time data from the warehouse floor to the

WMS database and back to the floor.

This expes processing in the warehouse. Scanners collect the data and transmit it via radio

frequency to antennas located throughout the warehouse. From the antennas, the signal proceeds

to an access point that communicates with the warehouse management system. This process

reduces paper, data entry time delays, cycle count processing, out of stock quantities, typing

errors...

11 The primary web page for HackRF is: http://greatscottgadgets.com/hackrf/

http://greatscottgadgets.com/hackrf/

RF Frequencies policies

539

16.12 RF Frequencies policies

The LNFT allocates Lebanon’s radiofrequency spectrum into a number of frequency bands

relevant to ITU regulations and specifies the general purposes for which the bands may be used.

This process is referred to as the allocation of frequency bands to radio communication services.

The primary objectives to be achieved with the radio spectrum are:

-To harmonize spectrum use with international developments. In this regard, Lebanon follows

closely the work of the ITU, the CEPT, the league of Arab States and the local regional organization

-To manage the radio spectrum within Lebanon taking into account the governmental

requirements and the needs of the various commercial sectors

-To stimulate technological innovation and competitiveness

The LNFT will be updated from time to time dependant on international initiatives and national

decisions. The main source documentation used in the development of this version of LNFT was

the ITU Radio Regulations and the Provisional Final Acts of the ITU WRC07.

Each band may be allocated to one or more services. The services printed in capitals are

called “primary” services; the names which printed in small characters are called “secondary”

services. Stations of a secondary service shall not cause harmful interference to stations of primary

service and cannot claim protection from harmful interference from stations of a primary service.

 For our purpose we should use the Amateurs service bands which are

specified in the following table12:

Frequency

Band (kHz

MHz or

GHz)

International Region 1

Allocation

National Allocation

Main

application

Notes

135.7 – 137.8 kHz FIXED

MARITIME MOBILE

Amateur 5.4C03

5.64 5.67 5.4C04

FIXED

MARITIME MOBILE

5.64 5.67 5.4C04

SRD

Maritime

applications

Ultra Low Power

Active

Medical Implants

ERC REC 62-01

1810-1830

kHz

AMATEUR

5.98

5.99

5.100 5.101

AMATEUR

FIXED 5.98

MOBILE except

aeronautical mobile
5.100

Amateur

applications

1830-1850
kHz

AMATEUR

Amateur

applications

3500-3800
kHz

AMATEUR

FIXED
MOBILE

aeronautical

5.92

AMATEUR

FIXED
MOBILE

aeronautical

5.92

Amateur

applications

12 This table is a part from the LNFT document publish on 28-06-2008

Basics

540

7000-7100
kHz

AMATEUR

AMATEURSATELLITE

5.140 5.141 5.141A

AMATEUR

AMATEURSATELLITE

Amateur

applications

7100-7200
kHz

AMATEUR
5.141A 5.141B 5.141C

5.142

Amateur LBN 3
BROADCASTING

5.141C

10100-10150
kHz

FIXED

Amateur

FIXED

Amateur

14000-14250
kHz

AMATEUR
AMATEURSATELLITE

AMATEUR
AMATEURSATELLITE

14250-14350
kHz

AMATEUR

5.152

AMATEUR

18068-18168
kHz

AMATEUR

AMATEURSATELLITE

5.154

AMATEUR

AMATEURSATELLITE

21000-21450

kHz

AMATEUR

AMATEURSATELLITE

AMATEUR

AMATEURSATELLITE

24890-24990
kHz

AMATEUR
AMATEURSATELLITE

AMATEUR
AMATEURSATELLITE

28000-29700

kHz

AMATEUR

AMATEURSATELLITE

AMATEUR

AMATEURSATELLITE

50.0000

52.0000

MHz

BROADCASTING

5.164 5.162A

BROADCASTING

LAND MOBILE 5.164

Amateur

LBN 4, LBN 6

 Geographical sharing

with wind profiler

radars in the range 46-

68 MHz

144-146

MHz

AMATEUR

AMATEURSATELLITE

AMATEUR

AMATEURSATELLITE

Amateur

430-432

MHz

AMATEUR

RADIOLOCATION

5.271 5.272 5.273 5.274

5.275 5.276 5.277

FIXED 5.276

MOBILE except

aeronautical mobile

AMATEUR

RADIOLOCATION

432-433.05
MHz

AMATEUR
RADIOLOCATION

Earth Exploration

Satellite (active) 5.279A

5.138 5.271 5.272 5.273

5.274 5.275 5.276 5.277

5.280 5.281 5.282

FIXED
MOBILE except

aeronautical mobile

AMATEUR

RADIOLOCATION

Earth Exploration

Satellite (active) 5.279A

5.276

5.277

433.05-

434.79 MHz

AMATEUR

RADIOLOCATION

Earth Exploration-

Satellite (active) 5.279A

5.138 5.271 5.272 5.276

5.277 5.280 5.281

FIXED

MOBILE except

aeronautical mobile

AMATEUR

RADIOLOCATION

Land Mobile

Earth Exploration-

Satellite (active) 5.279A
5.138 5.276

ISM

SRD

434.79-435
MHz

AMATEUR

RADIOLOCATION

Earth Exploration-

Satellite (active) 5.279A

5.138 5.271 5.272 5.276

5.277 5.280 5.281 5.282

FIXED

MOBILE except

Aeronautical Mobile

AMATEUR

AMATEURSATELLITE

RADIOLOCATION

Earth Exploration-
Satellite (active) 5.279A

5.276

 Amateur Satellite

Service restricted to

435-438 MHz.

435-438
MHz

 FIXED

AMATEUR

AMATEURSATELLITE

RADIOLOCATION

RF Frequencies policies

541

5.276

438-440

MHz

AMATEUR

RADIOLOCATION

5.271 5.273 5.274 5.275

5.276 5.277 5.283

FIXED

MOBILE except

aeronautical mobile

AMATEUR

RADIOLOCATION

5.276

1240-1300

MHz

EARTH

EXPLORATION

SATELLITE (active)

RADIOLOCATION

SPACE RESEARCH

(active)

RADIONAVIGATIONSATELLITE

(S/E)(S/S)
5.329 5.329A 5.328B

Amateur

5.282 5.330 5.331

5.335A

RADIOLOCATION

EARTH

EXPLORATION

SATELLITE (active)

SPACE RESEARCH

(active)

RADIONAVIGATION

RADIONAVIGATIONSATELLITE
5.329 5.329A 5.328B

Amateur

Amateur-Satellite

5.282 5.330 5.331

5.335A

DME

Radio navigation

Amateur

This band 1260-1300

MHz is proposed to be

protected to distance

measurement

equipment (DME)

Wind profiler radars

between 1270 MHz and

1295 MHz

2300-2450

MHz

FIXED

MOBILE 5.384A

Amateur
Radiolocation

5.150 5.282 5.395

FIXED

MOBILE

Amateur
Radiolocation

IMT (2300-2400

MHz)

Fixed links

The band 2300-2400

MHz identified for IMT

(WRC07)

FIXED

MOBILE

Amateur

Amateur Satellite

5.150 5.282

FIXED Links

Amateur

SRDs

RLAN

AVI

RFID

WLAN
ISM

The band 2400-2483.5

MHz is designated for

ISM applications.

Radio communications

must accept any

interference caused by

ISM apparatus in this
band.

5650-5725

MHz

RADIOLOCATION

MOBILE except

aeronautical mobile

5.450A 5.446A

Amateur
Space Research (deep

space)

5.282 5.451 5.453

5.454 5.455

FIXED 5.453

MOBILE

RADIOLOCATION

Amateur

5.282 LBN1

Defense systems

Wireless Access

RLANs

Shipborne and

VTS
Radar

Amateur

applications

ERC REC 70-03

Amateur Satellite

Service (Earth to

space), 5650-5670 MHz

from RR 5.282.

5725-5830

MHz

FIXED-SATELLITE

(E/S)

RADIOLOCATION

Amateur
5.150 5.451 5.455 5.456

5.453

FIXED 5.453

MOBILE

FIXED-SATELLITE

(E/S)
RADIOLOCATION

Amateur

5.150 LBN1

Amateur

applications

SRD

ISM
Radars

BFWA

ERC REC 70-03

ISM 5725-5875 MHz

RTTT 5805-5815 MHz

SRDs 5725-5875 MHz

5830-5850
MHz

FIXED-SATELLITE

(E/S)

RADIOLOCATION

Amateur

Amateur-Satellite (S/E)
5.150 5.451 5.455 5.456

5.453

FIXED

MOBILE

FIXED-SATELLITE

(E/S)

RADIOLOCATION
Amateur

Amateur-Satellite (S/E)

5.150 5.453

Fixed links

Amateur

applications

SRD

ISM
Radars

Amateur Satellite 5830-

5850 MHz (S/E)

10.00-10.15

GHz

FIXED

MOBILE

RADIOLOCATION

Amateur

5.479

FIXED

MOBILE

RADIOLOCATION

Amateur

5.479

Fixed links

SAB

10.15-

10.30 GHz

Fixed links

FWA

ERC REC 12-05 for

fixed service

ERC REC 13-04 for
FWA 10.15-10.30/10.5-

10.65 GHz

10.30-10.45
GHz

Fixed links

SAB

10.45-10.50
GHz

RADIOLOCATION

Amateur

Amateur Satellite

5.481

FIXED

RADIOLOCATION

MOBILE

Amateur
Amateur Satellite

Fixed links

SAB

ERC REC 12-05 for

fixed service

Basics

542

24.00-24.05
GHz

AMATEUR

AMATEURSATELLITE

5.150

AMATEUR

AMATEURSATELLITE

5.150

Amateur

ISM 24-24.5 GHz

24.05-24.25
GHz

RADIOLOCATION

Amateur

Earth exploration

Satellite (active)
5.150

RADIOLOCATION

Amateur

Earth exploration

Satellite (active)
Fixed

Mobile

5.150

Amateur

ISM

SAB

SRD
Motion sensors

ERC REC 70-03

ISM 24-24.5 GHz

47.00-47.20

GHz

AMATEUR

AMATEURSATELLITE

AMATEUR

AMATEURSATELLITE

Amateur

applications

Amateur satellite

applications

48.20-48.54
GHz

FIXED
FIXED-SATELLITE

(E/S) 5.552

(S/E) 5.516B 5.554A

5.555B

MOBILE

FIXED
FIXED-SATELLITE

(E/S) 5.552

(S/E) 5.516B 5.554A

5.555B

MOBILE

Amateur

Fixed satellite
applications

SAB

ERC REC 25-10
Feeder link band for

40GHz broadcasting

satellites

76.00-77.50
GHz

RADIO ASTRONOMY

RADIOLOCATION
Amateur

Amateur-Satellite

Space Research (S/E)

5.149

RADIO ASTRONOMY

RADIOLOCATION
Amateur

Amateur-Satellite

Space Research (S/E)

5.149

Radio astronomy

applications
RTTT

Amateur

applications

Amateur satellite

applications

Civil

radiolocation

Spectral line and wide

band continuum
observations

Road Transport and

Traffic Telematics 76-

77 GHz Radar

77.50-78.00
GHz

AMATEUR
AMATEUR

SATELLITE

Radio Astronomy

Space Research (S/E)

5.149

AMATEUR
AMATEUR

SATELLITE

Radio Astronomy

Space Research (S/E)

5.149

Radio astronomy
applications

Spectral line and wide
band continuum

observations

78.00-79.00

GHz

RADIOLOCATION

Amateur

Amateur Satellite
Radio astronomy

Space Research (S/E)

5.149 5.560

RADIOLOCATION

Amateur

Amateur-Satellite
Radio astronomy

Space Research (S/E)

5.149 5.560

Radio astronomy

applications

Spectral line and wide

band continuum

observations

79.00-81.00

GHz

RADIO ASTRONOMY

RADIOLOCATION

Amateur

Amateur Satellite

Space Research (S/E)
5.149

RADIO ASTRONOMY

RADIOLOCATION

Amateur

Amateur Satellite

Space Research (S/E)
5.149

Radio astronomy

applications

Spectral line and wide

band continuum

observations

122.25-123
GHz

FIXED

INTER-SATELLITE

MOBILE 5.558

Amateur

5.138

FIXED

INTER-SATELLITE

MOBILE 5.558

Amateur

5.138

Amateur

applications

Amateur satellite

applications

SRD

ERC REC 70-03

134-136

GHz

AMATEUR

AMATEURSATELLITE
Radio Astronomy

AMATEUR

AMATEURSATELLITE
Radio Astronomy

Amateur

applications
Amateur satellite

applications

136-141
GHz

RADIO ASTRONOMY

RADIOLOCATION

Amateur

Amateur satellite

5.149

RADIO ASTRONOMY

RADIOLOCATION

Amateur

Amateur satellite

5.149

Radio astronomy

applications

Amateur

applications

Amateur satellite

applications

Spectral line and wide

band continuum

observations

241-248
GHz

RADIO ASTRONOMY

RADIOLOCATION

Amateur

Amateur-Satellite

5.138 5.149

RADIO ASTRONOMY

RADIOLOCATION

Amateur

Amateur-Satellite

5.138 5.149

Amateur

applications

Amateur satellite

applications

Spectral line and wide

band continuum

observations

ERC REC 70-03

248-250
GHz

AMATEUR

AMATEURSATELLITE

AMATEUR

AMATEURSATELLITE

RF modules

543

Radio Astronomy

5.149

Radio Astronomy

5.149

The yellow rows indicate the frequency band which we are going to use it.

From 433.05 to

434.79 MHz

AMATEUR RADIOLOCATION

Earth Exploration- Satellite (active)

5.279A 5.138 5.271 5.272 5.276

5.277 5.280 5.281

FIXED MOBILE except

aeronautical mobile

AMATEUR

RADIOLOCATION Land Mobile

Earth Exploration- Satellite

(active) 5.279A 5.138 5.276

ISM

SRD

16.13 RF modules

An RF Module is a (usually) small electronic circuit used to transmit, receive, or transceive radio

waves on one of a number of carrier frequencies. RF Modules are widely used in consumer

application such as garage door openers, wireless alarm systems, industrial remote controls, smart

sensor applications, and wireless home automation systems. They are often used instead of

infrared remote controls as they have the advantage of not requiring line-of-sight operation.

In this project we will use an RF module to send and receive message between two programmable

microcontrollers with some condition related to the frequency, range and module speed. For this

purpose there are several RF modules which may do this, bellows we will take a look on some of

it:

16.13.1 STD-402

The transceiver to be used is MB-STD-RS232. It is a bi-directional semi-duplex radio modem

having RS030 serial interface. It uses CIRCUIT DESIGN’s standard 434 MHz FM Narrow Band

transceiver module STD-402 transceiver for RF part. This transceiver was selected because of its

frequency of 434 MHz For this frequency in Germany there is no extra permission necessary.

Another reason is that this transceiver is a cheap one.

The STD-402 transceiver is an UHF Narrow Band Multi channel Transceiver. The UHF FM-

Narrow Band semi-duplex radio data module STD-402 equipped PLL controller in its robust metal

housing. Unlike other transceivers, the STD-402 is ready to transmit RF data without complicated

controller board. The compact size and low power consumption of the STD-402 make it ideal for

battery operated applications where its interference rejection and practical distance range are

much better than similar RF modules based on Wide Band SAW – resonator frequency devices.

Most of RF settings are done by internal microcomputer, which allows the user to manipulate the

module without professional knowledge of RF circuit.

16.13.1.1 Special for MB-STD-RS232

Basics

544

Figure 5.3.1: MB-STD-RS232 – CIRCUIT DESIGN

The RF part complies with the European radio, EMC and safety requirements and has been

notified in major European countries under the R & TTE directive. The MB-STD-RS232 provides

long range data link at low/medium data rate for various industrial telemetry and data transfer

applications. Also this board can be used as a test board of the STD-402 TR.

Features

 CE compliance STD-402 434 MHz RF module on the board.

 RS232 interface with D-sub 9pins connector or Modular 6pin jack.

 Fixed frequency / Auto frequency setting selectable.

 Cross / Straight cable selection SW.

Applications

 Serial data transmission (RS232C communication)

 Telemeter (FA line, Sensor information)

 Wireless connection between PC and peripheral RS232 equipment

General Description

MB-STD-RS232 is designed to make it possible for the user to connect between RS232 equipments

with the radio. STD-402 434 MHz narrow band radio module that complies with EN300220 is

equipped on the board. 64 channels are pre-programmed in the module.

There are two frequency setting are available. In fixed (manual) setting, RF channel can be set on

board switches. In auto setting, RF channel is set to vacant channel automatically.

Operation mode and communication set up (Ack, parity, data rate) can be selected by on board

dip-switch. The operation mode 1 is designed for two-way communication and the operation

mode 2 is designed for one-way communication (TX -> RX).

1:N communication is possible by using unique module ID number that designated to each RF

module.

Specification

RF parameter

 Communication mode Half-Duplex

 Frequency range 433.200 to 434.775 MHz

CH step 25 kHz

Number of CH 64 CH

CH setting Fix / Auto (8Gr*8ch)

Modulation data speed 9600bps

Modulation 2FSK

Emission class F1D

Transmission power 10 mW

Serial Interface

Interface RS-232C

RF modules

545

Data format Asynchronous communication (UART)

Data speed of RS 1200/2400/4800/9600 bps

Flow control RS / CS hardware control

Buffer Transmission 2kB, Reception 2KB

Interface connector D-Sub 9P / Modular 6P

 Other

Switches Power, Frequency, Operation

Mode, Cable (Cross/Straight)

LED indication TX, RX, RSSI, LD, LE

Dimension 85*53*15mm

Supply Voltage 4.0 to 9V DC.

Figure 5.3.2: MB-STD-RS232 – CIRCUIT DESIGN

For more details about this board, refer to Annex A.

16.13.1.2 Special for STD-402 (Transceiver)

Basics

546

Figure 6.6: STD-402 Transceiver – CIRCUIT DESIGN

The STD-402 transceiver is an UHF Narrow Band Multi channel Transceiver.

The UHF FM-Narrow Band semi-duplex radio data module STD-402 equipped PLL controller in

its robust metal housing. Unlike other transceiver, the STD-402 is ready to transmit RF data

without complicated controller board. The compact size and low power consumption of the STD-

402 make it ideal for battery operated applications where its interference rejection and practical

distance range are much better than similar RF modules based on Wide Band SAW – resonator

frequency devices.

Most of RF settings are done by internal microcomputer, which allows the user to manipulate the

module without professional knowledge of RF circuit.

Features

 European EN300 200 standard compliance.

 High technology into compact module for easy operation.

 Low voltage operation from 3.6 V DC.

 Low current consumption, ideal for battery operated applications.

 9600bps data rate.

 Carrier sense output for Multi-Channel access operation.

Application

 Remote control system.

 Security systems.

 Bi-directional communication systems.

 Telemetry systems

 Handy terminal.

STD-402 characteristics

 Common

 Communication form Semi-duplex

 Frequency range 433.200 MHz to 433.775 MHz

 Channel step 25 KHz.

 Baud rate 9600bps max.

 Supply voltage 3.6 – 12 V DC (Direct Mode).

 Dimensions 53 35 12 mm.

RF modules

547

 Transmitter

 RF output power 9 mW 1mW.

 Data input level 3.6 – 12V (Direct Mode).

 Input signal Digital

 Spurious emission < -60 dBm (< 1 GHz).

 Supply current 36 mA.

 Receiver

 Receiver type Double super heterodyne PLL synthesizer.

 Selectivity 4 kHz at –6dB point.

 Data output Digital.

 The STD-402 transceiver has 3 mode operation guides:

1. Direct Mode Operation Guide (For more details about this mode, refer to Annex B)
2. Auto Mode Operation Guide. (For more details about this mode, refer to Annex C)
3. Auto Mode Operation Guide for CPU interface. (For more details about this mode, refer to Annex D)

Or the MB-STD-RS232 equips STD-402 transceiver module and performs packet communication using CPU

interface mode of the transceiver.

16.13.2 RFM42B-RFM31B 433MHz

Features:

• 433/868/915MHz ISM bands Frequency range:

• Low Power Consumption

• Data Rate = 2.103 to 056 kbps

• FSK, GFSK, and OOK modulation

• Power Supply = 1.8 to 3.6 V

• Ultra low power shutdown mode

• Wake‐up timer

Basics

548

• TX 64 byte FIFO

• Low battery detector

• Temperature sensor and 8-bit ADC

• –40 to +85 °C temperature range

• Integrated voltage regulators

• Frequency hopping capability

• On‐chip crystal tuning

• 14-PIN DIP & 16-PIN SMD package

• Low cost

• Power‐on‐reset (POR)

Special for RFM42B (Transmiter):

• Output Power Range

+1 to +20dBm (RFM42B)

–8 to +13dBm (RFM43B)

 • Integrated 32 kHz RC or 32 kHz XTAL

• Configurable packet handler

Special for RFM31B (Receiver):

• Sensitivity = –121 dBm

• Digital RSSI

• Auto-frequency calibration (AFC)

• Clear channel RX BW 2.6–620 kHz

• Programmable assessment

• Programmable packet handler

• Programmable GPIOs

• Embedded antenna diversity algorithm

• Configurable packet handler

• Preamble detector

• RX 64 byte FIFO

Application example:

RF modules

549

16.13.3 BOWITZ W.T.

 من كتاب الإرسال اللاسلكي و البث

 الكتاب الثامن من موسوعة عالم الالكترونيات للمهندس أمين فهمي

 دار الراتب الجامعية

 :الباب الثامن

 أجهزة الارسال و الاستقبال التجارية

 161: إبتداء من صفحة

16.13.4 Comparison between modules

module Frequency Range

(m)

Speed

(bps)

other

SHY-J6122TR 300 – 450 MHz Made In chine

Available in Lebanon

Rx Tx 315Mhy 315 MHz 433.92

MHz

> 500 m < 10Kbps Made In chine

Available in Lebanon

RFM12 433MHz 433 MHz > 115.2 Kbps Programmable TxRx

bandwidth

SPI interface

Made In chine

Available in Lebanon

RFM12 915 MHz 915 MHz

STD-402 434 MHz 500 m 9600 bps Serial com. Need extra

circuit (max232)

Not available anymore

Basics

550

BOWITZ W.T. Full W.T. project, We

should build it by

ourselves using the

BOWITZ open source

information

551

17 Specification

17.1 System Requirements

[SysReq 1] The system shall be a demonstration plattform for customers. The customers can then

specify their individual requirements. Afterwards the IAP ECS paltform shall be migrated in every

customer project to the specific needs

[SysReq 2] Our goal is to design an Emergency communication system (voice and information) for

the red halfmoon, Red Cross or police to stay on touch in emergency situations.

17.2 Hardware Requirements

[HWReq1] The system shall use a SDR (software defined radio) with RF transmission technology.

[HWReq 2] The sending and receiving HW shall be a cheap off-the-shell system so that the project

can be finished in December 2013.

17.3 Software Requirements

tbd

553

18 System Design

18.1 System Overview

18.2 Central Station

18.2.1 Architecture

Base Station

Software

Driver

ExtIO.dll

GUI interface

(C++ programming)

Demodulation

Modulation

Signal

processing

WinRad SDR (Software Defined Radio)

Keyboard

Screen

Display

Antenna

Ran T-stick
+

SDR platform

Client

SCS-SMS SCS-SMS

SCS-SMS
SCS-SMS

SCS-SMS

18.2.2 SDR development side

In our project, we need the Software Defined Radio code which is included in HDSDR software.

But as we know the HDSDR software is not open-source software while WinRad is. Then we have

two potential choices to do this step:

System Design of v3.2

GUI using I and Q

from WinRad

SCS-SMS

with W.T.

ran T-stick+

SDR platform

System Design

554

For the HDSDR: we can change and develop the ExtIO.dll file of this program to input from my

STD hardware source and to output on my GUI. In this case the HDSDR software will

work o the background of our GUI software.

This choice means that we should use the HDSDR software in the two communication

sides. This means also that we should use PC on the two sides again.

For the WinRad: as we say before WinRad is Open source then we can use its code. We should

read its code to know where is the SDR code to copy it to our GUI.

This choice has the following problem: with WinRad we can only receive while we need to

send and receive. This means that we should develop the code such that also sending is

possible.

18.2.3 Graphical User Interface

The Graphical User Interface is the interaction interface between the user and the system. The goal

of this interface is to monitor the location status: road status, problems on road, hospital status,

and also it will have a messaging box to write notes for each other. Also the user interface should

have the HDSDR option (change frequencies, send/receive, volume up/down) with an extra button

to open the HDSDR software when user want.

Mobile Stations

555

18.3 Mobile Stations

In the client side we can use the hardware of SCS-SMS project instead of PC but we should first

add an RF transceiver to it with doing some modification on it

The main modifications are:

- Adding the RF hardware (amplifier, filter, antenna)

- Adding the A/D and D/A converter

- Put the SDR code on its processor

System Design

556

Base Station

Software

Driver

ExtIO.dll

GUI interface

(C++ programming)

Demodulation

Modulation

Signal

processing

WinRad SDR (Software Defined Radio)

Keyboard

Screen

Display

Antenna

HackRF

SDR platform

Antenna

Amateur Radio Transceiver

Amplifier Filter

Client

In this version we need to change on the hardware with the software of the SCS-SMS project to be

able to use it in our project. The basic changes are:

- Adding the RF hardware (amplifier, filter, antenna)

- Adding the A/D and D/A converter

- Put the SDR (HDSDR) on a second processor

The new block diagram will be:

SCS-SMS after changes to GIS-STD

Keypad

LCD
Write on

LCD

Read from

Keypad
Encryption

Decryption

AES

PIC microcontroller

Demodulation

Modulation

Signal

processing

SDR

DAC

ADC

Amplifier Filter

RF hardware

Antenna

Processor

557

19 Mechanics

19.1 Mechanical Design

19.2 Prototype without cover

559

20 SCS-SMS

Secured communication System

20.1 Abstract of SCS-SMS

The goal of this project is to sending SMS securely on several way of

communication (i. e.: telephone, mobile, RF transceiver…)

20.2 System design

System plan:

Block diagram:

SCS-SMS

SCS-SMS Block Diagram

Keypad
Mic

port

Speaker

port
Receiving

Serial Com.
Write on

LCD

Read from

Keypad

Send by

Serial Com. Encryption

Decryption

AES

PIC microcontroller

Tx

Rx
LCD

SCS-SMS

560

New:

20.3 Architectures

The architectures of this project is contain as a basic component a PIC microcontroller with a

4x4 keypad with a LCD and with some other electronic components

Equipment used:

PIC microcontroller 18f4550 1

LCD 2x16 (line X character) 1

Keypad 4x4 1

Resistor 4.7 kΩ 1

Pot resistor 12 kΩ max 1

Capacitor 1µF 4

Crystal 48000 MHz 1

Voltage regulator 78L05 1

Push button 1

PIC microcontroller:

The microcontroller needs a programmer with a compiler to write your program in it. The

most widely compiler is the MPLAB software which we will use it in this project, the MPLAB

Keypad

LCD
Write on

LCD

Read from

Keypad
Encryption

Decryption

AES

PIC microcontroller

Demodulation

Modulation

Signal

processing

DAC

ADC

Antenna

RF Modules

Amplifie

r

Filter

Architectures

561

already have an Assembly compiler for the PIC but if you want to write your program in C

language then you need a C compiler for your PIC. On our project the compiler we use it is

MCC18 which is for the 18 PIC series. We will discuss the c program in the next chapter

LCD:

2x16 LCD is used in this project to display character on 2 lines 16 characters Liquid Crystal

Display. This LCD has 14 input pins to write on and to control LCD

LCD PINs description:

Pin Symbol Description

1 Vss Ground

2 Vcc +5 V power supply

3 Vee Power supply to control contrast

4 RS RS=0 to select command register

RS=1 to select data register

5 RW RW=0 for write

RW=1 for read

6 E Enable

7 DB0 The 8-bit data bus

8 Db1 The 8-bit data bus

9 DB2 The 8-bit data bus

10 DB3 The 8-bit data bus

11 DB4 The 8-bit data bus

12 DB5 The 8-bit data bus

13 DB6 The 8-bit data bus

14 DB7 The 8-bit data bus

On each time you need to write on LCD or to send a command to LCD you should set the

Enable pin E before then disable it after sending.

Also you should do a harmony between the speed of the LCD receiving with the speed of PIC

data sending, and this will be do it by the PIC software using a delays function.

Finally, a Pot resistor should be connecting to the R pin of the LCD to control the LCD light

brightness.

Keypad:

The keypad we use is 4x4 keypad with 8 I/O pins; the 4x4 keypad design show in the picture

bellow:

SCS-SMS

562

As we see in the picture above, we nave 4 input pins and 4 output pins. We should set each

input one by one and in each time we should read the output on the 4 output pins to know which

key was pressed.

In the software program you should specify the meaning of each key. In our project, we specify

our key as follow:

In the normal case the keypad will write numbers if F1 (Function1 key) pressed then the key

will write the Blue character (A, D, G, J, M, P, T, X, S). IF F2 (Function2 key) pressed then the key

will write the Green character (B, E, H, K, N, Q, U, Y, W). If the F3 (Function3 key) pressed then the

key will write the Red character (C, F, I, L, O, R, V, Z). There are also three other key which are:

(Enter) to send data, (_) to write a space, () to delete the last character.

System Design:

The design of the system was developed on Proteus to simulate and test before the built of the

real system.

The figure bellow shows us the system design:

Architectures

563

As we see, our design is too simple. It has three base components: PIC, keypad, and a LCD.

The Keypad is connected to port B of the PIC, and LCD connected to the port C and D. port D

connected to LCD Data register and port C (first three pins only) connected to LCD Controller. The

virtual machine is added for testing purpose.

The design is enough in Proteus simulation but it is not in the real hardware while we should

add some components for: timing resonator, voltage regulator, and reset button.

Timing components resonator:

A PIC microcontroller requires an external clock circuit (some PIC

microcontrollers have built-in clock circuits) to function accurately. For

accurate timing applications, the clock circuitry consists of a crystal, and

two small capacitors. Figure bellow shows the circuit diagram of a PIC

microcontroller with a 4-MHz crystal clock circuit. The crystal and the

capacitors are connected to the OSC1 and OSC2 inputs of the

microcontroller.

Power source and Reset circuit

A PIC microcontroller starts executing the user program from

address 0 of the program memory when power is applied to the

chip. As shown in Figure bellow, the reset input (MCLR) of the

microcontroller is usually connected to the 5V supply voltage

through a 4.7K resistor.

SCS-SMS

564

There are many applications where the user may want to force reset action e.g. by pressing an

external button so that the program re-starts to execute from the beginning. External reset is very

useful during microcontroller-based system development

and testing. Figure bellow shows how an external reset

button can be connected to a PIC microcontroller. Normally

the MCLR input is at logic 1, and goes to logic 0 which resets

the microcontroller when the reset button is pressed. The

microcontroller goes back to the normal operating mode

when the button is released.

Power supply

Every electronic circuit requires a power supply to operate. The required power can either be

provided from a battery, or the mains voltage can be used and then reduced to the required level

before it is used in the circuit (e.g. a mains adaptor). In this section, we shall look at the design of a

power supply circuit to power our PIC microcontroller circuits.

PIC microcontrollers can operate from a power supply voltage in the range 2 to 6V. The

standard power supply voltage in digital electronic circuits is 5 V and this is the voltage with

which the PIC microcontrollers are mostly operated. Unfortunately, it is not possible to obtain 5 V

using standard alkaline batteries only. The nearest we can get is by using three batteries, which

gives 4.5 V and this is not enough to power standard logic circuits. The simplest solution to drop

the voltage from 9 to 5 V is by using a potential divider circuit using two resistors. Although a

potential divider circuit is simple, it has the major disadvantage that the voltage at the output

depends on the current drawn from the circuit. As a result of this, the output voltage will change

as we add or remove components from our circuit. Also, the output voltage falls as the battery is

used. A voltage regulator circuit is needed to convert the 9 V battery voltage into 5V, independent

of the current drawn from the supply. A basic voltage regulator circuit consists of a regulator

integrated circuit and filter capacitors. Figure bellow shows a low-cost voltage regulator circuit

using the 78L05-type voltage regulator IC, and two filter capacitors. 78L05 is a 3-pin IC with a

maximum current capacity of 100 mA.

Architectures

565

One of the pins of 78L05 is connected to the +V terminal of the battery in parallel with a 0.33-uF

capacitor. One of the pins is connected to the -V terminal of the battery. The third pin provides the

+5 V output and a 0.01-uF capacitor should be used in parallel with this pin. In applications where

a larger current is required, the 7805 regulator IC can be used. This is pin compatible with the low-

power 78L05 and it has a maximum current capacity of 1 A. 78L05 should be used with a suitable

heat-sink in applications drawing more than a few hundreds of mill-amperes.

The complete circuit diagram of our PIC based basic system, together with the power supply,

is shown in Figure bellow. The circuit is now fully functional, what is required now is to write our

program and load it into the program memory of the microcontroller.

The final circuit is show in the figure bellow:

SCS-SMS

566

The final circuit on PCB board is show in the figure bellow (see layout on Appendix B):

20.4 PIC software

As we see in the section before, we will write our program using C language. So, we should

install the MCC18 C compiler for our MPLAB software.

In our program, some (.h) libraries which will be use in the program should be include on the

head of our program

The (.h) libraries we include it is:

P18f4550.h, stdio.h, dalays.h, string.h

And this is doing by this C code:

#include<p18f4550.h>

#include<stdio.h>

PIC software

567

#include<delays.h>

#include<string.h>

Now, let’s start with our program. The program is containing some special functions a side to

the main function and the initialization functions.

The special functions are:

void INIT_PORT(void);

void InitSerial(void);

char Encryption(char PC);

char Decryption(char CC);

void SendToSerial(char m);

void SendStringToSerial(char msg[]);

char ReceiveFromSerial(void);

void LCD_CMD(unsigned int value);

void WRITE_CHAR_LCD(unsigned char value);

void WRITE_STRING_LCD(char value[]);

char KeyPad(void);

void on_touch(void);

void send_SMS(void);

void send_data(void);

void Menu(void);

INIT_PORT function

The goal of this function is to initialize the input output port/pin for the microcontroller by

setting the TRIS for each port or pin used. This function also clears all port from any past setting.

This function has no return no calling input.

C code:

void INIT_PORT(void)

{

 ADCON1=0x0E; //for using analog port RA0

 TRISAbits.TRISA0 = 1; //input pin

 TRISAbits.TRISA1 = 1; //input pin

 PORTA =0x00;

 TRISB =0b11110000;

 PORTB =0x00;

 TRISCbits.TRISC0 = 0; //output pin for LCD RS

 TRISCbits.TRISC1 = 0; //output pin for LCD RW

 TRISCbits.TRISC2 = 0; //output pin for LCD E

 TRISCbits.TRISC6 = 0; //output pin

SCS-SMS

568

 TRISCbits.TRISC7 = 1; //input pin

 PORTC =0x00;

 TRISD =0x00; //output port 00000000

 PORTD =0x00;

}

InitSerial function

To communicate with external components such as computers or microcontrollers, the PIC

microcontroller uses a component called USART - Universal Synchronous Asynchronous

Receiver Transmitter. This component can be configured as:

 A Full-Duplex asynchronous system that can communicate with peripheral devices, such as

CRT terminals and personal computers

 A Half-Duplex synchronous system that can communicate with peripheral devices, such as

A/D or D/A integrated circuits, serial EEPROMs, etc.

To enable the serial communication with PIC microcontroller we must set different parameters

within two registers:

1. TXSTA - Transmit Status and Control Register

2. RCSTA - Receive Status and Control Register

The send information will be stored inside TXREG register, which acts as a temporary buffer

storage of information prior to transmission. While the receive information will be store in the

RCSTA register, which acts as a temporary buffer storage.

Each transmission is transmitted in the particular rate (BAUD). The baud rate is measured in

units of bps (bit per second). This is done by setting the system clock to the value needed. To do

so, we need to “write” a hexadecimal number to the SPBRG register. The value written to the

SPBRG register set the clock cycle to the value we want for the BAUD rate.

http://www.microcontrollerboard.com/support-files/txsta-register.pdf
http://www.microcontrollerboard.com/support-files/rcsta-register.pdf

PIC software

569

The size of SPBRG register is 8-bit. In asynchronous mode, the baud rate of transmission of the

information can be set to high speed or to low speed. The rate selection, as already seen, is made

by the BRGH bit in TXSTA register:

1 = High speed 0 = Low speed

For each baud rate we need to calculate the value being placed in the SPBRG differently:

SPBRG = (Fosc / (16 x Baud rate)) - 1, BRGH = 1 High Speed

SPBRG = (Fosc / (64 x Baud rate)) - 1, BRGH = 0 Low Speed

In our case, we have: Fosc=48 Mhz, Baud rate=9600

 For High Speed => SPBRG = 0x137 hex

 For Low Speed => SPBRG = 0x4D hex

After the calculation of this tree register we can set it by this function as follow, as we see this

function also have no return no calling input

C code:

void InitSerial(void)

{

 SPBRG = 0x4D; // 4D hex or 77 decimal (baud rate=9600), Low

speed: SPBRG = (Fosc / (64 x Baud rate)) - 1

 TXSTA = 0x22; // determinng the setting for the transmitter

 RCSTA= 0x90; //determining the setting for the receiver

}

SendToSerial function

this function receive a character as calling input and put it into the buffer of the transmission

register to be send and a while loop used with the TRMT register to wait until message was sent.

No return for this function, it has only char as calling input.

C code:

void SendToSerial(char m)

{

 TXREG = m;

 while(TXSTAbits.TRMT==0){}

}

SendStringToSerial function

SCS-SMS

570

This function is to send a more than one character to serial by only one command. This

function has no return but it need a string array from the caller. (@) is specified for ENTER

meaning.

C code:

void SendStringToSerial(char msg[])

{

 int i, lenght;

 lenght = strlen(msg);

 for(i=0; i <= lenght; i++){

 if(msg[i]=='@') break;

 SendToSerial(msg[i]);

 }

}

ReceiveFromSerial function

This function is to receive the data send from other and a while loop used with the RCIF

register to wait until message was received. No calling input for this function but it return the

receiving data for the caller.

C code:

char ReceiveFromSerial(void)

{

 PORTAbits.RA4 = 0; // reset the alert when data received

 while(PIR1bits.RCIF==0); // Wait until RCIF gets low

 return RCREG; // Retrieve data from reception register

}

LCD_CMD function

The goal of this function is to send a command for the LCD. To send a command for the LCD,

after the enabling of E register you should clear the RS and RW register. When you clear this two

register the LCD know that the data will be receive it is a command. After sending the

hexadecimal number of the command the enable register E should be disabling again.

Commands Hexadecimal code:

0x01 CLEAR DISPLAY SCREEN

0x02 RETURN HOME

0x04 SHIFT CURSER TO LEFT

0x06 SHIFT CURSER TO RIGHT

0x05 SHIFT DISPLAY TO RIGHT

0x07 SHIFT DISPLAY TO LEFT

0x0C CURSER OFF

PIC software

571

0x0E CURSER BLINKING

0x10 SHIFT CURSOR POSITION TO LEFT

0x14 SHIFT CURSOR POSITION TO RIGHT

0x18 SHIFT THE ENTIRE DISPLAY TO LEF

0x1C SHIFT THE ENTIRE DISPLAY TO RIGHT

0x80 FORCE CURSOR TO BEGINNING OF 1ST LINE
Or you can start from where you want 0x8X ex: 0x83

0xC0 FORCE CURSOR TO BIGINNING OF 2ND LINE
Or you can start from where you want 0xCX ex: 0xC7

0x38 TO WRITE ON THE TWO LINES

A delay should be executing to harmony the speed of the LCD and PIC; PIC will wait the LCD

to be ready to receive a new order. No return for this function but it receives an integer of the

command value from the caller.

C code:

void LCD_CMD(unsigned int value)

{

 PORTCbits.RC2=1; //E

 PORTCbits.RC0=0; //RS

 PORTCbits.RC1=0; //RW

 Delay10KTCYx(15);

 PORTD=value;

 Delay10KTCYx(15);

 PORTCbits.RC2=0; //E

 Delay10KTCYx(30);

}

WRITE_CHAR_LCD function

As the LCD_CMD function, the goal of this function is to send a data to the LCD to write it. To

write on LCD, after the enabling of E register you should set the RS register and clear the RW

register. When you do that the LCD know that the data will be receive it should be write on it.

Now we can send the data to be written on LCD then the enable register E should be disabling

again.

Also, a delay should be executing to harmony the speed of the LCD and PIC; PIC will wait the

LCD to be ready to receive a new data. No return for this function but it receives the character

from the caller.

C code:

void WRITE_CHAR_LCD(unsigned char value)

{

 PORTCbits.RC2=1; //E

 PORTCbits.RC0=1; //RS

SCS-SMS

572

 PORTCbits.RC1=0; //RW

 Delay1KTCYx(5);

 PORTD=value;

 Delay1KTCYx(5);

 PORTCbits.RC2=0; //E

}

WRITE_STRING_LCD function

This function is to send more than one character (a string) to LCD by only one command. This

function has no return but it need a string array from the caller.

C code:

void WRITE_STRING_LCD(char value[])

{

 int i, lenght;

 lenght = strlen(value) - 1;

 for(i=0; i <= lenght; i++){

 WRITE_CHAR_LCD(value[i]);

 }

 //Delay10KTCYx(10);

}

KeyPad function

The goal of this function is to get a key pressed by the user. We discussed in the previous

chapter how the keypad it works. In this function we write the IF condition which will specific the

meaning of each pressed key.

In out project we specify that the normal way of the keypad is to write number with enter and

space and we specify a three functional key (f1, f2, f3) to change from the normal way to one of the

three functional way which will write the English alphabetic instead of numbers. Figure bellow

shows the keypad key specification.

This function has no receiving input from the caller but it returns the pressed character for the

caller

C code:

PIC software

573

char KeyPad(void)

{

 char msg='*'; // to be sure that a key was pressed

 PORTB =0x00;

 msg = KeyPressed;

 if(msg != '*')

 {

 KeyPressed = '*';

 return msg;

 }

waiting:

 PORTBbits.RB0=1;

 if(PORTBbits.RB4==1)return('1');

 else if(PORTBbits.RB5==1)return '4';

 else if(PORTBbits.RB6==1)return '7';

 else if(PORTBbits.RB7==1)return '<';

 PORTB =0x00;

 PORTBbits.RB1=1;

 if(PORTBbits.RB4==1)return '2';

 else if(PORTBbits.RB5==1)return '5';

 else if(PORTBbits.RB6==1)return '8';

 else if(PORTBbits.RB7==1)return '0';

 PORTB =0x00;

 PORTBbits.RB2=1;

 if(PORTBbits.RB4==1)return '3';

 else if(PORTBbits.RB5==1)return '6';

 else if(PORTBbits.RB6==1)return '9';

 else if(PORTBbits.RB7==1)return ' ';

 PORTB =0x00;

 PORTBbits.RB3=1;

 if(PORTBbits.RB4==1) // F1

 {

 PORTB =0x00;

 msg = '*'; // to be sure that a key was pressed

f1:

 PORTBbits.RB0=1;

 if(PORTBbits.RB5==1)return 'G';

 else if(PORTBbits.RB6==1)return 'P';

 PORTB =0x00;

 PORTBbits.RB1=1;

 if(PORTBbits.RB4==1)return 'A';

 else if(PORTBbits.RB5==1)return 'J';

 else if(PORTBbits.RB6==1)return'T';

 else if(PORTBbits.RB7==1)return'S';

 PORTB =0x00;

 PORTBbits.RB2=1;

 if(PORTBbits.RB4==1)return 'D';

 else if(PORTBbits.RB5==1)return 'M';

 else if(PORTBbits.RB6==1)return 'X';

 PORTB =0x00;

 if(msg=='*') goto f1;

 }

SCS-SMS

574

 else if(PORTBbits.RB5==1) // F2

 {

 PORTB =0x00;

 msg = '*'; // to be sure that a key was pressed

f2:

 PORTBbits.RB0=1;

 if(PORTBbits.RB5==1)return 'H';

 else if(PORTBbits.RB6==1)return 'Q';

 PORTB =0x00;

 PORTBbits.RB1=1;

 if(PORTBbits.RB4==1)return 'B';

 else if(PORTBbits.RB5==1)return 'K';

 else if(PORTBbits.RB6==1)return'U';

 else if(PORTBbits.RB7==1)return'W';

 PORTB =0x00;

 PORTBbits.RB2=1;

 if(PORTBbits.RB4==1)return 'E';

 else if(PORTBbits.RB5==1)return 'N';

 else if(PORTBbits.RB6==1)return 'Y';

 PORTB =0x00;

 if(msg=='*') goto f2;

 }

 else if(PORTBbits.RB6==1) // F3

 {

 PORTB =0x00;

 msg = '*'; // to be sure that a key was pressed

f3:

 PORTBbits.RB0=1;

 if(PORTBbits.RB5==1)return 'I';

 else if(PORTBbits.RB6==1)return 'R';

 PORTB =0x00;

 PORTBbits.RB1=1;

 if(PORTBbits.RB4==1)return 'C';

 else if(PORTBbits.RB5==1)return 'L';

 else if(PORTBbits.RB6==1)return'V';

 PORTB =0x00;

 PORTBbits.RB2=1;

 if(PORTBbits.RB4==1)return 'F';

 else if(PORTBbits.RB5==1)return 'O';

 else if(PORTBbits.RB6==1)return 'Z';

 else if(PORTBbits.RB7==1)return '^';

 PORTB =0x00;

 if(msg=='*') goto f3;

 }

 else if(PORTBbits.RB7==1)return '@';

 PORTB =0x00;

 if(msg=='*') goto waiting;

 return msg;

}

PIC software

575

send_SMS function

The goal of this function is to wait the user to write a SMS to be sending via serial. (@) is

specified for ENTER meaning.

C code:

void send_SMS(void)

{

 int i=0;

 unsigned char SMS[16];

 SMS[0]='*';

Loop:

 SMS[i]=KeyPad();

 if(SMS[i]=='<')

 {

 if(i!=0)

 {

 i--;

 LCD_CMD(0x10); //shift cursor position to

left

 }

 goto Loop;

 }

 else if(SMS[i]=='@' && i!=0)

 {

 SendCyphierToSerial(SMS);

 SMS[i]='*';

 LCD_CMD(0xC0); //Second Line

 goto Loop;

 }

 else if(SMS[i]!='^')

 {

 WRITE_CHAR_LCD(SMS[i]);

 Delay10KTCYx(20);

 if(i==15)

 {

 SendCyphierToSerial(SMS);

 LCD_CMD(0xC0); //Second Line

 i=0;

 }

 else i++;

 goto Loop;

 }

 else SMS[i]='*';

}

on_touch function

This function is staying on receiving mode till the user press MENU key.

C code:

void on_touch(void)

{

 int i=0;

SCS-SMS

576

 unsigned char waiting[15]="WAITING SMS...";

 char rc;

 LCD_CMD(0x01); //CLEAR SCREEN

 LCD_CMD(0x80); //FIRST LINE

 WRITE_STRING_LCD(waiting);

 LCD_CMD(0xC0); //second LINE

 while(1)

 {

/*

 LCD_CMD(0xC0); //second LINE

 ReceiveCypherText();

 Delay10KTCYx(50);

 LCD_CMD(0x01); //Clear screen

*/

 rc = ReceiveFromSerial();

 WRITE_CHAR_LCD(rc);

 i++;

 if(i==16)

 {

 LCD_CMD(0x01); //Clear screen

 LCD_CMD(0xC0); //second LINE

 }

 }

}

send_data function

This function ask the user to choice how he want to send his SMS, to specific one of for all by

BROADCAST.

C code:

void send_data(void)

{

 unsigned char broadcast[12]="4 broadcast";

 unsigned char to_one[9]="5 to one";

 unsigned char writeM[11]="write SMS:";

 unsigned char EntID[10]="Enter ID:";

 unsigned char GoOut[7]="Go Out";

 char Key_Pressed;

 int i=0;

screen2:

 LCD_CMD(0x01); //CLEAR SCREEN

 LCD_CMD(0x80); //FIRST LINE

 WRITE_STRING_LCD(broadcast);

 LCD_CMD(0xC0); //second LINE

 WRITE_STRING_LCD(to_one);

 Key_Pressed = KeyPad();

 if(Key_Pressed=='4')

 {

 // broadcast choice

 LCD_CMD(0x01); //CLEAR SCREEN

 LCD_CMD(0x80); //FIRST LINE

 WRITE_STRING_LCD(writeM);

 LCD_CMD(0xC0); //second LINE

PIC software

577

 while(1)

 {

 send_SMS();

 Key_Pressed = KeyPad();

 if(Key_Pressed == '@') break;

 else

 {

 LCD_CMD(0xC0); //Second Line

 for(i=16; i>0; i--) WRITE_CHAR_LCD('

');

 LCD_CMD(0xC0); //Second Line

 send_SMS();

 }

 }

 }

 else if(Key_Pressed=='5')

 {

 // to one choice

 LCD_CMD(0x01); //CLEAR SCREEN

 LCD_CMD(0x80); //FIRST LINE

 WRITE_STRING_LCD(EntID);

 LCD_CMD(0xC0); //second LINE

 Key_Pressed = KeyPad();

 if(Key_Pressed=='M')

 {

 LCD_CMD(0x01); //CLEAR SCREEN

 LCD_CMD(0x80); //FIRST LINE

 WRITE_STRING_LCD(writeM);

 LCD_CMD(0xC0); //second LINE

 while(KeyPad()!='@')

 {

 send_SMS();

 }

 }

 else

 {

 WRITE_STRING_LCD(GoOut);

 Delay10KTCYx(50);

 }

 }

}

Menu function

This function is the MENU which the user choice in it if he want to stay on touch for any

coming SMS or if he want to send SMS. This function have no input (caller input) no output

(return).

C code:

void Menu(void)

{

 unsigned char OnTouch[11]="1 on touch";

 unsigned char SendData[12]="2 send data";

 unsigned char wrong[8]="UnValid";

 unsigned char choice[7]="choice";

 char Key_Pressed;

screen1:

 LCD_CMD(0x01); //CLEAR SCREEN

SCS-SMS

578

 LCD_CMD(0x80); //FIRST LINE

 WRITE_STRING_LCD(OnTouch);

 LCD_CMD(0xC0); //second LINE

 WRITE_STRING_LCD(SendData);

 Key_Pressed = KeyPad();

 if(Key_Pressed=='1')

 {

 // on touch choice

 on_touch();

 }

 else if(Key_Pressed=='2')

 {

 // send data choice

 send_data();

 }

 else

 {

 LCD_CMD(0x01); //CLEAR SCREEN

 LCD_CMD(0x84); //FIRST LINE specific place

 WRITE_STRING_LCD(wrong);

 LCD_CMD(0xC4); //second LINE specific place

 WRITE_STRING_LCD(choice);

 }

}

Encryption function

This function is to encrypt message before sending it. This will be encrypting via AES encrypt

theorem in the next part.

C code:

char Encryption(char PC)

{

 int n=0;

 n = ((int)PC) + 1;

 return ((char)n);

}

Decryption function

This function is to decrypt received message before display on LCD. This will be decrypting

via AES encrypt theorem in the next part.

C code:

char Decryption(char CC)

{

 int n=0;

 n = ((int)CC) - 1;

Test

579

 return ((char)n);

}

Main function

Main function of the program

C code:

void main()

{

 unsigned char welcometo[11]="welcome to";

 unsigned char SCS[8]="GIS-ECS";

 PORTAbits.RA4 = 1;

 INIT_Interrupt();

 INIT_PORT();

 InitSerial();

 LCD_CMD(0x01);

 LCD_CMD(0x0E);

 LCD_CMD(0x38);

 Delay10KTCYx(100); // wait for 500ms

 PORTAbits.RA4 = 0;

 LCD_CMD(0x83); //FIRST LINE

 WRITE_STRING_LCD(welcometo);

 LCD_CMD(0xC4); //second LINE

 WRITE_STRING_LCD(SCS);

 Delay10KTCYx(10);

begin:

 Menu();

 goto begin;

}

20.5 Test

Before build the hardware system we should test the system on any simulation software. We

choice the Proteus ISIS simulation to do the system testing

On Proteus:

In the simulation software Proteus ISIS professional the system work as follows:

- After connecting components together a virtual terminal should be add in place of the

second side to imagine the interaction between two systems.

- When you press the start button, the LCD display the welcome screen (see the figure

bellow)

SCS-SMS

580

- Then the system work as follows:

- Also, we test the sender\receiver side together with the following design:

Test

581

On Real Hardware:

583

21 AES encryption

Advanced Encryption Standard

One of the most widely used block cipher algorithms is the Data Encryption Standard (DES),

adopted in 1977 by the American National Standards Institute (ANSI).

After more than twenty years of use with continuous aging due to advances in cryptography,

the National Institute of Standards and Technology (NIST). On 2 October 2000 the NIST

announced that the new encryption technique, named Advanced Encryption Standard (AES),

would use the Rijndael algorithm, designed by two well-known specialists, Joan Daemen and

Vincent Rijmen from Belgium.

21.1 Introduction

AES is based on a design principle known as a substitution-permutation network, and is fast

in both software and hardware. AES is a variant of Rijndael which has a fixed block size of 128 bits,

and a key size of 128, 192, or 256 bits. By contrast, the Rijndael specification per se is specified with

block and key sizes that may be any multiple of 32 bits, both with a minimum of 128 and a

maximum of 256 bits.

AES operates on a 4×4 column-major order matrix of bytes, termed the state, although some

versions of Rijndael have a larger block size and have additional columns in the state. Most AES

calculations are done in a special finite field.

The key size used for an AES cipher specifies the number of repetitions of transformation

rounds that convert the input, called the plaintext, into the final output, called the cipher-text. The

number of cycles of repetition is as follows:

 10 cycles of repetition for 128-bit keys.

 12 cycles of repetition for 192-bit keys.

 14 cycles of repetition for 256-bit keys.

Each round consists of several processing steps, each containing five similar but different stages,

including one that depends on the encryption key itself. A set of reverse rounds are applied to

transform cipher-text back into the original plaintext using the same encryption key.

21.2 AES Algorithm13

i. KeyExpansion: round keys are derived from the cipher key using Rijndael's key schedule.

ii. InitialRound

a. AddRoundKey—each byte of the state is combined with the round key using bitwise

xor.

iii. Rounds

13 Reference: http://en.wikipedia.org/wiki/Advanced_Encryption_Standard

AES encryption

584

a. SubBytes—a non-linear substitution step where each byte is replaced with another

according to a lookup table.

b. ShiftRows—a transposition step where each row of the state is shifted cyclically a

certain number of steps.

c. MixColumns—a mixing operation which operates on the columns of the state,

combining the four bytes in each column.

d. AddRoundKey

iv. Final Round (no MixColumns)

a. SubBytes

b. ShiftRows

c. AddRoundKey

A. The SubBytes step

In the SubBytes step, each byte in the state matrix is replaced with a SubByte using an 8-

bit substitution box, the Rijndael S-box. This operation provides the non-linearity in the cipher. The

S-box used is derived from the multiplicative inverse over GF(28), known to have good non-

linearity properties. To avoid attacks based

on simple algebraic properties, the S-box is

constructed by combining the inverse

function with an invertible affine

transformation. The S-box is also chosen to

avoid any fixed points (and so is

a derangement), and also any opposite

fixed points.

B. The ShiftRows step

The ShiftRows step operates on the rows of the state; it cyclically shifts the bytes in each

row by a certain offset. For AES, the first row is left unchanged. Each byte of the second row is

shifted one to the left. Similarly, the third and fourth rows are shifted by offsets of two and three

respectively. For blocks of sizes 128 bits and 192 bits, the shifting pattern is the same. Row n is

shifted left circular by n-1 bytes. In this way, each column of the output state of the ShiftRows step

is composed of bytes from each column of the

input state. (Rijndael variants with a

larger block size have slightly different

offsets). For a 256-bit block, the first row is

unchanged and the shifting for the

second, third and fourth row is 1 byte, 2 bytes

http://en.wikipedia.org/wiki/File:AES-SubBytes.s

AES Algorithm

585

and 3 bytes respectively—this change only applies for the Rijndael cipher when used with a 256-bit

block, as AES does not use 256-bit blocks. The importance of this step is to make columns not

linear independent if so, AES becomes four independent block ciphers.

C. The MixColumns step

In the MixColumns step, the four bytes of each column of the state are combined using an

invertible linear transformation. TheMixColumns function takes four bytes as input and outputs

four bytes, where each input byte affects all four output bytes. Together

with ShiftRows, MixColumns provides diffusion in the cipher.

During this operation, each column is multiplied by the known matrix that for the 128-bit key is:

The multiplication operation is defined as: multiplication by 1 means no change,

multiplication by 2 means shifting to the left, and multiplication by 3 means shifting to the left and

then performing XOR with the initial unshifted value. After shifting, a conditional xor with 0x1B

should be performed if the shifted value is larger than 0xFF.

In more general sense, each column is treated as a polynomial over GF(28) and is then

multiplied modulo x4+1 with a fixed polynomial c(x) = 0x03 · x3 + x2 + x + 0x02. The coefficients are

displayed in their hexadecimal equivalent of the binary representation of bit polynomials

from GF(2)[x]. The MixColumns step can also be viewed as a multiplication by a particular MDS

matrix in a finite field. This process is described further in the article Rijndael mix columns.

D. The AddRoundKey step

In the AddRoundKey step, the subkey

is combined with the state. For each round, a

subkey is derived from the

http://en.wikipedia.org/wiki/File:AES-AddRoundKey.s

AES encryption

586

main key usingRijndael's key schedule; each subkey is the same size as the state. The subkey is

added by combining each byte of the state with the corresponding byte of the subkey using

bitwise XOR.

21.3 Coding 14

AES is a symmetric key block cipher algorithm. The algorithm executes a series of rounds. The

intermediate results of the rounds over the block are called states. In order to prepare for the round

transformations, a “KeyExpansion” operation must be executed. This operation uses the original

key to create several round keys. Each round key, including the original one, will be used in one of

the rounds.

This operation is performed by this C code:

14 Reference: Microchip AN821 Advanced Encryption Standard Using the PIC16XXX

void KeyExpansion()

{

 unsigned char i,j;

 unsigned char temp[4],k;

 for(i=0; i<4; i++)

 {

 RoundKey[i*4]=Key[i*4];

 RoundKey[i*4+1]=Key[i*4+1];

 RoundKey[i*4+2]=Key[i*4+2];

 RoundKey[i*4+3]=Key[i*4+3];

 }

 while (i < (4 * (11)))

 {

 for(j=0;j<4;j++)

 {

 temp[j]=RoundKey[(i-1) * 4 + j];

 }

 if (i % 4 == 0)

 {

 k = temp[0];

 temp[0] = temp[1];

 temp[1] = temp[2];

 temp[2] = temp[3];

 temp[3] = k;

 temp[0]=sbox[temp[0]];

Coding

587

Where Rcon represent a vector of round constant, RoundKey represent the array that

stores the round keys, Key is the encryption key, and sbox is the encryption substitution table and

later we will see rsbox which is the decryption substation table.

These variables are saved in the ROM of the PIC under this code:

 temp[1]=sbox[temp[1]];

 temp[2]=sbox[temp[2]];

 temp[3]=sbox[temp[3]];

 temp[0] = temp[0] ^ Rcon[i/4];

 }

 else if (4 > 6 && i % 4 == 4)

 {

 temp[0]=sbox[temp[0]];

 temp[1]=sbox[temp[1]];

 temp[2]=sbox[temp[2]];

 temp[3]=sbox[temp[3]];

 }

 RoundKey[i*4+0] = RoundKey[(i-4)*4+0] ^ temp[0];

 RoundKey[i*4+1] = RoundKey[(i-4)*4+1] ^ temp[1];

 RoundKey[i*4+2] = RoundKey[(i-4)*4+2] ^ temp[2];

 RoundKey[i*4+3] = RoundKey[(i-4)*4+3] ^ temp[3];

 i++;

 }

}

const rom unsigned char sbox[256] = {
 //0 1 2 3 4 5 6 7 8 9 A B C D E F

 0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76, //0

 0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0, //1

 0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15, //2

 0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75, //3

 0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84, //4

 0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf, //5

 0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8, //6

 0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2, //7

 0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73, //8

 0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb, //9

 0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79, //A

 0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08, //B

 0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a, //C

 0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e, //D

 0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf, //E

 0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16 }; //F

const rom unsigned char Rcon[10] = {
 0x36, 0x1B, 0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01};

const rom unsigned char rsbox[256] = {
 0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, 0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb,

 0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87, 0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb,

 0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d, 0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e,

 0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2, 0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25,

 0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92,

 0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda, 0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84,

 0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a, 0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06,

AES encryption

588

In the encryption process, each of the ten rounds (with the exception of the last one) is

composed of four stages:

• byte_sub

• shift_row

 0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02, 0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b,

 0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea, 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73,

 0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85, 0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e,

 0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89, 0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b,

 0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20, 0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4,

 0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31, 0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f,

 0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d, 0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef,

 0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0, 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61,

 0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26, 0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d };

unsigned char out[16], state[4][4];

unsigned char RoundKey[160];

unsigned char Key[16]="YOUR_SECURE_KEY";

void substitution_s()

{

 int i,j;

 for(i=0;i<4;i++)

 {

 for(j=0;j<4;j++)

 {

 state[i][j] = sbox[state[i][j]];

 }

 }

}

void enc_shift_row()

{

 unsigned char temp;

 // Rotate first row 1 columns to left

 temp=state[1][0];

 state[1][0]=state[1][1];

 state[1][1]=state[1][2];

 state[1][2]=state[1][3];

 state[1][3]=temp;

 // Rotate second row 2 columns to left

Coding

589

•

mix_column

While the xtime function is done under this process:

 temp=state[2][0];

 state[2][0]=state[2][2];

 state[2][2]=temp;

 temp=state[2][1];

 state[2][1]=state[2][3];

 state[2][3]=temp;

 // Rotate third row 3 columns to left

 temp=state[3][0];

 state[3][0]=state[3][3];

 state[3][3]=state[3][2];

 state[3][2]=state[3][1];

 state[3][1]=temp;

}

void mix_column()

{

 int i;

 unsigned char Tmp,Mem;

 for(i=0;i<4;i++)

 {

 Mem = state[0][i];

 Tmp = state[0][i] ^ state[1][i] ^ state[2][i]

^ state[3][i];

 state[0][i] ^= Tmp ^ xtime(state[0][i] ^

state[1][i]);

 state[1][i] ^= Tmp ^ xtime(state[1][i] ^

state[2][i]);

 state[2][i] ^= Tmp ^ xtime(state[2][i] ^

state[3][i]);

 state[3][i] ^= Tmp ^ xtime(state[3][i] ^ Mem);

 }

}

char xtime(char x)

{

 if(x < 0x80)

 return (x <<= 1);

 else

 return (x = (x << 1) ^ 0x1b);

}

AES encryption

590

• key_addition

In the decryption process, each of the ten rounds (with the exception of the first one) is

composed of four stages:

• inv_byte_sub

• inv_mix_column

void key_addition(unsigned char round)

{

 int i,j;

 for(i=0;i<4;i++)

 {

 for(j=0;j<4;j++)

 {

 state[j][i] ^= RoundKey[round * 16 + i * 4 + j];

 }

 }

}

void substitution_si()

{

 unsigned char i,j;

 for(i=0;i<4;i++)

 {

 for(j=0;j<4;j++)

 {

 state[i][j] = rsbox[state[i][j]];

 }

 }

}

void inv_mix_column()

{

 unsigned char i;

 unsigned char Tmp0, Tmp1, Tmp2, Tmp3;

 for(i=0;i<4;i++)

 {

 Tmp0 = state[0][i] ^ state[1][i] ^ state[2][i]

^ state[3][i];

 Tmp1 = xtime(state[0][i] ^ state[2][i]);

Coding

591

•

dec_shift_row

The original key schedule functions use several RAM positions, in order to save all round

keys used in the encryption/decryption process.

To reduce the RAM consumption, the implementation of the round keys was done on-the-fly. To

do this, three different functions were added:

 Tmp2 = xtime(state[1][i] ^ state[3][i]);

 Tmp3 = xtime(xtime(Tmp1 ^ Tmp2)) ^ Tmp0;

 state[0][i] ^= xtime(state[0][i]^ state[1][i] ^ Tmp1)

^ Tmp3;

 state[1][i] ^= xtime(state[1][i]^ state[2][i] ^ Tmp2)

^ Tmp3;

 state[2][i] ^= xtime(state[2][i]^ state[3][i] ^ Tmp1)

^ Tmp3;

 state[3][i] = state[0][i] ^ state[1][i] ^ state[2][i]

^ Tmp0;

 }

}

void dec_shift_row()

{

 unsigned char temp;

 // Rotate first row 1 columns to right

 temp=state[1][3];

 state[1][3]=state[1][2];

 state[1][2]=state[1][1];

 state[1][1]=state[1][0];

 state[1][0]=temp;

 // Rotate second row 2 columns to right

 temp=state[2][0];

 state[2][0]=state[2][2];

 state[2][2]=temp;

 temp=state[2][1];

 state[2][1]=state[2][3];

 state[2][3]=temp;

 // Rotate third row 3 columns to right

 temp=state[3][0];

 state[3][0]=state[3][1];

 state[3][1]=state[3][2];

 state[3][2]=state[3][3];

 state[3][3]=temp;

}

AES encryption

592

1. enc_key_schedule (key): This function takes the actual key and generates the next

round key that is placed in the same RAM positions.

C code

2. dec_key_schedule(key): This function takes the actual key and generates the

previous round key that is placed in the same RAM positions.

C code

void enc_key_schedule()

{

 char Rcon = 0x01;

 Key[0] ^= sbox[13];

 Key[1] ^= sbox[14];

 Key[2] ^= sbox[15];

 Key[3] ^= sbox[12];

 Key[0] = Key[0] ^ Rcon;

 Rcon = xtime(Rcon);

 Key[4] ^= Key[0];

 Key[5] ^= Key[1];

 Key[6] ^= Key[2];

 Key[7] ^= Key[3];

 Key[8] ^= Key[4];

 Key[9] ^= Key[5];

 Key[10] ^= Key[6];

 Key[11] ^= Key[7];

 Key[12] ^= Key[8];

 Key[13] ^= Key[9];

 Key[14] ^= Key[10];

 Key[15] ^= Key[11];

}

void dec_key_schedule()

{

 char Rcon = 0x01;

 Key[12] ^= Key[8];

 Key[13] ^= Key[9];

 Key[14] ^= Key[10];

 Key[15] ^= Key[11];

 Key[8] ^= Key[4];

 Key[9] ^= Key[5];

 Key[10] ^= Key[6];

 Key[11] ^= Key[7];

 Key[4] ^= Key[0];

 Key[5] ^= Key[1];

Coding

593

 Key[6] ^= Key[2];

 Key[7] ^= Key[3];

 Key[0] ^= sbox[Key[13]];

 Key[5] ^= sbox[Key[14]];

 Key[6] ^= sbox[Key[15]];

 Key[7] ^= sbox[Key[12]];

 Key[0] = Key[0] ^ Rcon;

 if(Rcon & 0x01)

 Rcon = 0x80;

 else

 Rcon >>1;

}

AES encryption

594

Code flow chart

A. Encryption flow chart

Coding

595

The structure of the encryption program is:

void encrypts(char in[])

{

 unsigned char i,j,round;

 KeyExpansion();

 for(i=0;i<4;i++)

 {

 for(j=0;j<4;j++)

 {

 state[j][i] = in[i*4 + j];

 }

 }

 key_addition(0);

 for(round=1;round<=10;round++) // 10 rounds

 {

 substitution_s();

 enc_shift_row();

 if(round != 10) // last round is done

without mix_column

 mix_column();

 enc_key_schedule(); // direct key_schedule

executed on-the-fly

 key_addition(round);

 }

 for(i=0;i<4;i++)

 {

 for(j=0;j<4;j++)

 {

 out[i*4+j]=state[j][i];

 }

 }

}

AES encryption

596

B. Decryption flow chart

Coding

597

Then structure of the decryption program is:

void decrypts(char in[])

{

 unsigned char i,j,round;

 for(i=0;i<4;i++)

 {

 for(j=0;j<4;j++)

 {

 state[j][i] = in[i*4 + j];

 }

 }

 key_addition(10);

 round = 9;

 for(round;round>0;round--)

 {

 substitution_si();

 dec_shift_row();

 key_addition(round);

 inv_mix_column();

 dec_key_schedule(); // inverse key_schedule

executed on-the-fly

 }

 substitution_si();

 dec_shift_row();

 dec_key_schedule(); // inverse key_schedule

executed on-the-fly

 key_addition(0);

 for(i=0;i<4;i++)

 {

 for(j=0;j<4;j++)

 {

 out[i*4 +j]=state[j][i];

 }

 }

}

599

22 Hardware of ECS Demo System

22.1 Realization of RF Module

22.1.1 Using STD-402

In SCS-SMS project we use the USART theory which is included in the PCI microcontroller

to send and receive data via serial. So, we can use the STD-402 to send and receive message by

adding the max232 circuit. We use the max232 IC to translate the Tx/Rx of microcontroller (0V –

5V) to the RS232 Tx/Rx (-10V, +10V).

 The test of the transceiver is shown in following lines:

The MB-STD-RS232 board which equips the STD-402 transceiver module has stored unique

module identification number in the radio module. When one unit is set up for master and other

unit is for slave, slave modem unit operate with same ID as master unit.

1. Connect the serial cable to the D-SUB 9pin connector.

2. Set "Cable SW" (Cross / straight) according to the cable.

 3. Connect the supply voltage of the transceiver to 6V DC.

4. Select unit to be master and set SW1 to "9" and SW2 to "1". Select unit to be slave and set

SW1 to "9" and SW2 to "0".

5. Power ON the units.

6. When power of the master is turned on, TX, RX and LE LED turn ON and LD blinks.

 Radio communication start and continue for about 10sec.

7. When power of slave unit is turned on, TX, RX LED turn ON and RSSI turn on when

signal from master is received. LD blinks when group setting is completed.

Realization of RF Module

600

8. After slave unit receives unique module identification code stored in master units, radio

communication can be performed with this code.

9. Power of the units.

10. Setting the mode and the property of the communication by the SW switch.

 1 : ON Transmitter 1 : OFF Receiver

 2 : OFF Mode 1 (Two way communication)

 3 : ON Setting prohibited.

 4 : ON Setting prohibited.

 5 : ON ACK response (Yes).

 6 : ON Parity Yes (Even).

 7 : ON Communication speed.

 8 : ON Communication speed. (9600bps).

11. MB-STD-RS232 has 64 pre-programmed frequency channels. These frequencies are

divided to 8 groups. Each group contains 10 frequencies. The group can be selected by

SW2, and the value inside the group is selected by SW1. The frequency used to build the

test is 433.975 MHz To select this frequency, set the SW1 switch to 3 and the SW2 switch to

1. The master and the slave unit should be selected to the same frequency.

12. Power on the units.

13. MB-STD-RS232 is in RX mode at wait time (stand by), which means RX is turned ON

at wait time. When the unit receives radio data from the other unit, the RSSI LED turn ON

and the unit will start outputting the data to RS232 port.

14. When the unit gets data from PC through RS232C connector, the data is stored in

internal buffer and then will be sent after the MB-STD-RS232 check that the carrier

frequency to be set is not used in air. The TX LED turned ON when the unit will transmit

the data. The unit returns to RX mode when all data is gone.

Hardware of ECS Demo System

601

 MAX232 circuit:

The MAX232 is an IC, first created in 1987 by Maxim Integrated Products, that converts signals from
an RS-232 serial port to signals suitable for use in TTL compatible digital logic circuits. The MAX232 is a dual
driver/receiver and typically converts the RX, TX, CTS and RTS signals.

The drivers provide RS-232 voltage level outputs (approx. ± 7.5 V) from a
single + 5 V supply via on-chip charge pumps and external capacitors. This
makes it useful for implementing RS-232 in devices that otherwise do not
need any voltages outside the 0 V to + 5 V range, as power supply design
does not need to be made more complicated just for driving the RS-232 in
this case.

The receivers reduce RS-232 inputs (which may be as high as ± 25 V), to standard 5 V TTL levels. These
receivers have a typical threshold of 1.3 V, and a typical hysteresis of 0.5 V.

Figure 5.4.1: IC MAX232 usage

Realization of RF Module

602

Hardware of ECS Demo System

603

22.1.2 Realization of RF Module Using RFM42B-RFM31B – 433MHz

The RFM42B and the RFM31B use the SPI communication theory to send (RFM42B) or to receive

(RFM31B) data. So, to use this two RF module some software and hardware change should be

implement to the SCS-SMS project.

22.1.2.1 Serial Periferal interface (SPI)

The RFM31B/42B communicates with the host MCU over a standard 3-wire SPI interface:

SCLK, SDI, and nSEL. The host MCU can read data from the device on the SDO output pin. A SPI

transaction is a 16-bit sequence which consists of a Read-Write (R/W) select bit, followed by a 7-bit

address field (ADDR), and an 8-bit data field (DATA) as demonstrated in Figure 2. The 7-bit

address field is used to select one of the 128, 8-bit control registers. The R/W select bit determines

whether the SPI transaction is a read or writes transaction. If R/W = 1 it signifies a WRITE

transaction, while R/W = 0 signifies a READ transaction. The contents (ADDR or DATA) are

latched into the RFM31B/42B every eight clock cycles. The SCLK rate is flexible with a maximum

rate of 10 MHz.

To read back data from the RFM31B/42B, the R/W bit must be set to 0 followed by the 7-bit

address of the register from which to read. The 8 bit DATA field following the 7-bit ADDR field is

ignored n the SDI pin when R/W = 0. The next eight negative edge transitions of the SCLK signal

will clock out the contents of the selected register. The data read from the selected register will be

available on the SDO output pin. The READ function is shown in Figure 3. After the READ

function is completed the SDO pin will remain at either logic 1 or logic 0 state depending on the

last data bit clocked out (D0). When nSEL goes high the SDO output pin will be pulled high by

internal pullup.

The figure bellow shows us the PIN description:

22.1.2.2 The new hardware design

 The change which will be happen is caused by adding the two RFM module, the two RFM

module connect to the same pins (5 pins connect to the PIC and three connect to the power

supply). The RFM module is low power consumption, it’s need about 85mA with supply voltage

range between 1.8V and 3.6V, and you can see in its datasheet that the best is 3.0V. For this reason

and because of our system supply voltage is 5V, so we need to regulate the supply voltage of the

RFM to 3V. We do that by voltage divider theory by adding two high impedence (MΩ) resistors.

 We know that our supply voltage is 5V which is regulate by 78L05 and the goal is to get 3V,

so using voltage divider theory as you can see in the next figure we can get it. The cause of using

Realization of RF Module

604

two high impedance resistors is to eliminate the effect of the interior impedence in the system and

the impedence in the RFM module.

Input Voltage = 5V

R1 = 3 MΩ

V out = (3 / 5) x 5 = 3V

R0 = 0 MΩ

Vout = (2 / 5) x 5 = 2V

Now, let connect the RFM modules to the PIC. The figure bellow shows us how the module

connects to PIC microcontroller:

 In SCS-SMS we use the PIC 18f4550, so the connection should be doing as follows:

RFM module pins PIC pins

SDO SDI (RB0 PIN)

SCK SCK (RB1 PIN)

NIQR INT2 (RB2 PIN)

SDI SDO (RC7)

Hardware of ECS Demo System

605

NSEL SS (RA5) for RFM31B & (RB3) for RFM42B

 While two else pins should connected to the Ground and one else should connect to +3V, and

all the remaining pins doesn’t connected anywhere.

 As we see in the table above, we have 3 connections to the port B which already used in the

SCS-SMS project for the KEYPAD. So, we need to change the connection of the KEYPAD to

another pins (we take pins RA0 to RA3 for input keypad pins and RB4 to RB7 for the output

keypad pins). Finally the new circuit design became as followes:

22.1.2.3 MSSP module to establishing (SPI)15

The Master Synchronous Serial Port (MSSP) module is a serial interface, useful for

communication with other peripheral or microcontroller devices. These peripheral devices may be

serial EEPROMs, shift registers, display drivers, A/D converters, etc. the MSSP module can operate

in one of two methods:

- Serial Peripheral interface (SPI)

- Inter-integrated circuit (I2C)

15 PIC18F4550 datasheet, chapter 19, page 197

Realization of RF Module

606

 Control Registers:

 The MSSP module has three associated control registers. These include a status register

(SSPSTAT) and two control registers (SSPCON1 and SSPCON2). The use of these registers and

their individual Configuration bits differ significantly depending on whether the MSSP

module is operated in SPI or I2C mode.

 SPI mode:

 The SPI mode allows 8 bits of data to be synchronously transmitted and received

simultaneously. All four modes of the SPI are supported. To accomplish communication,

typically three pins are used:

• Serial Data Out (SDO) – RC7/RX/DT/SDO

• Serial Data In (SDI) – RB0/AN12/INT0/FLT0/SDI/SDA

• Serial Clock (SCK) – RB1/AN10/INT1/SCK/SCL

Additionally, a fourth pin may be used when in a Slave mode of operation:

 • Slave Select (SS) – RA5/AN4/SS/HLVDIN/C2OUT

 Registers:

 The MSSP module has four registers for SPI mode operation. These are:

 • MSSP Control Register 1 (SSPCON1)

 • MSSP Status Register (SSPSTAT)

 • Serial Receive/Transmit Buffer Register (SSPBUF)

 SSPCON1 and SSPSTAT are the control and status registers in SPI mode operation. The

SSPCON1 register is readable and writable. The lower six bits of the SSPSTAT are read-only.

The upper two bits of the SSPSTAT are read/write. SSPBUF is the buffer register to which data

bytes are written to or read from.

In receive operations; SSPSR and SSPBUF together create a double-buffered receiver. When

SSPSR receives a complete byte, it is transferred to SSPBUF and the SSPIF interrupt is set.

During transmission, the SSPBUF is not doublebuffered. A write to SSPBUF will write to both

SSPBUF and SSPSR.

 SSPSTAT register:

SMP: sample bit, in master mode (1: data sampled at end, 0: at middle), in slave mode (SMP=0)

CKE: SPI clock select bit (1: transmit on transition from active to Idle, 0: from Idle to active)

D/A, P, S, R/W, UA: used in I2C only

Hardware of ECS Demo System

607

BF: Buffer full status bit when receive (1: SSPBUF full, 0: receive not complete)

 SSPCON1 register:

 WCOL: write collision Detect bit (on transmitting) (1: collision, 0: no collision)

 SSPOV: receive overflow indicator bit (slave mode) (1: overflow, 0: no overflow)

 SSPEN: master Synchronous Serial Port Enable bit (1: enable serial pot, 0: serial port be I/O)

 CKP: clock polarity select bit (1: idle state for clock is High, 0: is low)

 SSPM3:SSPM0: Master Synchronous serial Port Mode Select bits

 0101 = SPI Slave mode, clock=SCKpin, Sspin control disabled, SS can be used as I/Opin

 0100 = SPI Slave mode, clock=SCKpin, Sspin control enabled

 0011 = SPI Master mode, clock=TMR2 output/2

 0010 = SPI Master mode,, clock=Fosc/64

 0001 = SPI Master mode,, clock=Fosc/16

 0000 = SPI Master mode,, clock=Fosc/4

 In our case, we need to use the micro controller in Master mode to connect it the the 2 slave

modules (RFM31B and RFM42B) we have.

 Master mode:

 The master can initiate the data transfer at any time because it controls the SCK. The master

determines when the slave is to broadcast data by the software protocol.

 In Master mode, the data is transmitted/received as soon as the SSPBUF register is written to.

If the SPI is only going to receive, the SDO output could be disabled (programmed as an input).

The SSPSR register will continue to shift in the signal present on the SDI pin at the programmed

clock rate. As each byte is received, it will be loaded into the SSPBUF register as if a normal

received byte (interrupts and status bits appropriately set). This could be useful in receiver

applications as a “Line Activity Monitor” mode.

 The clock polarity is selected by appropriately programming the CKP bit (SSPCON1<4>). This,

then, would give waveforms for SPI communication. In Master mode, the SPI clock rate (bit rate) is

user-programmable to be one of the following:

• FOSC/4 (or TCY)

• FOSC/16 (or 4 • TCY)

• FOSC/64 (or 16 • TCY)

• Timer0 output/0

This allows a maximum data rate (at 48 MHz) of 12.00 Mbps.

 When used in Timer2 Output/2 mode, the bit rate can be configured using the PR2 Period

register and the Timer2 prescaler. However, writing to SSPBUF does not clear the current TMR2

value in hardware. Depending upon the current value of TMR2 when the user firmware writes to

SSPBUF, this can result in an unpredictable MSb bit width.

Realization of RF Module

608

 When the CKE bit is set, the SDO data is valid before there is a clock edge on SCK. The change

of the input sample is shown based on the state of the SMP bit. The time when the SSPBUF is

loaded with the received data is shown.

 Implementation:

In our case, the PIC is used as SPI in master mode and inially set the two regidter as followes;

SSPSTAT: (0xC0) SMT=1, CKE=1, all the remaing bit are readeble not writable as we see before.

SSPCON1: (0x30) WCOL=0, SSPOV=0, SSPEN=1, CKP=1, SSPM=0000.

Bellows is the SPI code in C programing with comment when necessary: (SPI.c)
#include<p18f4550.h>

#include<string.h>

#include<delays.h>

#include"SPI.h"

void InitDAC(void)

{

 NSEL1pin = 0;

 NSEL2pin = 0;

 SDIpin = 1;

 SCKpin = 0;

 NIQRpin = 1;

 SDOpin = 0;

 ADCON1=0x0f; //Turn off A/D

 SSPSTAT=0xC0; //SMP: SPI master mode, CKE: active to idle clock state, 0, 0, 0,

0, 0, 0

 SSPCON1=0x30; // Mode 1,1 SPI Master Mode, 1/4 Tosc bit

}

void Send_char_SPI(char data)

{

 SS1 = 0; // Enable SS1 Output (low)

 SS2 = 1; // Disable SS2 Output (high)

 SSPBUF=data; // sending the upper 8 bits serially

 while(!SSPSTATbits.BF); // wait until the upper 8 bits are sent

 SS1 = 1; // Disable SS1 Output (high)

 SS2 = 0; // Enable SS2 Output (low)

}

void Send_int_SPI(int data)

{

 unsigned int c;

 unsigned int lower_bits, upper_bits;

 c = ((data+1)*16) -1; // here we obtain 12 bit data

 //first obtain the upper 8 bits

 upper_bits = c/256; // obtain the upper 4 bits

 upper_bits = (48) | upper_bits; // append 0011 to the above 4 bits

 //now obtain the lower 8 bits

 lower_bits = 255 & c; // ANDing separates the lower 8 bits

 SS1 = 1; // Disable SS1 Output (high)

 SS2 = 0; // Enable SS2 Output (low)

 PORTBbits.RB0=0;

 SSPBUF=upper_bits; // sending the upper 8 bits serially

 while(!SSPSTATbits.BF); // wait until the upper 8 bits are sent

 SSPBUF=lower_bits; // sending the lower 8 bits serially

 while(!SSPSTATbits.BF); // wait until the lower 8 bits are sent

 PORTBbits.RB0=1;

Hardware of ECS Demo System

609

 SS1 = 1; // Disable SS1 Output (high)

 SS2 = 0; // Enable SS2 Output (low)

}

void Send_string_SPI(char s[])

{

 int i, lenght;

 lenght = strlen(s);

 for(i=0; i <= lenght; i++)

 {

 Send_char_SPI(s[i]);

 Delay10KTCYx(17); // wait until the 8 bits char are sent

 // Delay Subroutine: 169129 Clock cycles ~= 17(10KTCY)

~= 0.014 seconds

 }

}

char Receive_data_SPI(void)

{

 while(!SSPIFbits.PIR1); // Interrupt flag set when transmission/reception is

complete

 return SSPBUF;

}

Bellowe is the Header file for this c librery: (SPI.h)

#ifndef SPI_H

#define SPI_H

#define Clock_Khz 48000 //Fosc = 48Mhz

#define NSEL1pin TRISAbits.TRISA5 // connect to the NSEL pin of the Tx

#define NSEL2pin TRISBbits.TRISB3 // connect to the NSEL pin of the Rx

#define SDIpin TRISBbits.TRISB0 // connect to the SDO pin of SPI module

#define SCKpin TRISBbits.TRISB1 // connect to the SCK pin of SPI module

#define NIQRpin TRISBbits.TRISB2 // connect to the NIQR pin of SPI module

#define SDOpin TRISCbits.TRISC7 // connect to the SDI pin of SPI module

#define SS1 PORTAbits.RA5 // selection slave 1 (transmiter)

#define SS2 PORTBbits.RB3 // selection slave 2 (receiver)

void InitSPI(void);

void Send_char_SPI(char n);

void Send_int_SPI(int n);

void Send_string_SPI(char s[]);

char Receive_data_SPI(void);

#endif

611

23 Further Work: System Integration and Integration Test of ECS Demo
System

tbd

 612

Appendix A: Alternative Project Plans

A.1: Three Alternatives for Central Station / Mobile Stations

As we see before, each side of this project has multiple potential choices. And each choice has its

extra tasks. In this part we will specific the tasks with the period of each choice of each side.

 For the STD hardware.

a. Using existing STD hardware (ran) in the two sides (connect to computer).

No extra potential tasks for this choice (only 1 week for testing)

b. Using existing STD hardware (ran) in the base side and using the new SCS-SMS

hardware on the client side

Tasks for this choice:

- Change the SCS-SMS hardware to be able to use (need among 3 weeks)

- Change and develop the input part of the ExtIO file to be compatible with

the client side hardware (2 weeks)

Note that, if this choice is taken you can’t take the HDSDR as a choice for the SDR.

c. Develop a hardware to be able to connect to 4 antenna on the base side and to

one antenna on the client side (base on HackRF project)

Tasks for this choice:

- Develop the hardware for one antenna for the client side (3 weeks)

- Develop the hardware for 4 antennas for the base side (2 extra weeks)

- Change and develop the input part of the ExtIO file to be compatible with

the client side hardware (one antenna) (2 weeks)

- Change and develop the input part of the ExtIO file to be compatible with

the base side hardware (4 antenna) (1 extra week)

 For the SDR code

a. Using HDSDR by develop its ExtIO.

Tasks for this choice:

- Change and develop the output part of the ExtIO file to be compatible with

the GUI interface software (4 weeks)

- Develop our GUI interface (4 weeks)

b. Using the source code of WinRad

Tasks for this choice:

 613

- Take the SDR code from the WinRad software (3 weeks)

- Develop the SDR code to send and receive (2 weeks)

- Change and develop the output part of the ExtIO file to be compatible with

the GUI interface software (4 weeks)

- Develop our GUI interface (4 weeks)

A side to this task and duration there are the testing and documentation tasks and period.

Bellow is two project plans:

Project 1: choice (a) for STD hardware choice (a) for the SDR code

Using existing STD hardware (ran) in the two sides (connect to computer). With using HDSDR by

develop its ExtIO for the SDR code

Event Time

Getting start with software (Qt, VC++, HDSDR) 2 weeks

Using HDSDR to receive and transmit Radio wave 1 week

Getting Start with DLL and see demo ExtIO 1 week

Change and develop the output part of the ExtIO file to be compatible

with the GUI interface software

4 weeks

Develop our GUI interface 4 weeks

System testing (task 9) 2 weeks

Documentation and Final report (task 10) 3 weeks

Approximately 4 months and 1 week with a possibility of delay

Project 2: choice (b) for STD hardware choice (b) for the SDR code

Using existing STD hardware (ran) in the base side and using the new SCS-SMS hardware on the

client side. With using of the source code of WinRad for the SDR code

Event Time

Getting start with software (Qt, VC++, WinRad) 2 weeks

Using WinRad to receive Radio wave 1 week

Read with understanding the WinRad code 1 week

Take the SDR code from the WinRad software 2 weeks

Develop the SDR code to send and receive 2 weeks

Getting Start with DLL and see demo ExtIO 1 week

Change and develop the output part of the ExtIO file to be compatible

with the GUI interface software

4 weeks

Develop our GUI interface 4 weeks

Change the SCS-SMS hardware to be able to use 3 weeks

Change and develop the input part of the ExtIO file to be compatible with

the client side hardware

2 weeks

System testing (task 9) 2 weeks

Documentation and Final report (task 10) 3 weeks

Approximately 6 months and 2 weeks with a possibility of delay

Project 3: choice (c) for STD hardware choice (b) for the SDR code

Further Work: System Integration and Integration Test of ECS Demo System

 614

Develop hardware to be able to connect to 4 antennas on the base side and to one antenna on the

client side with using of source code of WinRad

Event Time

Getting start with software (Qt, VC++, WinRad) 2 weeks

Using WinRad to receive Radio wave 1 week

Read with understanding the WinRad code 1 week

Take the SDR code from the WinRad software 2 weeks

Develop the SDR code to send and receive 2 weeks

Getting Start with DLL and see demo ExtIO 1 week

Change and develop the output part of the ExtIO file to be compatible

with the GUI interface software

4 weeks

Develop our GUI interface 4 weeks

Develop the hardware for one antenna for the client side 3 weeks

Develop the hardware for 4 antennas for the base side 2 weeks

Change and develop the input part of the ExtIO file to be compatible with

the client side hardware (one antenna)

2 weeks

Change and develop the input part of the ExtIO file to be compatible with

the base side hardware (4 antenna)

1 week

System testing (task 9) 2 weeks

Documentation and Final report (task 10) 3 weeks

Approximately 7 months and 2 weeks with a possibility of delay

A.2: Demo System Integration with different developers

Event Time

Using WinRad to receive Radio wave using exist SDR platform 1 week

Introduction to HackRF SDR platform 2 weeks

Build our SDR platform 2 weeks

Using WinRad to receive Radio wave via new SDR platform 1 week

Build our Amateur Radio Transceiver (ART) 3 weeks

Connect the SCS-SMS hardware to the ART with testing 2 weeks

Take I and Q from WinRad to a file 1 week

Develop GUI interface to read SMS from file 2 weeks

System testing 2 weeks

Documentation and Final report 2 weeks

Approximately 18 weeks with a possibility of delay

These tasks are dividing to a three work packages, which are:

1st package: building of the SDR platform

2nd package: building of the Amateur Radio Transceiver

 615

3rd package: WinRad and interface software

Further Work: System Integration and Integration Test of ECS Demo System

 616

Appendix B: All about HackRF

HackRF is a project to produce a low cost, open source software radio platform.

Principal author: Michael Ossmann: mike@ossmann.com

Home hackRF website: https://github.com/mossmann/hackrf

HackRF is an open source hardware project to build a Software Defined Radio (SDR)

peripheral.

B.1 HackRF overview

SDR is the application of Digital Signal Processing to radio waveforms. It is similar

to the software-based digital audio techniques that became popular a couple of decades

ago. Just as a sound card in a computer digitizes audio waveforms, a software radio

peripheral digitizes radio waveforms. It's like a very fast sound card with the speaker and

microphone replaced by an antenna. A single software radio platform can be used to

implement virtually any wireless technology (Bluetooth, ZigBee, cellular technologies, FM

radio, etc.).

Digital audio capabilities in general purpose computers enabled a revolution in the

sound and music industries with advances such as hard disk recording and MP3 file

sharing. Today's computers are fast enough to process radio waveforms in similar ways,

and the radio communications industry is going through the same sorts of changes. One

critical advance is finally taking place now, and that is the availability of low cost tools

enabling anyone to take part in the revolution.

 Wide Operating Frequency Range:

HackRF operates from 30 MHz to 6 GHz, a wider range than any SDR peripheral

available today. This range includes the frequencies used by most of the digital radio

systems on Earth. It can operate at even lower frequencies in the MF and HF bands when

paired with the Ham It up RF up converter.

mailto:mike@ossmann.com
https://github.com/mossmann/hackrf

 617

 Transceiver:

HackRF can be used to transmit or receive radio signals. It operates in half-duplex

mode: it can transmit or receive but can't do both at the same time. However, full-duplex

operation is possible if you use two HackRF devices.

 Low Cost:

HackRF was designed to be the most widely useful SDR peripheral that can be

manufactured at a low cost. The estimated future retail price of HackRF is $300, but you

can get one for even less by backing the Kickstarter project today.

 Wideband:

The maximum bandwidth of HackRF is 20 MHz, about 10 times the bandwidth of

TV tuner dongles popular for SDR. That means that HackRF could be used for high speed

digital radio applications such as LTE or 802.11g.

 Open Source:

The most important goal of the HackRF project is to produce an open source design

for a widely useful SDR peripheral. All hardware designs and software source code are

available under an open source license. The hardware designs are produced in KiCad, an

open source electronic design automation tool. You can download the Jawbreaker

(HackRF beta) design and build your own HackRF today!

 Compatible:

HackRF beta units are already being used on Linux, OS X, and Windows platforms.

The device takes full advantage of USB 2.0, an interface found on almost every general

purpose computer. HackRF already works with the popular GNU Radio software

framework, and HackRF support can be added to other SDR software.

 Tested:

The Jawbreaker design depicted above is the fully functional HackRF beta design.

Hundreds of Jawbreakers have been distributed to developers and beta testers. HackRF

has already been used for Digital Audio Broadcasting (DAB), Bluetooth monitoring,

spectrum sensing, wireless microphones, AIS, FM radio, and more. I plan to use feedback

from beta testers to make your HackRF even better than Jawbreaker.

Further Work: System Integration and Integration Test of ECS Demo System

 618

B.2 Jawbreaker16

Jawbreaker is the first complete HackRF platform, a wideband software radio

transceiver with a USB interface.

Hardware notes:

Schematic and layout files were designed in KiCad, an open source electronic

design automation package.

order of copper layers:

 Copper 1: Front

 Copper 2: Inner3

 Copper 3: Inner2

 Copper 4: Back

PCB description: 4 layer PCB 0.062 in

 Copper 1 0.5 oz foil plated to approximately 0.0017 in

 Dielectric 1-2 0.0119 in

 Copper 2 1 oz foil (0.0014 in)

 Dielectric 2-3 0.0280 in

 Copper 3 1 oz foil (0.0014 in)

 Dielectric 3-4 0.0119 in

 Copper 4 0.5 oz foil plated to approximately 0.0017 in

FR4 or similar substrate with Er=4.5 (+/- 0.1)

double side solder mask black

double side silkscreen white

6 mil min trace width and

6 mil min isolation

B.3 Jellybean17

16 ..\\6-ECS-SDR\5-Guide\HackRF\hardware\jawbreaker
This file contain also the Hardware design file, but it should open by KiCad software
17 ..\\6-ECS-SDR\5-Guide\HackRF\hardware\jellybean
This file contain also the PCB design as pdf, with the Hardware design file, but it should open by

KiCad software

 619

Jellybean is a microcontroller platform based on the LPC43xx. It is designed to

control Lemondrop.

Hardware notes:

Schematic and layout files were designed in KiCad, an open source electronic

design automation package.

order of copper layers:

 Front

 Inner3

 Inner2

 Back

PCB description: 4 layer PCB 1.6 mm

 Copper 1 35 um

 Dielectric 1-2 0.35 mm

 Copper 2 18 um

 Dielectric 2-3 0.76 mm

 Copper 3 18 um

 Dielectric 3-4 0.35 mm

 Copper 4 35 um

DE104iML or equivalent substrate (Er=4.42@2.4GHz TanD=0.016)

double side solder mask black

double side silkscreen white

6 mil min trace width and

6 mil min isolation

This file contain also the PCB design as pdf, with the Hardware design file, but it should open by

KiCad software

B.4 Lemondrop18

Lemondrop is a 2.3 to 2.7 GHz wireless transceiver with a 22 Msps ADC/DAC and

flexible clocking for software radio applications.

Hardware notes:

Schematic and layout files were designed in KiCad, an open source electronic

Design automation package.

order of copper layers:

 Front

 Inner3

 Inner2

 Back

PCB description: 4 layer PCB 1.6 mm

 Copper 1 35 um

 Dielectric 1-2 0.35 mm

18 ..\\6-ECS-SDR\5-Guide\HackRF\hardware\lemondrop
This file contain also the Hardware design file, but it should open by KiCad software

Further Work: System Integration and Integration Test of ECS Demo System

 620

 Copper 2 18 um

 Dielectric 2-3 0.76 mm

 Copper 3 18 um

 Dielectric 3-4 0.35 mm

 Copper 4 35 um

DE104iML or equivalent substrate (Er=4.42@2.4GHz TanD=0.016)

double side solder mask black

double side silkscreen white

6 mil min trace width and

6 mil min isolation

B.5 HackRF Hardware

 621

 Board IC:

U1-U2-U5-U6-U7-U10-U11:SKY13350;Skyworks;SKY13350-385LF;0.01-6.0 GHz GaAs SPDT Switch

U3:RX_LOWPASS_FILTER;AVX;LP0603A1880ANTR;FILTER LOW PASS 1880MHZ 0603 SMD

U4:RFFC5072;RFMD;RFFC5072TR7;WIDEBAND SYNTHESIZER/VCO WITH INTEGRATED

6GHz MIXER

U8:RX_HIGHPASS_FILTER;TDK;DEA162400HT-8004B1;FILTER HIGHPASS

WLAN&BLUETOOTH

U9-U12-U14:SKY13317;Skyworks;SKY13317-373LF;20 MHz-6.0 GHz pHEMT GaAs SP3T Switch

U13–U25:MGA-81563;Avago;MGA-81563-TR1G;0.1-6 GHz 3 V

U15:GSG-74HC04;Texas Instruments;SN74AHC04RGYR;IC HEX INVERTERS 14-QFN

U16:GSG-74HC08;Texas Instruments;SN74AHC08RGYR;IC QUAD 2IN POS-AND GATE 14-QFN

U17:MAX2837;Maxim;MAX2837ETM+;IC TXRX 2.3GHZ-2.7GHZ 48TQFN

U18:MAX5864;Maxim;MAX5864ETM+;IC ANLG FRONT END 22MSPS 48-TQFN

U19:SI5351C;Silicon Laboratories Inc;SI5351C-B-GM;IC CLK GENERATOR 160MHZ 20QFN

U20:W25Q80BV;Winbond;W25Q80BVSSIG;IC FLASH 8MBIT 8SOIC

U21:TPS62410;Texas Instruments;TPS62410DRCR;IC BUCK SYNC DUAL ADJ 0.8A 10SON

U22:GSG-IP4220CZ6;NXP;IP4220CZ6

U23:LPC43XXFBD144;NXP;LPC4330FBD144

U24:GSG-XC2C64A-7VQG100C;Xilinx;XC2C64A-7VQG100C;IC CR-II CPLD 64MCELL 100-VQFP

U26:RF LDO;DNP

 Other component:
FB1:FILTER;Murata;BLM21PG221SN1D;FERRITE CHIP 220 OHM 2000MA 0805

FB2:FILTER;Murata;BLM21PG221SN1D;FERRITE CHIP 220 OHM 2000MA 0805

Q1:MOSFET_P;Fairchild;BSS84;MOSFET P-CH 50V 130MA SOT-23

Q2:MOSFET_P;Fairchild;BSS84;MOSFET P-CH 50V 130MA SOT-23

T1:MIX_IN_BALUN;Anaren;B0310J50100AHF;Ultra Low Profile 0805 Balun 50 to 100 ohm

Balanced

T2:MIX_OUT_BALUN;Anaren;B0310J50100AHF;Ultra Low Profile 0805 Balun 50 to 100 ohm

Balanced

T3:RX_BALUN;Johanson Technology;2500BL14M100T;BALUN CERAMIC CHIP WIMAX 2.5GHZ

T4:TX_BALUN;Johanson Technology;2500BL14M100T;BALUN CERAMIC CHIP WIMAX 2.5GHZ

X1:GSG-XTAL4PIN;AVX;CX3225GB25000D0HEQZ1;CRYSTAL 25.000MHZ 8PF SMD

X2:MCU_XTAL;TXC;7V-12.000MAAE-T;CRYSTAL 12.000 MHZ 12PF SMD

With a lot of: capacitors, resistors, inductors, ports with jumpers

B.6 Extra file

Further Work: System Integration and Integration Test of ECS Demo System

 622

 LPCXpresso Flash Debug Tutorial(pdf file)19

This pdf file contains the following points:

 Hardware required:

o NXP LPC-Link board included with any LPCXPRESSO Board

o LPC43xx board

 Software required:

o LPCXpresso v4.2.3 build 292

 Starting LPCXpresso IDE

 Create a project

 Flashing ".bin" or ".elf" in SPIFI flash memory

 Debugger configuration

 LPCXpresso Flash Debug Tutorial(pdf file)20

This file contains the following folders:

Blinky

Blinky_rom_to_ram

Common

Cpld

Cpldjtagprog

Cpldjtagprog_rom_to_ram

Hackrf_usb

Hackrf_usb_rom_to_ram

Mixertx

sgpio

sgpio_passthrough_rom_to_ram

sgpio_rx

simpletx

spiflash

startup

startup_systick

startup_systick_perfo

startup_systick_perfo_rom_to_ram

19 ..\\6-ECS-SDR\5-Guide\HackRF\doc\LPCXpresso_Flash_Debug_Tutorial.pdf
20 ..\\6-ECS-SDR\5-Guide\HackRF\firmware

 623

With makefile and this readme note:
The primary firmware source code for USB HackRF devices is hackrf_usb. Most of the

other directories contain firmware source code for test and development. The common directory

contains source code shared by multiple HackRF firmware projects. The cpld directory contains

HDL source for the CPLD present on the Jawbreaker and Jellybean designs.

The firmware is set up for compilation with the GCC toolchain available here:

https://code.launchpad.net/gcc-arm-embedded

Required dependency:

https://github.com/mossmann/libopencm3

Another file named firmware-bin contain hackrf_usb_rom_to_ram.bin

B.7 Host build21

How to build host software on Windows:

Prerequisite for cygwin or mingw:

* cmake-2.8.10.2 or more see http://www.cmake.org/cmake/resources/software.html

* libusbx-1.0.14 or more see

http://sourceforge.net/projects/libusbx/files/latest/download?source=files

* Install Windows driver for HackRF hardware or use Zadig see

http://sourceforge.net/projects/libwdi/files/zadig

 - If you want to use Zadig select HackRF USB device and just install/replace

it with WinUSB driver.

* Build libhackrf before to build this library, see host/libhackrf/Readme.md.

For Cygwin:

cmake -G "Unix Makefiles" -DCMAKE_LEGACY_CYGWIN_WIN32=1 -

DLIBUSB_INCLUDE_DIR=/usr/local/include/libusb-1.0/

make

make install

For Mingw:

#normal version

cmake -G "MSYS Makefiles" -DLIBUSB_INCLUDE_DIR=/usr/local/include/libusb-1.0/

#debug version

cmake -G "MSYS Makefiles" -DCMAKE_BUILD_TYPE=Debug -

DLIBUSB_INCLUDE_DIR=/usr/local/include/libusb-1.0/

make

make install

21 ..\\6-ECS-SDR\5-Guide\HackRF\host\hackrf-tools

https://code.launchpad.net/gcc-arm-embedded
https://github.com/mossmann/libopencm3

Further Work: System Integration and Integration Test of ECS Demo System

 624

Appendix C: Alternative System Designs

Fig. 5.1 A and B: System Overview

System Design of v2.0

GUI using I and Q

from WinRad

SCS-SMS

with W.T.

ran T-stick+

SDR platform

SCS-SMS

SCS-SMS

SCS-SMS

System Design of v1.0

GUI using I and Q

from Winrad

SCS-SMS

with ART

HackRF

SDR platform

SCS-SMS Amateur Radio

Transceiver

SCS-SMS Amateur Radio

Transceiver

SCS-SMS Amateur Radio

Transceiver

 625

Literature

[HarckRF] …

http://en.wikibooks.org/wiki/Special:BookSources/0900612584

…

 626

Communication System with HarckRF (from IAP-SAT, 6th project report)
(2020)

Eng. MMJZ

 627

24 Telemetry System with HarckRF

By MMJZ

24.1 Time Plan

Title Description Estimated

Time

Status

Task 1: Introduction

HackRF Introduce HackRF and getting start with,

a brochure summarize the main info

should be prepared and established

5 days Done

SDR (Software

Defined Radio)

Introduce and understand SDR workflow

and check for its available software

5 days Done

Task 2: Getting Start

Receiving signal Use available SDR software to receiving

signal using HackRF

2 days Done

Transmitting signal Use available SDR software to

transmitting signal using HackRF

2 days Done

Pentoo OS Prepare Pentoo OS on a machine or USB

image to be used with the HackRF

2 days Done

GnuRadio Getting start with GnuRadio compain and

make some tutorials

3 days Done

Communication System with HarckRF (from IAP-SAT, 6th project report) (2020)

 628

Raspberry&GnuRadio Install GnuRadio on Raspberry Pi OS and

make some tests

4 days Done

Task 3: System 1 (Send and receive system “separately”)

Make a Sender Build a system to send a RF signal using a

HackRF and Raspberry Pi.

4 days In

Progress

Make a Receiver Build a system to receive a RF signal

using a HackRF and developed SDR

software

7 days In

Progress

Task 4: System 2 (Send\Receive system)

Raspberry S\R Update the Raspberry Pi system to make

it two way communication sys

(send\receive)

3 days

SDR software S\R Update the developed SDR software to

make it two way communication sys.

(send\Receive)

3 days

Task 5: System 3: Lotte System

Arduino > Raspberry Connect Arduino to Raspberry and send

and receive data from it using USB

connection

5 days

Raspberry > HackRF Use HackRF to send Arduino data, and to

receive command for it

10 days

HackRF > Gui Use a Windows developed software to

receive sent data from the raspberry side

to be access

10 days

Total time: 65 days, Spent time: 25 days, Remaining time: 40 days

24.2 Introduction

HackRF One from Great Scott Gadgets is a Software Defined Radio peripheral capable of

transmission or reception of radio signals from 1 MHz to 6 GHz. Designed to enable test and

development of modern and next generation radio technologies, HackRF One is an open source

hardware platform that can be used as a USB peripheral or programmed for stand-alone operation.

Specifications:

- 1 MHz to 6 GHz operating frequency

- Half-duplex transceiver

- Up to 20 million samples per second

- 8-bit quadrature samples (8-bit I and 8-bit Q)

Communication System with HarckRF (from IAP-SAT, 6th project report) (2020)

 629

- Compatible with GNU Radio, SDR#, and more

- Software-configurable RX and TX gain and baseband filter

- Software-controlled antenna port power (50 mA at 3.3 V)

- SMA female antenna connector

- SMA female clock input and output for synchronization

- Convenient buttons for programming

- Internal pin headers for expansion

- Hi-Speed USB 2.0

- USB-powered

- Open source hardware

Parameters:

- Frequency band: 1MHz-6Ghz

- Data bandwidth: 20MHz

- Sampling accuracy (ADC/DAC) : 8BIT

- Sampling speed (ADC/DAC): 20Mbps

- Maximum transmitting power: 10dbm

Communication System with HarckRF (from IAP-SAT, 6th project report) (2020)

 630

- 64QAM transmitting EVM: 1.5%

- Complex sampling bandwidth: 20Mhz

To invoke DFU mode: Press and hold the DFU button. While holding the DFU button, reset the

HackRF One either by pressing and releasing the RESET button or by powering on the HackRF

One. Release the DFU button.

The DFU button only invokes the bootloader during reset. This means that it can be used for other

functions by custom firmware.

Hardware:

- Mixer RFFC5072: 80MHz-4200MHz

- Wireless bandwidth RF transceiver MAX2837: 2.3Ghz-2.7Ghz

- Processor LPC4330: Main frequency 204MHz

- Amplifier MGA-81563: 0.1-6Ghz, 3V, 14dbm

• The RF switch determines whether to amplify via a 14db amplifier

• The signal is filtered by high pass or loss pass filter

• Signal RFFC5072 chip mixing to 2.6GHz fixed medium frequency

• The firmware supports variable intermediate frequency options: range 2.15 GHz to 2.75

GHz

• Signal into the MAX2837 chip mixing to the baseband, output differential IQ signal

(MAX2837 chip can limit the bandwidth of the signal)

• The MAX5864 chip digitizes the baseband signal and sends it to CPLD

• The LPC4320/4330 processor sends the sampled data to computer via USB

• RFFC5072 and MAX2837 are protected in a shield to prevent interference from the outside

world or other chips on the board, and to prevent static electricity form penetrating some

chips

24.2.1 Links and references:

Official site: https://greatscottgadgets.com/hackrf/one/

HackRF Lessons of Michael Ossmann: https://greatscottgadgets.com/sdr/

Source files on github: https://github.com/mossmann/hackrf

Portapack source files on github: https://github.com/sharebrained/portapack-hackrf

Files:

HackRF_Poster.pdf

https://greatscottgadgets.com/hackrf/one/
https://greatscottgadgets.com/sdr/
https://github.com/mossmann/hackrf
https://github.com/sharebrained/portapack-hackrf

Communication System with HarckRF (from IAP-SAT, 6th project report) (2020)

 631

24.2.2 SDR (Software defined radio):

Software-defined radio (SDR) is a radio communication system where components that have

been traditionally implemented in hardware (e.g. mixers, filters, amplifiers,

modulators/demodulators, detectors, etc.) are instead implemented by means of software on a

personal computer or embedded system.

There are a lot of SDR software globally like: HDSDR, SDRSharp…

24.2.3 HDSDR:

HDSDR is a freeware Software Defined Radio (SDR) program for Microsoft Windows

2000/XP/Vista/7/8/8.1/10. Typical applications are Radio listening, Ham Radio, SWL, Radio

Astronomy, NDB-hunting and Spectrum analysis. HDSDR (former WinradHD) is an advanced

version of Winrad, written by Alberto di Bene (I2PHD).

Main features:

 separate large spectrum and waterfall display for input and output signals

 RF & AF spectrum and waterfall is optically zoomed to fit window width independently of FFT

resolution bandwidth (RBW)

 flexible and efficient usage of the screen area from 640x480 (Netbooks) up to 8k

 extreme low-speed waterfall - helpful for pattern noise detection or short wave condition

monitoring

 AM, ECSS, FM, SSB and CW demodulation

 basic transmit (TX) functionality in modes SSB, AM, FM & CW

 I/Q modulated signal pair for the TX input signal (Microphone) is produced on the TX output

 squelch, noise reduction, noise blanker, adjustable band pass filter, anti-alias filter

 automatic notch filter and up to 10 manual adjustable notch filters

 record and playback RF, IF and AF WAV files with recording scheduler

 Frequency Manager for Eibi, Ham Bands, Radio Bands, User frequency lists

Communication System with HarckRF (from IAP-SAT, 6th project report) (2020)

 632

 DDE client for Ham Radio Deluxe, Orbitron, WXtrack, SatPC32, Wisp and PstRotator (Howto)

 Omni-Rig support (CAT) to control additional hardware

 support for various hardware through Alberto's (I2PHD) ExtIO DLL interface

 ExtIO frequency options for IF-Adapter, Upconverter, Downconverter, Undersampling and

calibration

 All HDSDR program options can be stored and loaded per "profile", to ease use of different

receivers

 autocorrelation and cepstrum display for demodulated audio

 some command line options with profile management

Link: http://www.hdsdr.de/

24.2.4 SDRSharp:

Airspy is a line of Popular Software-Defined Radio (SDR) receivers developed to achieve High

Performance and Affordable Price using innovative combinations of DSP and RF techniques. The

goal is to satisfy the most demanding telecommunications professionals and radio enthusiasts

while being a serious alternative to both cost sensitive and higher end receivers. Airspy Radios

feature world class reception quality and ease of use thanks to the tight integration with the de

facto standard free SDR# software for signal acquisition, analysis and demodulation.

http://www.hdsdr.de/

Communication System with HarckRF (from IAP-SAT, 6th project report) (2020)

 633

Link: https://airspy.com/download/

https://airspy.com/download/

Communication System with HarckRF (from IAP-SAT, 6th project report) (2020)

 634

24.2.5 GnuRadio:

GNU Radio is a free & open-source software development toolkit that provides signal

processing blocks to implement software radios. It can be used with readily-available low-cost

external RF hardware to create software-defined radios, or without hardware in a simulation-like

environment. It is widely used in research, industry, academia, government, and hobbyist

environments to support both wireless communications research and real-world radio systems.

What is GNU Radio?

GNU Radio is a framework that enables users to design, simulate, and deploy highly capable

real-world radio systems. It is a highly modular, "flowgraph"-oriented framework that comes with

a comprehensive library of processing blocks that can be readily combined to make complex signal

processing applications.

GNU Radio has been used for a huge array of real-world radio applications, including audio

processing, mobile communications, tracking satellites, radar systems, GSM networks, Digital

Radio Mondiale, and much more - all in computer software.

It is, by itself, not a solution to talk to any specific hardware. Nor does it provide out-of-the-box

applications for specific radio communications standards (e.g., 802.11, ZigBee, LTE, etc.,), but it can

be (and has been) used to develop implementations of basically any band-limited communication

standard.

Why would I want GNU Radio?

Formerly, when developing radio communication devices, the engineer had to develop a

specific circuit for detection of a specific signal class, design a specific integrated circuit that would

be able to decode or encode that particular transmission and debug these using costly equipment.

Software-Defined Radio (SDR) takes the analog signal processing and moves it, as far as

physically and economically feasible, to processing the radio signal on a computer using

algorithms in software.

You can, of course, use your computer-connected radio device in a program you write from

scratch, concatenating algorithms as you need them and moving data in and out yourself. But this

quickly becomes cumbersome: Why are you re-implementing a standard filter? Why do you have

to care how data moves between different processing blocks? Wouldn't it be better to use highly

optimized and peer-reviewed implementations rather than writing things yourself? And how do

you get your program to scale well on a multi-core architectures but also run well on an embedded

device consuming but a few watts of power? Do you really want to write all the GUIs yourself?

Communication System with HarckRF (from IAP-SAT, 6th project report) (2020)

 635

Enter GNU Radio: A framework dedicated to writing signal processing applications for

commodity computers. GNU Radio wraps functionality in easy-to-use reusable blocks, offers

excellent scalability, provides an extensive library of standard algorithms, and is heavily optimized

for a large variety of common platforms. It also comes with a large set of examples to get you

started.

24.2.5.1 Links:

Official site: https://www.gnuradio.org/

GNU Radio wiki tutorials: https://wiki.gnuradio.org/index.php/Tutorials

GNU Radio API manual: https://www.gnuradio.org/doc/doxygen/

24.3 Getting started

HDSDR:

Download HDSDR from here http://www.hdsdr.de/index.html

While you are there read the other pages, note the link to Alberto's original help and You Tube.

Execute the installation.

Later versions of Windows have security features that make altering the contents of "Program

Files" difficult. A way round this might be to change the default and install HDSDR somewhere

different "C:\HDSDR" perhaps.

Note the folder where it installs, you will usually need to find it in order to place a DLL file in

there.

Look here http://hdsdr.de/hardware.html for DLLs and instructions for use with many radios,

SDR and conventional .

Used ExtIO dll:

ExtIO_HackRF.dll

ExtIO_RTL2832.dll

Open HDSDR and try to receive any local radio signal

<Add screenshot here>

SDRSharp:

Airspy is a plug-and-play device and does not require any particular driver installation on

Windows Vista, 7, 8, 8.1 and 10. You just plug Airspy and Windows will download and install the

right driver for you.

There are exceptions where the original configuration of the PC does not allow the automatic

installation of this class of devices. In such case, a driver should be installed manually with the

following procedure:

 Download and unzip the WinUSB Compatibility Driver

https://www.gnuradio.org/docs/
https://wiki.gnuradio.org/index.php/Tutorials
https://www.gnuradio.org/doc/doxygen/
http://www.hdsdr.de/index.html
http://hdsdr.de/hardware.html
https://airspy.com/download
https://airspy.com/download

Communication System with HarckRF (from IAP-SAT, 6th project report) (2020)

 636

 Open the device manager and select Airspy

 Select “Update Driver” then “Browse My Computer” to the inf file

Using SDR#

Airspy was designed by the same people who developed the SDR# software so it’s the obvious

choice for running Airspy and leverage all its powerful features.

First, go to the download page and get a copy. Then run SDRSharp.exe and select the “AIRSPY”

front-end:

Then next step is the gain configuration. As depicted in this screen shot, there are many gain

modes:

 Sensitivity

 Linearity

 Free (Custom)

The “Linearity” mode is the one you want to start with:

The following fine tuning procedure ensures you have the maximum SNR on the signal of interest

while preserving the dynamic range:

 Start with the minimum gain

 Increase the gain until the noise floor rises by about 5dB

 Fine tune to maximize the SNR (the blue bar graph on the right)

http://sdrsharp.com/
https://airspy.com/download

Communication System with HarckRF (from IAP-SAT, 6th project report) (2020)

 637

In any case, you should make sure the RF noise floor just overrides the quantization noise floor of

the ADC, but no more.

24.3.1 Getting Started with HackRF and GNU Radio22

The easiest way to get started with your HackRF and ensure that it works is to use Pentoo,

a Linux distribution with full support for HackRF and GNU Radio. Download the latest Pentoo

.iso image from one of the mirrors listed at http://pentoo.ch/download/. Then burn the .iso to a

DVD or use UNetbootin to install the .iso on a USB flash drive. Boot your computer using the DVD

or USB flash drive to run Pentoo. Do this natively, not in a virtual machine. (Unfortunately high

speed USB operation invariably fails when people try to run HackRF from a virtual machine.)

Once Pentoo is running, you can immediately use it to update firmware on your HackRF or use

other HackRF command line tools. For a walkthrough, watch SDR with HackRF, Lesson 5: HackRF

One.

To verify that your HackRF is detected, type hackrf_info at the command line. It should produce a

few lines of output including "Found HackRF board." The 3V3, 1V8, RF, and USB LEDs should all

be illuminated and are various colors.

You can type startx at the command line to launch a desktop environment. Accept the "default

config" in the first dialog box. The desktop environment is useful for GNU Radio Companion and

other graphical applications but is not required for basic operations such as firmware updates.

Now you can use programs such as gnuradio-companion or gqrx to start experimenting with your

HackRF. Try the Examples below. If you are new to GNU Radio, an excellent place to start is with

the SDR with HackRF video series or with the GNU Radio guided tutorials.

Try FM radio flow graph: Create a flow graph in GNU Radio Companion like the one in the video

or the screenshot below. Test the flow graph by listening to a strong FM radio signal.

22 https://github.com/mossmann/hackrf/wiki/Getting-Started-with-HackRF-and-GNU-Radio

http://pentoo.ch/download/
http://unetbootin.sourceforge.net/
https://github.com/mossmann/hackrf/wiki/Updating-Firmware
http://greatscottgadgets.com/sdr/5/
http://greatscottgadgets.com/sdr/5/
http://greatscottgadgets.com/sdr/
https://wiki.gnuradio.org/index.php/Tutorials
https://github.com/mossmann/hackrf/wiki/Getting-Started-with-HackRF-and-GNU-Radio

Communication System with HarckRF (from IAP-SAT, 6th project report) (2020)

 638

This flow graph is the done on the first lesson of Michael Ossmann tutorials, complete the list to be

more familiar with the HackRF and gnuRadio.

<Add screenshot here for output>

24.3.2 HackRF with Raspberry PI:

There is some files and tools should be installed on the Raspbian system of the raspberry Pi to

make the ability to use HackRF. As the Raspbian is not a high performance OS, the installation will

be a little bit complex.

PiSDR:

You can find on the cloud some raspbian image updated with these tools and SDR software pre-

installed and ready to go such PiSDR

The PiSDR is a Raspbian based operating system for the Raspberry Pi pre-loaded with multiple

Software Defined Radio software. It was created to serve as a fast and reliable bootstrap for SDR

projects.

Link: https://pisdr.luigifreitas.me/#getting-started

Installation on RaspberryPi 323

What will we need

We would need Raspberry Pi 3 or Raspberry Pi Zero W 1.1, which has 64-bit ARMv7 processor.

Please note that gr-gsm cannot be installed on Raspberry Pi 1 (we tested Model B), since it has

ARMv6 processor. Some GNU Radio components are not supported on ARMv6 architecture.

23 https://github.com/ptrkrysik/gr-gsm/wiki/Installation-on-RaspberryPi-3

https://pisdr.luigifreitas.me/#getting-started
https://github.com/ptrkrysik/gr-gsm/wiki/Installation-on-RaspberryPi-3
https://greatscottgadgets.com/sdr/images/lesson1-grc.png

Communication System with HarckRF (from IAP-SAT, 6th project report) (2020)

 639

On RPi we will install Debian based Linux operating system Raspbian Jessie (we used version

from 2016-03-18).

Update software on Raspberry Pi

First we need to change default password with the command passwd. After that we need to install

new updates:

sudo apt-get update

sudo apt-get upgrade

Expand space on a SD card and set-up the device

Next step is to expand space on a SD card. We invoke the tool to do that with sudo raspi-config. In

menu we select Expand space. We also need to set timezone, in which country we will use Wi-fi,

keyboard settings (under Internationalisation Options). Do not change language settings! If system

language is not English, some strange errors in Python start to appear.

Now we need to reboot the machine with sudo reboot.

Update firmware on Raspberry Pi

Right after that we need to update Raspberry firmware with command sudo rpi-update. When this

is finished, we need to stop the machine with sudo shutdown -h now and physically plug off the

power. After some seconds we power it up again.

Secure the device

Now it is good time to setup firewall, enable NTP client, change hostname... maybe we also want

to set up VNC console. We assume you are able to secure the device, for some quick steps.

Do not skip this step, security is important.

Increase swap space

Sometimes you will need more memory for compiling. You can "add" new memory with

increasing swap space. Open the configuration file:

sudo nano /etc/dphys-swapfile

... and look for default value in Raspbian, which is: CONF_SWAPSIZE=100

Change it to: CONF_SWAPSIZE=1024 After that you need to stop and start the service that

manages the swapfile on Rasbian:

sudo /etc/init.d/dphys-swapfile stop

sudo /etc/init.d/dphys-swapfile start

Now can then verify the amount of memory and swap space by issuing the following

command: free -m

Install screen

Since compiling can take a long time, it may also be a good idea to install screen: sudo apt-get

install screen.

https://www.raspberrypi.org/downloads/raspbian/

Communication System with HarckRF (from IAP-SAT, 6th project report) (2020)

 640

Installation of software needed for gr-gsm

Install Kalibrate

First, we will install Kalibrate:

sudo apt-get install libtool autoconf automake libfftw3-dev librtlsdr0 librtlsdr-dev libusb-1.0-0

libusb-1.0-0-dev

git clone https://github.com/asdil12/kalibrate-rtl.git

cd kalibrate-rtl

git checkout arm_memory

./bootstrap

./configure

make

sudo make install

Install GNU Radio

Now we need to install GNU Radio, which is quite simple:

sudo apt-get install gnuradio gnuradio-dev gnu // In fact, there's no such package named "gnu", so

just install gnuradio gnuradio-dev

Install libosmocore

We need to compile libosmocore...

sudo apt-get install cmake

sudo apt-get install build-essential libtool shtool autoconf automake git-core pkg-config make gcc

sudo apt-get install libpcsclite-dev libtalloc-dev gnutls-dev libsctp-dev

git clone git://git.osmocom.org/libosmocore.git

cd libosmocore/

autoreconf -i

./configure

make

sudo make install

sudo ldconfig -i

cd

...and install some other things

sudo apt-get install swig python-docutils

sudo apt-get install gr-osmosdr rtl-sdr

sudo apt-get install libboost-dev

Communication System with HarckRF (from IAP-SAT, 6th project report) (2020)

 641

sudo apt-get install osmo-sdr libosmosdr-dev

sudo apt-get install libusb-1.0.0 libusb-dev

sudo apt-get install libboost-all-dev libcppunit-dev swig doxygen liblog4cpp5-dev python-scipy

Install gr-gsm

Now we are ready for the final step:

git clone https://github.com/ptrkrysik/gr-gsm.git

cd gr-gsm

mkdir build

cd build

cmake ..

make

sudo make install

sudo ldconfig

install HackRf lib:

Step 1: sudo apt-get update -y

Step 2: sudo apt-get install -y hackrf

24.4 System 1

System 1: Send and receive system (separately)

https://zr6aic.blogspot.com/2018/04/setting-up-my-raspberry-pi-as-bacar.html

https://github.com/F5OEO/rpitx

https://www.rtl-sdr.com/transmitting-fm-am-ssb-sstv-and-fsq-with-just-a-raspberry-pi/

Raspberry Pi

HackRF one

SDR Dongle
PC with SDR

software

Sender

Receiver

https://zr6aic.blogspot.com/2018/04/setting-up-my-raspberry-pi-as-bacar.html
https://github.com/F5OEO/rpitx
https://www.rtl-sdr.com/transmitting-fm-am-ssb-sstv-and-fsq-with-just-a-raspberry-pi/

Communication System with HarckRF (from IAP-SAT, 6th project report) (2020)

 642

https://medium.com/@rxseger/sdr-first-project-initial-setup-node-hackrf-gnu-radio-on-linux-os-x-

rpi-3-w-fm-tuner-ee16cdc8fd82

https://www.reddit.com/r/RTLSDR/comments/dy29a3/hackrf_on_windows/

https://github.com/mossmann/hackrf/issues/457

https://medium.com/@rxseger/sdr-first-project-initial-setup-node-hackrf-gnu-radio-on-linux-os-x-rpi-3-w-fm-tuner-ee16cdc8fd82
https://medium.com/@rxseger/sdr-first-project-initial-setup-node-hackrf-gnu-radio-on-linux-os-x-rpi-3-w-fm-tuner-ee16cdc8fd82
https://www.reddit.com/r/RTLSDR/comments/dy29a3/hackrf_on_windows/
https://github.com/mossmann/hackrf/issues/457

Communication System with HarckRF (from IAP-SAT, 6th project report) (2020)

 643

24.5 System 2

System 2: Send\Receive system

24.6 System 3

System 3: Lotte System

Raspberry Pi

HackRF one

HackRF one

PC with SDR

software

Raspberry

system

Desktop

System

Raspberry Pi

HackRF one

HackRF one

PC with

Winrad GUI

Lotte

system

Ground

System
Arduino Romeo

 644

Aerodynamic Investigations for a High-Altitude Airship (Platform) (2017)

From:

 645

25 Basics

25.1 History of airships

In 1782, Joseph Montgolfier and his brother Etienne had the idea of using the smoke of a

fire to overcome gravity. They developed the first balloon, called hot air balloon, using

warm air to inflate a sphere of paper. They thus realized the first unmanned flight. Shortly

afterwards, Pilâtre de Rozier and the Marquis d'Arlandes set up the first flight inhabited

by man. However, the balloon remained uncontrollable in front of the winds and the

ballooners therefore sought as early as 1784 to control and direct it. Some people tried to

use rudders and oars, such as sailors, but without much success. The spherical shape of

the balloons was soon called into question, and in the summer of 1784 the first elongated

envelope was created. However, the large dimensions of aircraft remain problematic vis-a-

vis the winds; the existing engines at the time were not powerful enough to counter the

winds. It was thus necessary to wait until 1852 for Henri Giffard to cover a distance of 27

kilometers while controlling his aircraft (Figure 1: The first steam dirigible, built in 1852 by Henri

Giffard.).

The feat is recognized but it cannot manage to counter the effects of the wind. Despite this

unprecedented performance, Henri Gifford’s aircraft is not recognized as dirigible, and it

was not until 1884 to see the first airship deserve its title.

Figure 1: The first steam dirigible, built in 1852 by Henri Giffard.

Aerodynamic Investigations for a High-Altitude Airship (Platform) (2017)

 646

After the example of Henri Giffard, many aeronauts embarked on the conquest of the

perfect maneuverability of the balloons. For example, the engineer Henri Dupuy de Lôme

and the Tissandier brothers who, in the years 1871 to 1874, brought many solutions to this

problem.

Despite the innovations brought by these aeronauts, it was not until August 9, 1884 to see

the realization of Man's dream of tame the winds. Charles Renard and Arthur Krebs carry

out on board the "La France" (Figure 2: France - First airship of the world, in Villacoublay in 1885.

aerostat what is considered the first airship flight. They make a 23-minute flight over the

forest of Meudon, with the particularity of returning to their point of departure (closed

circuit) thus proving the "steerability" of their aircraft.

Figure 2: France - First airship of the world, in Villacoublay in 1885.
Beginning in 1898, Santos Dumont, a Brazilian by birth and French by adoption,

developed many aircrafts, most of them airships. Several models stand out. From "n ° 6" in

1901, to "la Baladeuse" (Figure 3: Santos Dumont at the controls of his dirigible No. 6: Brasil, October

19, 1901. from the year 1903 to "No. 6" in 1901.

Aerodynamic Investigations for a High-Altitude Airship (Platform) (2017)

 647

Figure 3: Santos Dumont at the controls of his dirigible No. 6: Brasil, October 19, 1901.

In the tradition of Santos Dumont, the Lebaudy appeared in 1902 and marked the birth of

a new type of dirigibles: the "semi-rigides". The Lebaudy brothers developed a rigid hull

on which the nacelle and the propulsion systems are fixed. The envelope, however,

remains completely flexible.

On the German side, what became the world's largest airship company was born in 1898:

Count Ferdinand Von Zeppelin deposited in 1895 a patent showing the basis of what will

be the model of the Zeppelins for nearly a year century and constitutes a real break in the

history of the airship: the rigid aluminum dirigible was born.

In parallel to the development of Zeppelin, the world's first airline was founded in 1909.

During its five years of service, the DELAG transported some 33,000 passengers, its fleet of

airships traveling 170,000 km in just over 3,000 flight hours. During those 1600 flights, no

victim was to be deplored.

In 1908, Henry Deutsch de la Meurthe founded Astra and produced two flexible airships.

Two years later, Leonardo Torres joins the adventure and created the series of Astra-

Aerodynamic Investigations for a High-Altitude Airship (Platform) (2017)

 648

Torres "AT", flexible dirigibles having the peculiarity to propose for the first time a so-

called "trilobée" envelope. In 1910, the Clément Bayard-II crossed the sleeve for 390 km in

6 hrs at a speed of 65 km/h.

At the announcement of the entry into the war, the European countries requisitioned their

respective dirigibles. In France, the airships of companies Zodiac, Astra and Clément

Bayard were used for surveillance and bombing.

At the same time, the SPIESS (Figure 4: The Spiess, first and only rigid dirigible of French

construction., developed in 1913 by the company Zodiac and Joseph Spiess, was produced

in the Paris suburbs. It is the first and for the moment unique rigid dirigible of French

construction. It is also the largest, with its 140m long and has the distinction of being

composed of wooden beams.

The role of small, flexible dirigibles in maritime surveillance and anti-submarine struggle,

particularly within the French and English navies, can also be mentioned.

On the German side, three companies built a large number of dirigibles: Zeppelin built

nearly 67 rigid dirigibles, Parseval constructed about twenty flexible dirigibles and

Schütte-Lanz also produced about 20 rigid wooden dirigibles.

During this short period, there were many developments, both in design and production

and in the exploitation of airships. These intense innovations led to a race to record.

Figure 4: The Spiess, first and only rigid dirigible of French construction.
At the end of the First World War, the technologies developed made it possible to

establish new standards; the interest of airships has been demonstrated and new

perspectives were emerging. Each country now wanted to own the largest, and most

powerful airship in support of its supremacy. Major programs were emerging:

Aerodynamic Investigations for a High-Altitude Airship (Platform) (2017)

 649

As early as 1918, the United Kingdom began to conquer the air with its "R" series. In 1919,

the R34 thus ensured the first air crossing of the Atlantic in less than 8 days of flight.

In France, the Dixmude (former Zeppelin LZ114) was ceded to the army as a war damage

in 1920 but crashed in 1923.

In Italy, Umberto Nobile developed the Norge, a semi-rigid airship of 106 meters in length

and departed with Amundsen to conquer the North Pole (Figure 5: The Norge conquered the

North Pole in 1926. in 1926, reached it and flied over it on 12 May 1926. Two years later,

Nobile returned towards the North Pole on the Italia dirigible, slightly longer than the

Norge, but crashed on the way back. Nobile and some men survived for almost 7 weeks

on the pack ice before being rescued.

Figure 5: The Norge conquered the North Pole in 1926.
In the United States, the United States, together with Zeppelin, developed several very

large dirigibles, such as the first American rigid ZR-1 Shenandoah, which took off in 1923,

the ZR-3 Los Angeles (1924) sisterships "USS Akron (1931-1933), and USS Macon (1933)

(Figure 6: One of the two largest US airships: the USS Macon, in 1935. . These last two airships were

the largest and most powerful American airships, true aircraft carriers flying, carrying up

to 5 Sparrowhawk fighter jettisons and recoverable in flight.

Aerodynamic Investigations for a High-Altitude Airship (Platform) (2017)

 650

Figure 6: One of the two largest US airships: the USS Macon, in 1935.

In Germany, Count Ferdinand Von Zeppelin, relayed by Dr. Eckener, still developed new

airships, increasingly bigger and more efficient. Let us note the magnificent Graf Zeppelin

I (LZ127) which, with its 236 meters in length, crossed the Atlantic more than 150 times

from 1928 to 1940 and signed a round the world in 12 days.

The dirigibles thus dominated the heavens. This impressive aircraft became an industrial

flagship, military or even a means of propaganda in some countries. It became media and

famous; a real communication tool. Unfortunately, a series of accidents permanently

damaged the image of the airship.

It is indeed impossible to speak of the Zeppelins without mentioning the well-known

LZ129-Hindenburg, the largest of the dirigibles (245m long) which enjoyed a short career

between March 1936 and May 6, 1937, crushed upon its arrival in the US, causing the

death of 35 people among the 97 on board.

Although highly publicized and considered the most serious airship accident, it is not the

most deadly. Nevertheless, this crash marks the spirits durably.

Indeed, like any development of an innovative product, that of the airship has not escaped

a period of maturity which has resulted in a wave of accidents and more or less serious

incidents. Thus, in 1920 alone, the USS-Roma crashed, causing the death of 34 people. That

Aerodynamic Investigations for a High-Altitude Airship (Platform) (2017)

 651

of Diksmuide causes the death of 52 people. Finally the one of the R38 bore 44 families.

Then, on October 1, 1929, the British rigid dirigible R101 crashed in France near Beauvais

causing the death of 48 people including the British Minister of Transport. This accident

marks the end of British rigid dirigibles.

On the American side, the crash of the USS Akron in 1931, causing the death of 73 people,

marks the spirits and that of the Hindenburg, the largest of the airships and true flagship

of the German firm Zeppelin (Figure 7: One of the largest German airships: the Graf Zeppelin I.,

definitely signs the stop of the developments of the great dirigibles.

Figure 7: One of the largest German airships: the Graf Zeppelin I.
This series of accidents, however, is not the only cause of the decline of the dirigibles.

Indeed, the development of new aircraft, such as planes, helicopters, rockets and even

space conquest gradually concentrate all efforts, budgets and fantasies.

Thus, during the Second World War, airships were gradually abandoned to the profits of

planes, faster and more discreet, even though small, captive, flexible airships were used to

protect the battalions during landings.

Nevertheless, the US Navy continues to develop airships in large quantities to constitute

an armada of patrollers-escorts for Navy ships. These dirigibles are flexible, of relatively

small size, but are produced in very large quantities.

After the Second World War, priority was not given to spending on the development of

new aircraft. In addition, aircraft played a key role in the fall of the Nazi regime. The

Aerodynamic Investigations for a High-Altitude Airship (Platform) (2017)

 652

dirigibles, considered too dangerous and without real commercial or military interest, are

gradually abandoned.

We note, however, the development of the American firm Goodyear, which continued to

innovate and produce flexible airships: in 1954, the ZPG-2W beats the record of endurance

of a flight with 11 days and more than 15,000 km on the meter. In 1958, Goodyear built the

largest flexible airship (129m long!). Note that Goodyear still exists today and has just

relaunched the historical collaboration that links it to Zeppelin by taking possession of the

latest version of the Zeppelin NT (ZLT-101).

However, the return of airships from the 1960s remained very limited, and limited to

flexible dirigibles, the aircraft then presenting no real economic interest.

Beginning in the 2000s, the airship regained favorable winds; with many projects coming

to light all over the world. The renaissance of Zeppelin, with its NT07 "New Technology"

(Figure 8: The Zeppelin "New Technology", in flight for a decade. produced in 5 copies for civil

applications of tourism and scientific missions, and of which a new version has just been

certified and delivered to Goodyear.

Figure 8: The Zeppelin "New Technology", in flight for a decade.
At the same time, the year 2000 marked the arrival of a new market, that of heavy hauliers,

like the gigantic German CargoLifter project, abandoned in 2005, for technical reasons. On

the American side, the DARPA-funded Multi-intelligence Vehicle Long-Endurance Multi-

Vehicle project has created several projects: Northrop Grumman and Hybrid Air Vehicles

Aerodynamic Investigations for a High-Altitude Airship (Platform) (2017)

 653

have teamed up to develop the Airlander, prototype made its first flight in 2012 and is

expected to return soon; Aeroscraft produced and stolen its Pelican, which is now

dismantled for lack of funds; and Lockheed Martin developed the P-791, a capability

demonstrator, whose development now allows him to embark on a new, civilian, heavy-

duty 20T load carrying program, the LMH-1.

However, no heavy-lift carrier project has yet taken off for the time being.

We will further develop the current projects in a forthcoming article devoted entirely to

today's airships.

Finally, the airship enjoyed a period of splendor following a rapid development, setting it

up as a true pioneer of the aeronautical world. The economic reality, the lack of

technological maturity and the appearance of the heaviest air, however, have gradually

erased the blimp of the collective imagination. Like its history, the airship enjoys a

controversial notoriety, between fear and dreams. Today, this mythical aircraft is a great

absentee of the very varied aviation sector, and it is a shame. [1]: http://www.portail-

aviation.com/2015/07/dossier-dirigeable-episode-1-lhistoire-des-dirigeables-pionniers-de-

laeronautique.html

25.2 Evolution of airship

Since the past ages, the high ambition of human promotes him to fly. The science of aviation has

developed gradually.

25.2.1 Hot air balloons

The first attempt was based on heating of the air without a motor. The balloon consisted of the

envelope, a burner and the gondola.

Aerodynamic Investigations for a High-Altitude Airship (Platform) (2017)

 654

Figure 9: First ever of hot air balloon

The hot air balloons adopted two principles to work:

 The principle of cold and of hot air

The air is composed of the invisible particles: “molecules”. When the air is cold, the molecules

approach together and take a small volume comparing to the case of hot air where the molecules

move away from each other and the volume is larger.

For this reason, the mass of hot air is lighter than cold air. When the molecules of air contained in

the envelope is heated, the air in the balloon becomes lighter than the air in the atmosphere,

allowing the balloon to lift.

In order to descend the balloon, the air in the envelope must be cooled and it is also possible to

open the valve located at the top of the balloon. In this way, the cold air replaces the hot, and the

mass of interior air increases. Consequently, the balloon can descent. [1]

 Principle of Archimedes

Aerodynamic Investigations for a High-Altitude Airship (Platform) (2017)

 655

When a body is immersed in a fluid (gas or liquid), it is held up by a force equal to the weight of

the displaced fluid.

In order to lift an airship, the bouncy force must be larger than the weight of the displaced air.

Figure 10: Hot air balloons

The manufacturing of hot air balloon has developed and the design of his envelope, his burner and

his gondola work out big success.

 Development of envelope

By time, the fabrication methods used to produce balloons have changed. The aim was to achieve

the following characteristics:

 Flexibility

 Resistance

 Tightness: It is necessary to achieve this characteristic because the gas lighter than air as helium has

small molecules which can leak out of the balloon. So to be able to undergo long flights, the balloon

cover needs a very good seal.

a. “Baudruche”)Type of tissue(

The “Baudruche” is a membrane made from the intestine of beef and mutton. This tissue is very

light and waterproof but it has low durability and high cost.

b. Cotton or Silk

Aerodynamic Investigations for a High-Altitude Airship (Platform) (2017)

 656

Cotton or silk can provide the mechanical strength. They coated with rubber or vanish to ensure

the tightness.

c. Polyamide(Nylon) and Polyester

The polyamide (Nylon) and Polyester have used a lot in this days because they have a light weight

and good resistance. They are coated with polyurethane or silicone for protection to the ultraviolet

rays. [2]

 Development of burner

The burner is the engine of the hot air balloons. It heats and propels the air in the envelope and

contributes to lift the balloon.

In the first time, the damp straw and wood were used as fuel in the burner. After that, the coal and

the oil derivatives were used.

The current balloons used the propane in the burner. In the basket, many cylinders contain

propane. It is highly compressed in canisters and it is entered into the burner in liquid form.

When the burner is started up, the flame burns, the propane heats and transforms from a liquid to

a gas. The gas makes for a more powerful flame and an overall more efficient fuel consumption. [3]

 Development of gondola

Originally, the gondola or the basket was made of “Wicker” (material was used at the time

especially to make baskets).

Since that time, the materials have evolved. “Rattan” is also a material which used after, his

advantage is more solid and less susceptible to external elements but that is heavier than “Wicker”.

Both of materials still used, they have more advantages: solidity, lightness and flexibility. [2]

The modern materials used to made baskets are from “Kooboo” and “Palambang” cane. There are

many characteristics: sturdy, flexible and relativity light weight. The cane is very strong even more

than aluminum or some composite plastics. [2]

25.2.2 Dirigible or Airship

The dirigible is newer than hot air balloon. It contains gas which is lighter than air, this gas is used

instead of hot air. Three types of airship existed and they developed gradually:

1. Non-rigid airship(blimp):

Aerodynamic Investigations for a High-Altitude Airship (Platform) (2017)

 657

It is composed of ballonets, rudders (for directions), elevator flaps, gondola and a small engine.

Figure 11: Blimp (Non rigid airship)

This type developed and had an amelioration, it is named:

2. Semi-rigid airship:

The improvement of this dirigible: instead of the ballonets, it used gas bags, and it used big engine

and a keel.

Figure 12: Semi-rigid airship

3. Rigid airship: More than the previous type, it had a rigid structure.

Aerodynamic Investigations for a High-Altitude Airship (Platform) (2017)

 658

Figure 13: The Graf Zeppelin LZ-127 the most successful rigid airship

25.3 Evolution of the airship industry

In 1784, Jean-Baptiste Meusnier suggested a design for an airship of ellipsoid form. This design

consisted from: rudder, elevator and three large aircrews without lightweight powerful engine.

In 1852, Henri Giffard succeeded to apply steam-engine technology to airships. With a single

propeller driven by a three horsepower engine, his airship flew 17 miles. [4]

In 1872, Paul Haenlein was powered an aircraft by an internal combustion engine, the first attempt

was used such an engine to power an airship. [5]

In 1900, the Zeppelin airships became the most famous dirigible. During World War I, the

Germany army was used some of these airships as bombers.

In 1920s and 1930s, the United States and the Britain also were made airships, mostly imitating the

original Zeppelin design. [5]

25.4 The end of airship

Series of accidents were happened and ended the golden age of airship. In particularly, the

Hindenburg disaster at Lakehurst, New Jersey, 6 May 1937.The burn of this airship named” LZ 109

Hindenburg” was filled hydrogen ,killing 36 persons and becoming the most well-known and

widely remembered airships disasters of all time. The public’s confidence in capacities of airships

was shattered.

The development and application of airplanes has declined also the use of airships. The century of

airship finished and start new future of aircraft. [6]

Aerodynamic Investigations for a High-Altitude Airship (Platform) (2017)

 659

Figure 14: The Hindenburg disaster

25.5 Return of airship

After a pause of about hundred years, the airship returned to life at the end of the twentieth

century. Thus the hobby of the airship has aroused the curiosity of many, and has opened up new

horizons for this invention to move from sport to a means that allows man to leave the Earth and

seek other uses, especially in the science field, such as surveillance and telecommunication.

If we have a traffic jam, we can use the airship as a solution to detect the main point of traffic,

using the new technology people receive messages to avoid the busy roads. Consequently, people

save their time.

In the far forests, if we have fire or natural disasters, we can use the airship to detect these actions

as a satellite.

Also, the airships can used for tourism, they are very attractive means for transport.

Our study concerns to create a design of a rigid airship, its application will be in the field of

telecommunications. Indeed, the problem of internet weakness and its high price will be solved by

such a project whose objective is to distribute Internet in the far regions without having to install a

complete network. Hence the objective of this thesis is to design a rigid airship which can reach a

Aerodynamic Investigations for a High-Altitude Airship (Platform) (2017)

 660

high altitude. To appropriate this design, we need to do a study of aerostatic of airship, to draw

the design on “FreeCAD” and to study the all parts of this dirigible.

25.6 Archimedes principle

 The main source of lift in an airship is the bouncy force or the static lift. The bouncy force is based

on Archimedes principle: if a body is immersed in a fluid, in this case the fluid is the air, it

experiences a force proportional to the volume of the displaced air in the opposite direction of its

weight. When the density of the gas contained in the airship is less than the air, that force is

substantial.

25.7 Types of airships

25.7.1 Non-rigid Airship

The non-rigid airship named also “blimp” maintains his shape and his structural integrity using

higher internal pressure from its lifting gases. [4]

When the airship ascends, the lifting gas expands and when it descends, the lifting gas contracts.

Then, the envelope would lose shape and become unmanageable. That is happening because this

type of airship doesn’t contain a framework.

Figure 15: Parts of non-rigid airship

Aerodynamic Investigations for a High-Altitude Airship (Platform) (2017)

 661

Figure 16: Blimp during filling gas

The development of aeronautic science was emerged a new type of airship:

25.7.2 Semi-rigid airship

Semi-rigid airships are similar to blimps in that they have no internal frame to support their

envelopes. They do have, however, rigid objects on them that give them some backbone. A stiff

keel runs along the length of the airship for distributing weight and attaching fins and engines.

The keel also provides structural integrity during flight maneuvering. Similar to non-rigid

airships, the shape of the hull is maintained largely by an overpressure of the lifting gas. Light

framework at the nose and the tail may also contribute to the hull’s outer shape. [4]

Figure 17: Parts of semi rigid airship

Aerodynamic Investigations for a High-Altitude Airship (Platform) (2017)

 662

25.7.3 Rigid Airship

Semi-rigid and non-rigid airships maintain their shapes by the internal pressure of lifting gases.

But rigid airship is different, it has an internal structure framework which it gives their shape

form. It has an outer envelope to recover the framework.

Rigid airships have be built by a size larger than semi-rigid and non-rigid airships because there

are no possibility of kinking in the hull due from aerodynamic forces and moments. Multiple gas

bags containing the lifting gases are filled inside the internal framework of dirigible.

Splitting the gas in multiple bags instead using a single large bag is more safety and minimizes to

happening a catastrophe. [4]

Figure 18: The internal framework of rigid airship

Figure 19: Parts of rigid airship

Aerodynamic Investigations for a High-Altitude Airship (Platform) (2017)

 663

25.8 How do rigid airship work?

In order to rigid airships get off the ground, fly and descend, different gases are used by rigid

airships. Today, to rise the lighter-than-air craft, the helium gas is used instead to hydrogen.

Helium is more expensive than hydrogen, but it was adopted because it has more properties. It is

inflammable contrary the hydrogen which causes the infamous Hindenburg accident.

The airships, filled by Helium, load ballonets (tanks of air). When the pilot opens the valves of air,

a positive bouncy is created, and consequently the dirigible elevates because air is heavier than

helium.

The pilot controls the airship in flight by rudders and elevators, when it becomes in the sky, like a

submarine under water. The rudders are used to steer the airship and the elevators are used to

ascend and descend and throttling the engine to angle it into the wind. The engine provides

forward and reserve thrust.

The air pressure outside the lighter-than-air craft deceases, at higher altitudes, consequently the

helium in the gasbags expands. The pilot pumps air into ballonets in order to maintain pressure.

To descend the airship, this technique is also employed, the ballonets are filled by air. The air is

heavier than Helium. That is created a negatively buoyant and therefore sinks lower in the sky or

bring it in to land. [7]

Figure 20: Airship principle of operation

Aerodynamic Investigations for a High-Altitude Airship (Platform) (2017)

 664

25.9 Why do we use Helium not Hydrogen?

The performance of Helium in airship is better than hydrogen. In order to inflate an airship, the

use of Helium instead of hydrogen reduces the cruising range from 30 to 40 % and reduces the

total lift from 10 to 15 %. This is a disadvantage for Helium but it be can justified. Helium has

absolute safety against the risks of fire that is expected with hydrogen. In the United States,

Helium finds in large quantities. It is very expensive, but the price is significantly lowered, because

the quantities of production have increased.

 Characteristics of hydrogen and Helium:

 Hydrogen

- Lightest element in the earth

- Inexpensively

- Easily to obtain

- Flammable. For this disadvantage, it is unacceptable for manned airship operations.

 Helium

- Scarce

- Expensive

- Non-flammable. This advantage makes it the only practical lifting gas for manned airship

operations. [8]

25.10 Control of airships

The Control of the airship differs from the aircraft’s one. It can be divided into two

categories. While the control of airplanes is performed by one pilot; in airships two pilots

are utilized, one for direction, one for altitude.

Both pilots must recognize the flight pattern of each and constantly alert each other to

mutual assistance; to give an effective performance. The pilot should organize the route to

meet the needs of the situation. There are too many coordination cases, but capable pilots

have little difficulty in achieving the expected results.

Aerodynamic Investigations for a High-Altitude Airship (Platform) (2017)

 665

Directional: as indicated in the previous paragraph, the pilot is responsible for monitoring

the course of the airship in a horizontal plane. On flights throughout the country, his

problem is solved with regard to the course required by the mission of the dirigible. Once

the course is established, the dirigible will hold its own. But when it is affected by external

powers such as gusts, the rudder must work in the opposite direction to overcome it.

While flying in a very stormy air, it is impossible to prevent lace, but a good pilot can

prevent the amplitude of oscillations from exceeding a few degrees. Then, as the storms

also strike on both sides, the average direction of the dirigible will be the desired direction.

It is essential that the pilot has a clear conception of the reaction to control the rudder of

the airship at the turn. When you need to move to the right, for example, the rudder is

placed to the right. Immediate effect of this rotation is to produce a force to the left acting

on the right side of the rudder. This force to the left has a dual effect. In the first place, it

gives a moment around the center of gravity inclined to turn the nose to the right. In the

second place, it moves the whole airship to the left. When the airship moves to the left,

and the nose turns to the right, both motions combine to make the air fall to the left of the

envelope and to turn the nose still further to the right.

Once this has been done during a period, the pressure on the left side of the nose becomes

equal to that on the right side of the rudder and the resulting total pressure is zero, but as

the force is applied to the front, there is a moment of rotation that tends to continue

twisting to the right.

As the motion goes further, the force on the left side of the envelope becomes larger than

the force on the right side of the rudder, and there is a gravitational force to the right of the

skill to begin to scroll to the right. If you leave the rudder hard or if it is rotated to neutral,

this turning to the right will continue, to check the cycle, it is necessary to put the rudder

on the left side of the envelope.

The shift radius is controlled by instantaneous damping on the envelope, which is more

important for the rate of high-speed propagation than those with a low ratio. This should

be one of the main concerns of the driver whenever he controls a new type of airship to

identify himself with his turn circle. Otherwise, he may try to maneuver when the space

limit is insufficient.

Aerodynamic Investigations for a High-Altitude Airship (Platform) (2017)

 666

The first effect on the rudder mode on the right is to move the airship slightly to the left so

that if the airship was stolen near the right side of the wall or any other obstruction, it

would not be wise to put the rudder On the right to move to the right and away from the

obstacle because the immediate action for such work would be to pay the airship in the

wall.

Sometimes, when flying through foggy weather, an obstacle will suddenly loom up in

front of the airship. So the pilot must first put the rudder to disperse the nose of the airship

and then completely reverse the rudder in order to miss the obstacle. [2]

667

26 Aerodynamic investigation of a high altitude airship

In this chapter, we speak of the aerostatic of airships which is based on the bouncy force. We also

talk about the variation of the density, the pressure and the temperature as a function of the

altitude. This variation is plotting on the “MATLAB” software. Then, we study the influence of

these parameters on the airship.

In this chapter too, we suggested a design of “TEMO-Leb airship” draws on “FreeCAD” (FreeCAD

is a software similar to AutoCAD, but it is more complicated and needs more time to do drawing

by comparing the AutoCAD. Despite this disadvantage, we obtain the same quality.)

In this chapter, the necessary calculation is made to determine whether the “TEMO-Leb airship” is

able to reach the desired altitude. We talk about the problems that confront us and prevents us

from applying this theoretical study.

Next, we propose a new conception which has considered as a solution. This design which has a

new dimensions, will rise to a lower altitude. It calls “Low altitude test TEMO-Leb Airship”. We

expect its implementation.

26.1 Aerostatic of airship

To define the buoyant lift capability and to determine the maximum attainable altitude by the

airship, it is necessary to calculate the volume of the hull.

Depending on aerostatic principles, we obtain some relations between mass, volume and gas

densities.

26.1.1 Bouncy force

The bouncy force (F) generated by an airship is equal to the weight of the displaced air subtracting

the weight of the lifting gas (Helium). Noting the volume of displaced air is equal to the volume

occupied by the helium.

F=VN*(ρA0-ρHe0)*g Eq.1

VN: The net volume of displaced air.

ρA0: The density of air at sea level.

ρHe0: The density of Helium at sea level.

g: The acceleration of gravity.

Aerodynamic investigation of a high altitude airship

668

The amount of lift available to counteract the weight of the airship structure and payload is

represented by the bouncy force F.

26.1.2 The relation between altitude and density

The density varies with altitude. The relation is inversely proportional: when the altitude

increases, in opposition, the density decreases.

The conventional state of atmosphere is defined by equations of International Standard

Atmosphere (ISA). The equation below is suitable until an altitude of 11 000 m:

ρH/ρ0= [1-(H/44 300)] 4.256 Eq.2 [9]

ρH : Density of the air as a function of altitude (kg/m³).

ρ0 : Density of the air as a function of altitude (kg/m³) at sea level, ρ0=1.205 kg/m³.

H: Altitude (m).

MATLAB is used plotting the variation of density as a function of altitude using Eq.2. This

program allows matrix manipulation, plotting of data and functions, creation of user interfaces,

implementation of algorithms and interfacing with programs written in others languages,

including “C” , “C++” , “Fortran” , “Java” and “Python”.

 Writing the code in “MATLAB”:

Figure 21: code of Eq.2 in MATLAB

Results and plotting of this function is shown in the next chapter.

26.1.3 The relation between altitude and pressure

The atmospheric pressure decreases rapidly with the altitude. The conventional state of

atmosphere is defined by equations of International Standard Atmosphere (ISA). The equation

below is available till altitude of 11 000 m:

P/P0= [1-(H/44 300)] 5.256 Eq.3 [9]

Aerodynamic Investigations for a High-Altitude Airship (Platform) (2017)

669

P : Pressure of the air as a function of altitude (Pa).

P0 : Pressure of the air as a function of altitude (Pa) at sea level, P0=101 325 Pa.

H: Altitude (m).

MATLAB is used for plotting the variation of pressure as a function of altitude using the equation

“Eq.3”.

 Writing the code in “MATLAB”:

Figure 22: code of Eq.3 in MATLAB

Results and plotting of this function in the next chapter.

26.1.4 The relation between altitude and temperature

The temperature decreases with the altitude. The conventional state of atmosphere is defined by

equations of International Standard Atmosphere (ISA). The equation below is available till altitude

of 11 000 m:

TH= T0 - 0.0065*H Eq.4 [9]

TH : Temperature as a function of altitude (°c).

T0 : Temperature as a function of altitude (°c) at sea level, T0=15°c.

H: Altitude (m).

MATLAB is used for plotting the variation of pressure as a function of altitude using the equation

“Eq.4”.

 Writing the code in “MATLAB”:

Aerodynamic investigation of a high altitude airship

670

Figure 23: code of Eq.4 in MATLAB

 The results and plotting of this function in the next chapter.

26.1.5 Pressure Altitude

It is necessary to define the term “Pressure Altitude”. At this point, the net volume is maximum

“Vmax” and no further expansion of the lifting gas volume is possible.

26.1.6 Influence of pressure, temperature, density and volume on the airship
during its rise

a) Under “Pressure Altitude”

Supposing both gases, air and Helium have the same temperature and pressure, but their densities

change with altitude.

A slight pressure differential is necessary, but this difference is very small. For the purposes of this

analysis, it is considered null.

When the airship rises, the density of Helium decreases along with the atmospheric density. We

know the relationship between density, mass and volume:

ρ=m/V Eq.5

Therefore, since the mass of the Helium remains fixed, the volume VN must increase. In order to

regulate the internal pressure, two ballonets contain air are located inside the hull which expand

and contract. By this way, the variation in internal lifting gas volume is achieved.

At the sea level, assume that is the airship’s launch altitude, the value of density is maximum.

Also, the volume of ballonets expand to maximum while the net volume is minimum.

When the airship begins to rise, the ambient density and pressure both decrease, and air is

automatically ejected from the ballonets to match the falling pressure.

Aerodynamic Investigations for a High-Altitude Airship (Platform) (2017)

671

At a given point, the ballonets must be empty completely. At this point, the volume of the lifting

gas can’t expand. The value of the net volume now is maximum “Vmax”.

By summarizing, under the point “Pressure Altitude”, we have:

 The differential of pressure between lifting gas and atmosphere is null: ΔP=0.

 The differential of temperature between lifting gas and atmosphere is null: ΔT=0.

 The density of lifting gas and atmosphere decrease, this variation affects an increase of net volume.

The equation Eq.5 is available up to the “Pressure Altitude”.

b) Above “Pressure Altitude”

When the airship continue to rise, the density of lifting gas and atmosphere also continue to

decrease, but the volume of lifting gas remains constant.

The differential of pressure now isn’t null, it starts to increase. An overpressure is created, and

consequently the differential of pressure will increase so a rupture will be exist in the exterior

structure of airship. The equation Eq.5 becomes unavailable.

26.1.7 Sizing the airship hull

To reach the Equilibrium, the bouncy force must be equal the weight of the airship structure

(framework, external fabric and gasbags) and payload (propeller, control system…).

The weight is equal:

P= (ms+mp)*g Eq.6

P: The weight of the structure and payload (N/Kg).

ms: The mass of structure (kg).

mp: The mass of payload (kg).

g: The acceleration of gravity (N/Kg).

When the airship rise, up to the pressure altitude, the net lift remains constant, because the

atmospheric density changes at the same rate as the density of the lifting gas.

The density ratio is equal to:

σ=ρA/ρA0= ρHe/ρHe0 Eq.7

σ: The density ratio.

Aerodynamic investigation of a high altitude airship

672

ρA: The atmospheric density at a given altitude.

ρA0: The atmospheric density at the sea level.

ρHe: The density of Helium at a given altitude.

ρHe0: The density of Helium at the sea level.

At a given altitude, the Eq.1 will be:

F=VN* σ *(ρA0-ρHe0)*g Eq.8

At the equilibrium and the point “Pressure Altitude” (VN=Vmax), we have:

Eq.6 = Eq.8

 (ms+mp)*g= Vmax* σ *(ρA0-ρHe0)*g

Vmax= (ms+mp)/ σ *(ρA0-ρHe0) Eq.9

The equation “Eq.9” gives us the maximum volume of the airship hull which is needed to rise the

airship. This volume is based upon the ratio of the density which is varied with altitude, mass of

the structure and payload.

The mass of structure includes the mass of the gasbags, the mass of the airship framework and the

mass of the envelope or the external skin.

26.2 TEMO-Leb Airship

In this project, we suggest an airship called “TEMO-Leb Airship”. This airship will distribute

Internet between Turkish and Lebanon, at altitude 7 km.

The new idea in this project is that the size of “TEMO-Leb Airship” is smaller than other airships

which take off at a high altitude.

The “TEMO-Leb Airship” dimensions: it length equal to twenty meters and a diameter equal to

four meters.

A theoretical study is needed to calculate the volume required for “TEMO-Leb Airship” to reach

an altitude of 7 km.

a) First, it is important to calculate the volume of the airship based on the proposed dimensions.

b) Secondly, it must be calculate Vmax.

c) Thirdly, it must be investigated whether this airship is available to reach the altitude 7 km with

these dimensions. This is discussed in the next chapter.

Aerodynamic Investigations for a High-Altitude Airship (Platform) (2017)

673

To get Vmax, it is necessary to calculate the mass of structure includes the mass of framework, the

mass of external fabric and the mass of the gasbags. It must be know the mass of payload.

Step a) is described in section 3.2.1. Step b) is described in section 3.2.2.

The airship is like an ellipse, so the volume is equal to:

V TEMOLeb Airship = 4/3*π*(L/0)*(D/0) ^0

V TEMOLeb Airship: The volume of the airship (m3).

L: The length of the airship (m).

D: The diameter of the airship (m).

V TEMOLeb Airship = 4/3*π*(02/0)*(4/0) ^0=167.55 m3.

We draw this airship having this dimensions using a free 3D modeling software named

“FreeCAD”. This program is oriented towards product design and mechanical engineering. It also

targets towards architecture or other branches of engineering.

Aerodynamic investigation of a high altitude airship

674

26.2.1 Design of “TEMO-Leb Airship”

Part and details Date and Data Design

Propeller

May/2017

Propeller.Design.FCStd

Rudder and

Elevator

May/2017

Rudder.Elevator.FCStd

Frame

of Airship

L=20 m

D=4m

April/2017

Frame.of.Airship.FCStd

Outer Shell of the

Airship

April/2017

Outer.Shell.of.airship.FCStd

Airship with the

internal gasbags

April/2017

Airship.with.the.internal.gasbags.FCStd

Airship With

Balloons

29/May/2017

070617_Airship_Gazbags(Balloons).FCStd

Table 1: All Parts and design of Airship

Aerodynamic Investigations for a High-Altitude Airship (Platform) (2017)

675

 Propeller

 In order to displace the dirigible, we use the propeller. It transmit power by converting the

rotational motion and it provides the main thrust. The propeller is also used to provide various

speed.

Figure 24: The propeller model drawn with FreeCAD

 Rudder and Elevator

To control an airship, we need many instruments, among them: rudders and elevators.

- The rudder is the part of airship which rotates and help to turn right or left.

- The elevator is like the rudder but it leads the dirigible to rise or descend.

Figure 25: The rudder and the elevator models drawn with FreeCAD

Aerodynamic investigation of a high altitude airship

676

 Frame of the airship

The frame is the body of airship, it gives its shapes. Which is main characteristic of rigid airship

 It has formed by:

- Six ellipses: The length of the major axis is 20 m and the length of the minor axis is 4 m.

Figure 26: Ellipses of airship are drawn using FreeCAD

- 11 circles: This airship have 11 circles, four of them are symmetrical. Theirs dimensions are given in

the table below.

Circle Radius(m)

Circle 1 2

Circle 2
1.96

Circle 3
1.83

Circle 4
1.56

Circle 5
1.19

Circle 6
0.43

Circle 7
0.66

Table 2: Radius of Circles of the airship

Aerodynamic Investigations for a High-Altitude Airship (Platform) (2017)

677

Figure 27: Circles of airship are drawn using FreeCAD

Figure 28: The framework of airship model drawn with FreeCAD

 Outer shell of the airship

The outer shell must be light. It covers the whole airship.

Figure 29: The hull of the airship designed with FreeCAD

Aerodynamic investigation of a high altitude airship

678

Figure 30: The envelope of airship model drawn with FreeCAD

 Airship with the internal gasbags

The internal gasbags contain the lifting gas and are designed with different dimensions.

The gas used is Helium and should choose carefully the envelope of gasbags. We know the atom

of Helium is very small so it should not leak from the envelope. It gives greater durability of the

airship to stay at the desired altitude.

This airship have 7 bags, three of them are symmetrical. Theirs dimensions are given in the table

below.

Bag Radius(m)

Bag

1

1.9

Bag

2

1.7

Bag

3

1.35

Bag

4

0.83

Table 3: Radius of Bags of the airship

Figure 31: The internal gasbags of the airship

Aerodynamic Investigations for a High-Altitude Airship (Platform) (2017)

679

Figure 32: The internal gasbags of airship model draw with FreeCAD

 Airship with balloons

After a search in the Lebanese market done to find gasbags with the chosen dimensions, we did

not find our requests. That’s why we decided to use balloons having a 2.5 m of diameter instead of

gasbags.

Figure 33: The airship with balloons model draws with FreeCAD

Aerodynamic investigation of a high altitude airship

680

26.2.2 Mass of framework

To obtain the mass of framework, we need to choose the suitable material and to know its

characteristics and its density. Then, we calculate the volume of the framework and finally, we use

equation Eq.5.

Plexiglas is the suitable material to construct the airship framework. On the Internet, there are

many choices. We choose Plexiglas stick, plastic, having a circular section of diameter 6 mm and a

length of 1m. [10]

It has also many characteristics:

1. Good mechanical strength

2. Good shock resistance

3. Good dielectric properties

4. Minimal absorption of humidity

5. UV resistance

6. Density= 1180 kg/m3

7. Elongation at rupture= 4%

8. Compressive strength= 118 N/mm2

9. Elasticity module= 3140 N/ mm2

10. Specific Heat= 0.35 cal/g°C

11. Coefficient of linear expansion= 6.8*10^-5 (1/°c)

12. Resistance to cold temperature > -40°C

Figure 34: Stick of Plexiglas

Now, we know the characteristic of Plexiglas, so we can calculate the mass of framework. At the

beginning, the volume of the frame must be calculated.

Aerodynamic Investigations for a High-Altitude Airship (Platform) (2017)

681

Plexiglas

(Material of Structure)

Volume of structure of

ellipses (cm³)
Ellipse 1 1281

Total

7686

 (6

Ellipses)

Volume of structure of

circles(cm³)
Circle 1 355

 Circle 2 76

 Circle 3 118

 Circle 4 213

 Circle 5 213

 Circle 6 277

 Circle 7 277

 Circle 8 326

 Circle 9 326

 Circle 10 348

 Circle 11 348

 Total 2877

Table 4: The volume of frame made of Plexiglas in cm3

Volume of ellipse is calculated by this equation:

25.022))2/))
2

()
2

((((2 S
DL

Vellipse Eq.A

Volume of circle is calculated by this equation:

2)
2

(2 S
D

Vcircle Eq.B

S: Demi-Section of circle and ellipse manufactured by Plexiglas.

Using Eq.5, we obtain the mass of frame made of Plexiglas:

Aerodynamic investigation of a high altitude airship

682

Total volume of frame :

Volume of ellipses + Volume of

circles

0.01 m3

Density of Plexiglas 1180 kg/m3

Mass of Plexiglas 12.47 kg

Table 5: Mass of Plexiglas

26.2.3 Mass of gasbags

We need a specific material when we use Helium. The newly developed envelope is made of high-

strength, tear-resistant multi-layer laminates. Even a lighting impact cannot significantly after the

flight characteristics. The envelope has a slight overpressure of 5 mbar.

The materials used for this envelope:

- Outer Layer: “Teldar”. It is a film which has a protection from UV rays.

- Intercellular Layer: “Polyester fabric”. It has a snag resistant.

- Internal Layer: “Polyurethane”. It has many characteristic: weldable and waterproof. [11]

This envelope has a density equal to 0.25 kg/m2 and a force tearing equal to 285 N/cm.

Now, we know the characteristic of the envelope, so we can calculate the mass of gasbags. At the

beginning, the surface of the gasbags must be calculated. Eq.5 is not suitable because when we

study the tissues, we need to use the surface instead the volume. We calculate the mass using this

equation:

Surface density ρ'=m/S Eq.5’

 Material of Gasbags

Surface of Gasbags(m²) Bag 1 45.36

 Bag 2 36.32

 Bag 3 36.32

 Bag 4 22.90

 Bag 5 22.90

 Bag 6 8.66

 Bag 7 8.66

 Total 181.12
Table 6: The surface of gas bags en m2

The surface of gasbags is calculated by this equation:

S sphere= 4*π*(D/0) ^0

Aerodynamic Investigations for a High-Altitude Airship (Platform) (2017)

683

Total surface of gasbags: 181.12 m2

Surface Density 0.25 kg/m2

Mass of gasbags 45.28 kg

 Table 7: Mass of gasbags

26.2.4 Mass of external fabric

The tissue used for the external fabric is different from the one that is used in the bags. The

envelope of the bags does not leak gas and this is not the status of the outer shell. So another type

of tissue is used “Cotton Fabric “has a density of 2.275 kg/m2.

Surface of external shell 251.33 m2

Density 0.075 kg/m2

Mass of external fabric 18.85 kg

Table 8: Mass of external fabric

This theoretical study is difficult to implement now, because, in this project, we want to elevate the

airship at high altitude, given that we have become large-scale.

The approval of the Lebanese government must be taken, and it will take a long time. Moreover,

the difficult circumstances encountered by neighboring regional states may hinder such approval.

As the aim of the project is to revive the science of airships, we decide to set up a small airship at

low altitude, with some modifications to the theoretical study, due to the unavailability of airship

manufacturers in the Lebanese market.

Aerodynamic investigation of a high altitude airship

684

26.3 Low altitude test TEMO-Leb Airship

26.3.1 New design with new dimensions of the Low altitude test TEMO-Leb
Airship

The new design of the Low altitude test TEMO-Leb Airship has the following dimensions which

elevates at a low altitudes. This airship is actually under construction.

Diameter= 1.2 m;

Length= 6.4577 m

Figure 35: The framework of airship model draws with AutoCAD

Figure 36: The new design of airship draws with AutoCAD

Aerodynamic Investigations for a High-Altitude Airship (Platform) (2017)

685

26.3.2 Materials of the test device for the Low altitude test TEMO-Leb Airship
in Lebanese market

1) Balloons filled with Helium

The gasbags are replaced by the balloons, having 1.5 m as a diameter. It is important to know the

mass hold by the balloons and the pressure of Helium contained into the balloon. To obtain these

parameters, we want to perform this calculation:

Firstly, we calculate the volume of balloon:

V Balloon = 4/3*π*(D/0) ^3 = 4/3*π*(1.5/0) ^3 = 1.77 m3

We know the density of Helium at 20°C: ρHe= 0.178 kg/m3 [14]

By applying Eq.5, we obtain the mass theirs hold by the balloons:

m hold by 1 balloon = (ρair - ρHe)* V Balloon = ((1,2041 - 0.178)*1.77)kg = 1.8 kg

m hold by balloons = 4*1,8 kg = 7.2 kg

The pressure of Helium into the balloon can be calculate by using the equation:

P*V= (m/M)*R*T Eq.10

P: Pressure of Helium into the balloon (Pa)

V: Volume of balloon (m3)

m: Mass of balloon (kg)

M: Molar mass of Helium (kg/m3)

R: The universal gas constant = 8.314 JK-1mol-1

T: The absolute Temperature of Helium (k)

To obtain the mass, we use Eq.5:

ρ=m/V; m=2.178*1.77=2.3 kg/m3

The pressure is:

P= ((m/M)*R*T)/V=((0.3/4)*8.314*293.15)/1.77=108457.6 Pa=1.07 atm

ρ: Density of Helium at 02°c=2.178 kg/m3

Aerodynamic investigation of a high altitude airship

686

2) Plexiglas

The framework of airship is manufactured by empty tubes of Plexiglas. The section of tube is

equal: 6 mm. The mass of framework must be lower than the mass hold by the balloons, in order to

rise the airship.

To ensure this calculations, we have to wait for the implementation.

3) External envelope

For the external envelope, a very light type of fabric must be used, because Plexiglas and the

balloons cannot sustain an excess weight.

Aerodynamic Investigations for a High-Altitude Airship (Platform) (2017)

687

26.4 Results of theoretical study

26.4.1 Results of “MATLAB”

We use “MATLAB” for plotting the variation of density, pressure and temperature as a function of

altitude. The results can be found below:

1) Variation of the density with altitude

 Plotting the function:

Figure 37: Variation of density (kg/m3) with altitude (m).

This graph show the variation of the density as a function of altitude along 11 km. we notice that

the density decreases with the increase of altitude.

2) Variation of pressure with altitude

 Plotting the function:

Aerodynamic investigation of a high altitude airship

688

Figure 38: Variation of pressure (pa) with altitude (m) computed for 15°c and 0% relative humidity.

This graph show the variation of the pressure as a function of altitude along 11 km. we notice that

the pressure decreases with the increase of altitude.

Aerodynamic Investigations for a High-Altitude Airship (Platform) (2017)

689

3) Variation of temperature with altitude

 Plotting the function:

Figure 39: Variation of temperature (°C) with altitude (m).

This graph show the variation of the temperature as a function of altitude along 11 km. we notice

that the temperature decreases with the increase of altitude.

4.1.2. V TEMOLeb Airship and the Vmax

We will calculate the maximum volume of Helium contained in the gasbags, and we will check

whether the airship able to reach the proposed height.

Vmax= (ms+mp)/ σ *(ρA0-ρHe0)

To obtain the mass of structure, it is necessary to add the mass of framework, the mass of gasbags

and the mass of external fabric.

ms = 76.6 kg

It is assumed that the mass of payload:

mp = 2 kg

We have the density of air and Helium at 15°c and at sea level:

ρA0= 1.225 kg/m3; ρHe0= 0.169 kg/m3

Aerodynamic investigation of a high altitude airship

690

The density ratio “σ “is varied with altitude, depending on the below table, we calculate the ratio:

σ=ρA/ρA0

Table 9: Variation of density of air with altitude

To obtain the density of atmosphere, we use table 9, when we want to obtain the density of 600

km, we see the column in the left: 500 and the line above 100 and we read the density 1.156 kg/m3.

Altitude (km) σ *(ρA0-ρHe0) Vmax (m3)

H=0 1.056 74

H=1 0.959 82

H=2 0.868 91

H=3 0.784 100

H=4 0.706 111

H=5 0.634 124

H=6 0.569 138

H=7 0.508 155

H=8 0.461 170

Table 10: Variation of volume Helium as function of altitude

4.1.3. Positive results

From 0 km to 7 km, we are under the point “Pressure Altitude” (explain in Chapter 3).

Aerodynamic Investigations for a High-Altitude Airship (Platform) (2017)

691

Under this point, we have:

 The differential of pressure between lifting gas and atmosphere is null: ΔP=0.

 The differential of temperature between lifting gas and atmosphere is null: ΔT=0.

 The density of lifting gas and atmosphere decrease, this variation affects an increase of net volume.

The equation Eq.5 is available up to the “Pressure Altitude”.

The variation of density and pressure is composed by the volume. When the density and the

pressure decrease, the volume of gasbags increases.

At 7 km, this is the proposed altitude to elevate TEMO-Leb airship:

V TEMOLeb Airship > Vmax

This is a positive result, it hasn’t any danger to a rupture of airship. The volume of Helium in the

gasbags is enough to rise TEMO-Leb airship, at 7 km.

 The airship cannot to rise at 8 km, because:

V TEMOLeb Airship < Vmax

We are now above the point “Pressure Altitude” (explain in Chapter 3).

When the airship continue to rise, the density of lifting gas and atmosphere also continue to

decrease, but the volume of lifting gas remains constant.

The differential of pressure now isn’t null, it starts to increase. The overpressure is created, and

consequently, a rupture of the exterior structure of airship can be result if the differential becomes

too great.

692

27 References

27.1 References for Chapters 1

[FatimaAlChaar 2015] Fatima Al Chaar, "Simulation of the meteorological satellite IAP-SAT",

Master Thesis, AECENAR/LU, 2015, see www.aecenar.com/publications

27.2 References for Sections 2.1, 2.10-2.15 and Chapter 4

[1]: http://www.portail-aviation.com/2015/07/dossier-dirigeable-episode-1-lhistoire-des-dirigeables-

pionniers-de-laeronautique.html

[2]:https://www.faa.gov/regulations_policies/handbooks_manuals/aviation/media/airship_aerodynamics

.pdf

[3]: https://en.wikipedia.org/wiki/Actuator

[4]: https://www.quora.com/What-is-an-actuator

[5]: http://www.baldor.com/Shared/manuals/1205-394.pdf

[6]: https://en.wikipedia.org/wiki/Pneumatic_motor

[7]:http://www.bluetools.com/Air-Tools-Motors/c88_50/index.html

[8]: http://www.machinedesign.com/archive/basics-electromagnetic-clutches-and-brakes

[9]: http://www.warnerelectric.com

[10]: https://learn.adafruit.com/all-about-stepper-motors/what-is-a-stepper-motor

[11]: https://en.wikipedia.org/wiki/Induction_motor

[12]: http://electronicsforu.com/buyers-guides/selecting-electric-motor-drive-system

[13]: https://en.wikipedia.org/wiki/Hydraulic_motor

[14]: http://www.directindustry.com/prod/hydro-leduc/product-7677-1287099.html

[15]: https://circuitdigest.com/article/servo-motor-basics

[16]: https://www.sparkfun.com/products/11965

 [17]:

https://www.iei.liu.se/flumes/tmhp51/filearchive/coursematerial/1.105708/HydServoSystems_part1.pdf

 [18]: https://books.google.com.lb/books?id=cF7YBAAAQBAJ

[19]: www.mobilehydraulictips.com/hydraulic-motors/

[20]: http://www.supinfo.com/articles/single/296-qu-est-ce-qu-servomoteur

[21]: https://www.teamrobobox.fr/documentation/02_Le_moteur.pdf

[22]: http://www.jameco.com/jameco/workshop/howitworks/how-servo-motors-work.html

[23]: https://www.servocity.com/what-is-a-servo

 [24]: http://www.pobot.org/+-servomoteur-+.html?lang=fr

[25]: https://www.scribd.com/document/99583469/Introduction-to-Servo-Motors-Arduino

[26]: https://makezine.com/2016/05/13/understanding-types-of-servo-motors-and-how-they-work/

http://www.portail-aviation.com/2015/07/dossier-dirigeable-episode-1-lhistoire-des-dirigeables-pionniers-de-laeronautique.html
http://www.portail-aviation.com/2015/07/dossier-dirigeable-episode-1-lhistoire-des-dirigeables-pionniers-de-laeronautique.html
https://www.faa.gov/regulations_policies/handbooks_manuals/aviation/media/airship_aerodynamics.pdf
https://www.faa.gov/regulations_policies/handbooks_manuals/aviation/media/airship_aerodynamics.pdf
https://en.wikipedia.org/wiki/Actuator
https://www.quora.com/What-is-an-actuator
http://www.baldor.com/Shared/manuals/1205-394.pdf
https://en.wikipedia.org/wiki/Pneumatic_motor
http://www.bluetools.com/Air-Tools-Motors/c88_50/index.html
http://www.machinedesign.com/archive/basics-electromagnetic-clutches-and-brakes
http://www.warnerelectric.com/
https://learn.adafruit.com/all-about-stepper-motors/what-is-a-stepper-motor
https://en.wikipedia.org/wiki/Induction_motor
http://electronicsforu.com/buyers-guides/selecting-electric-motor-drive-system
https://en.wikipedia.org/wiki/Hydraulic_motor
http://www.directindustry.com/prod/hydro-leduc/product-7677-1287099.html
https://circuitdigest.com/article/servo-motor-basics
https://www.sparkfun.com/products/11965
https://www.iei.liu.se/flumes/tmhp51/filearchive/coursematerial/1.105708/HydServoSystems_part1.pdf
https://books.google.com.lb/books?id=cF7YBAAAQBAJ
http://www.mobilehydraulictips.com/hydraulic-motors/
http://www.supinfo.com/articles/single/296-qu-est-ce-qu-servomoteur
https://www.teamrobobox.fr/documentation/02_Le_moteur.pdf
http://www.jameco.com/jameco/workshop/howitworks/how-servo-motors-work.html
https://www.servocity.com/what-is-a-servo
http://www.pobot.org/+-servomoteur-+.html?lang=fr
https://www.scribd.com/document/99583469/Introduction-to-Servo-Motors-Arduino
https://makezine.com/2016/05/13/understanding-types-of-servo-motors-and-how-they-work/

Aerodynamic Investigations for a High-Altitude Airship (Platform) (2017)

693

27.3 References for Sections 2.2-2.9 and Chapter 3

[1]Joseph Louis Lecornu, La navigation aérienne: histoire documentaire et anecdotique

[2]La technique du ballon, G. Espitallier - 1907

[3] www.eballoon.org

[4] Frederick, Arthur, et al., Airship saga: The history of airships seen through the eyes of the

men who designed, built, and flew them, 1982

 [5]

Griehl, Manfred and Joachim Dressel, Zeppelin, The German Airship Story, 1990

[6]

Archbold, Rich and Ken Marshall, Hindenburg, an Illustrated History

[7] Althoff, William F., USS Los Angeles: The Navy's Venerable Airship and Aviation

Technology

[8] Lutz, T. and Wagner, S., “Drag Reduction and Shape Optimization of Airship Bodies,” Institute

for Aerodynamics and Gas Dynamics, University of Stuttgart, AIAA, Germany, 1997.

[9] Rehmet, M. A., Krplin, B., Epperlein, F., R.Kornmann, and Schubert, R., “Recent

Developments on High Altitude Platforms

 [10]www.plastiquesurmesure.com/materiaux-plastiques.html

[11] www.carnetdevol.org/zeppelin/technique.html

http://www.eballoon.org/
https://books.google.com/books?id=uraKiSbbW1YC&printsec=frontcover
https://books.google.com/books?id=uraKiSbbW1YC&printsec=frontcover
http://www.carnetdevol.org/zeppelin/technique.html

 694

Appendix A: Contact data of specialists (لم ... ,workers ,(مع

Specialist for /

price

Name Address Phone

Aluminium,

80$/qm
عكار - بعبدة عمر

70 140828

Electricity

25 USD/day

Abdullah (from Syria),

brother of Ibrahim

(Mustafa knows him)

Sanitary

25 USD/day

Abdullah (from Syria),

brother of Ibrahim

(Mustafa knows him)

Painting

25 USD/day

Abdullah and Ibrahim

(from Syria) (Mustafa

knows them)

Bilat Mustafa (from Halab) Ras Nhache 76 493901

Welder / Metal

working

Muhammad Qammah Mina 70 339875

Muhammad Akkumi Biddawi 71669613

Said Hussein, 25-

45.000LL/day

Biddawi 06/383728 or 03/793802

Stainlessschweißer Bilal Naouchi bilalnaoushi@ho

tmail.com

03 446027

Wärme u. Kälte

technik u.s.w.

Khidr Balita Mina 03 232088

Appendix B: for Aerodynamic Investigation

 695

Appendix B: for Aerodynamic Investigation

Initial Working packages

References

 696

Outworked by Souha Bakri

Estimation for costs of logging sensors during flight

 697

Building of the frame including actuators for a small prototype of an airship
(2017)

698

28 Basics concerning actuators used in aerospace

28.1 What’s an actuator?

The actuator is a component of the device responsible for the transmission or control of a

mechanism or system, for example by running (opening or closing) a valve; in simple

terms, it is an "engine".

The control signal and the source of energy are required for the operator (Figure1)

principal of work of actuator.).Relatively, it is a low power same as electrical voltage, or

pneumatic or hydraulic push, or maybe human force. The principal source of power

furnished can be electrical current, hydraulic liquid press, or aerial compression. After

receiving the control signal, a mechanical movement appear from the operator by

converting her energy. [1]: http://www.portail-aviation.com/2015/07/dossier-dirigeable-episode-

1-lhistoire-des-dirigeables-pionniers-de-laeronautique.html

[2]:https://www.faa.gov/regulations_policies/handbooks_manuals/aviation/media/airship_aerodynamics

.pdf

[3]: https://en.wikipedia.org/wiki/Actuator

Actuators are usually consumed by factories or industrial usage and can be utilized in

devices like engines, pumps, switches and vans.

This motion can be in almost any form, such as blocking, clamping or output. Actuators

are usually used in manufacturing or industrial applications and can be used in devices

such as motors, pumps, switches and valves. [[4]: https://www.quora.com/What-is-an-actuator

A simple scheme (Figure 40: principal of work of actuator.[4]: https://www.quora.com/What-is-an-

actuator can explain the principal of work of actuator:

Building of the frame including actuators for a small prototype of an airship (2017)

699

Figure 40: principal of work of actuator.[4]: https://www.quora.com/What-is-an-actuator

28.2 Types of actuators

Many types of actuators for controlling motion such as speed control, torque or positional

accuracy exist:

• Air Motors (pneumatic)

• Hydraulic Motors

• Clutch/Brake

• Stepper Motors

• AC Induction Motors

• Servomotors [5]:
 http://www.baldor.com/Shared/manuals/1205-394.pdf

28.2.1 Air Motors

A pneumatic engine is a kind of mechanical motor that use pressed air to make motion.

His principal based on transforming pressed air power into mechanical action either over

straight or rotary movement. Many kinds (Figure 41: axial piston, radial piston, and rotary vane air

motors. [7]:http://www.bluetools.com/Air-Tools-Motors/c88_50/index.htmlof air engine exists like

axial piston, radial piston or rotary vane motor. A diaphragm or piston motor, can create

the linear motion while the rotary motion is provided by a type air engine, air piston

engine, and wind turbine or gear type motor.

The manufacture of hand tools are using this motor vastly and successfully, also it was

utilized in a constant area of industrial usages. Continuous efforts are being made to

develop their apply in the transport industry.[6]: https://en.wikipedia.org/wiki/Pneumatic_motor

Building of the frame including actuators for a small prototype of an airship (2017)

700

Figure 41: axial piston, radial piston, and rotary vane air motors. [7]:http://www.bluetools.com/Air-Tools-

Motors/c88_50/index.html

28.2.2 Clutch/Brake:

Electromagnetic clutch or brake (Figure 42: electromagnetic clutch/brakes.[9]:

http://www.warnerelectric.com acts electrically but it transfer the torque mechanically.

Defined by a device coupling a rotating shaft and a load. The separation of the pregnancy

leads to stopping the movement of the shaft.[8]: http://www.machinedesign.com/archive/basics-

electromagnetic-clutches-and-brakes

Figure 42: electromagnetic clutch/brakes.[9]: http://www.warnerelectric.com

28.2.3 Stepping Motors:

Stepper motors existing in a variety shape and size (Figure 43: variety shape of stepper motor. [10]:

https://learn.adafruit.com/all-about-stepper-motors/what-is-a-stepper-motorare a special type of DC

motors that move in discrete steps. It consist of many coils arranged into groups called

Building of the frame including actuators for a small prototype of an airship (2017)

701

"phases". Activate each stage in sequence, the engine will spin, one step at a time. The

principal of this electromechanical device is to converts one digital pulse into a specific

rotational movement or displacement.[10]
: https://learn.adafruit.com/all-about-stepper-

motors/what-is-a-stepper-motor

Figure 43: variety shape of stepper motor. [10]: https://learn.adafruit.com/all-about-stepper-motors/what-is-a-

stepper-motor

28.2.4 AC Induction Motors

The AC induction motor is the electric engine in which the electric current in the rotor is

needed for the production of torque obtained by the electromagnetic induction of the

magnetic domain of the static coil. The induction motor can be made accordingly without

electrical connections to the rotor.

This kind of engine widely utilized for constant speed requirements. Three-phase

induction motors (Fehler! Verweisquelle konnte nicht gefunden werden. are vastly utilized

in industrial drives because they are rugged, reliable and economical. Single-phase

induction motors are widely used for small loads, such as household appliances like

fans.[11]: https://en.wikipedia.org/wiki/Induction_motor

Building of the frame including actuators for a small prototype of an airship (2017)

702

Figure 44: three phase AC motor. Fehler! Verweisquelle konnte nicht gefunden werden.

28.2.5 Hydraulic motors:

Hydraulic motor principal based on pressurized oil. A mechanical actuator that

converts hydraulic pressure and flow into torque and angular displacement (rotation).

Higher pressure results in higher torque (i.e. brute force).

winches and crane drives, wheel motors for military vehicles, self-driven cranes,

excavators, conveyor and feeder drives, mixer and agitator drives, roll mills, drum drives

for digesters, trommels and kilns, shredders for cars, tires, cable and general garbage,

drilling rigs, trench cutters, high-powered lawn trimmers, and plastic injection machines

utilize hydraulic motor presently.

We count many kinds of hydraulics like gear motor, vane motor, and axial piston motor

(Fehler! Verweisquelle konnte nicht gefunden werden. … [13]:

https://en.wikipedia.org/wiki/Hydraulic_motor

https://en.wikipedia.org/wiki/Actuator
https://en.wikipedia.org/wiki/Hydraulics
https://en.wikipedia.org/wiki/Torque
https://en.wikipedia.org/wiki/Rotation

Building of the frame including actuators for a small prototype of an airship (2017)

703

Figure 45: Axial piston hydraulic motor. [9]: http://www.warnerelectric.com

[10]: https://learn.adafruit.com/all-about-stepper-motors/what-is-a-stepper-motor

[11]: https://en.wikipedia.org/wiki/Induction_motor

[12]: http://electronicsforu.com/buyers-guides/selecting-electric-motor-drive-system

[13]: https://en.wikipedia.org/wiki/Hydraulic_motor

[14]: http://www.directindustry.com/prod/hydro-leduc/product-7677-1287099.html

28.2.6 Servomotors

Servo motor is a standalone electric device with feedback, which can push or rotate parts

of a machine with great accuracy. It can rotate an object at certain specific angles or

distance. It is made only from a simple engine that operates through a servo mechanism.

Servo motor can be DC or AC powered. In a small and light weight packages we can find

a very high torque servo motor (Fehler! Verweisquelle konnte nicht gefunden

werden..Because of these features they are used to control movement in a variety of

electromechanical industries, such as robots, CNC, toy cars, and in space. [15]:

https://circuitdigest.com/article/servo-motor-basics

Building of the frame including actuators for a small prototype of an airship (2017)

704

Figure 46: generic high torque servo.[16]: https://www.sparkfun.com/products/11965

28.3 Technology comparisons

Our study was based on two important types that can be used in aerospace. Hydraulic

and servo motor.

The effectivness of electro-hydraulic motor surround aerospace industry usage. As

indicated in (Figure 47: comparison between electro-hydraulic; electro-mechanical; and electro-

pneumatic actuator. ; the performance of electro-hydraulic actuator is higher than electro-

mechanical and electro pneumatic. That’s because electro-hydraulic systems have been

designed and sophisticated to achieve every manifested mission. [17]:

https://www.iei.liu.se/flumes/tmhp51/filearchive/coursematerial/1.105708/HydServoSystems_part1.pdf

Building of the frame including actuators for a small prototype of an airship (2017)

705

Figure 47: comparison between electro-hydraulic; electro-mechanical; and electro-pneumatic

actuator. [17]: https://www.iei.liu.se/flumes/tmhp51/filearchive/coursematerial/1.105708/HydServoSystems_part1.pdf

28.4 First actuator chosen: hydraulic actuator

28.4.1 Applications of Hydraulic Motors

Operation of wing trailing edge flaps and leading edge slats are the most common

application of hydraulic motors in aerospace vehicles. In these applications, a hydraulic

motor push the flutter or slice via a torque tube that work over the trailing edge or leading

edge. Gearboxes (90 degree, bevel and offset gear arrangements) connect the torque tube

along the trailing edge or leading edge. Other applications for hydraulic motors are

folding wing control, cargo doors and ramps and landing gear. Motors are ordinarily high

speed with low torque that are geared down to provide a lower speed and higher torque.

This is why we decided to use it in the airship to control its direction, especially since the

outer shape of the airship is very similar to aircraft’s one. Fehler! Verweisquelle konnte nicht gefunden

werden.

28.4.2 Types of hydraulic motors

We distinguish three kinds of hydraulic engines that are presently utilized; gear, vane and

piston motors—with a variety of styles available among them. In addition, several other

varieties exist that are less commonly used, gerotor or gerolor are including (orbital or

roller star) motors.

Building of the frame including actuators for a small prototype of an airship (2017)

706

Hydraulic motors can be either fixed- or variable-displacement, and work uni-

directionally or bi-directionally. While a constant input flow is provided, Fixed-

displacement motors drive a load at a constant speed. Variable-displacement engines can

offer varying flow rates by changing the displacement. Fixed-displacement motors

provide constant torque; variable-displacement designs provide variable torque and

speed.

The three different kinds of engines have different characteristics. Gear motors work best

at medium pressures and flows, and are usually the lowest cost. Medium pressure ratings

and high flows, with a mid-range cost Vane motors, were offered on the other hand. At the

most expensive end, piston motors offer the highest flow, pressure and efficiency ratings.

In the following; a detailed explanation about the three common types already cited.

28.4.2.1 Gear motor

Gear engines(Figure 48: external gear motor. focus on two gears, one being the driven gear—

which is joined to the output shaft—and the idler gear. Their work is simple: High-

pressure oil is ported into one side of the gears, where it flows around the gears and

housing, to the outlet port and pressed out of the motor. Meshing of the gears is a bi-

product of high-pressure inlet flow acting on the gear teeth. What actually prevents fluid

from leaking from the low pressure (outlet) side to high pressure (inlet) side is the

pressure differential. With gear motors, you must be concerned with leakage from the inlet

to outlet, which decrease engine capacity and fabricate temperature as well.

In addition to their low cost, gear engines do not drop out as fast or simply as other

methods, because the gears wear down the covering and bushings before a tragic

deficiency can happen.

Building of the frame including actuators for a small prototype of an airship (2017)

707

Figure 48: external gear motor. [19]: www.mobilehydraulictips.com/hydraulic-motors/

28.4.2.2 Vane Motor

Vanes motor (Figure 49:

vane motor. slide in and out, run by the eccentric bore at the

medium-pressure and cost range. The movement of the compressed fluid makes an

unbalanced force, which in turn forces the rotor to turn in one direction.

Figure 49: vane motor. [19]: www.mobilehydraulictips.com/hydraulic-motors/

Building of the frame including actuators for a small prototype of an airship (2017)

708

28.4.2.3 Piston type motor

Figure 50: Variable, axial piston motor, with the bent-axis design. [19]:

www.mobilehydraulictips.com/hydraulic-motors/

Many sorts of piston motor exists such as including radial (Figure 51: Radial piston motor.),

axial (Figure 50: Variable, axial piston motor, with the bent-axis design. , and others. In the first type;

pistons are characterized by its perpendicular configuration to the crankshaft’s axis.when

the latter enter in rotation motion; pressuriezed fluid makes pistons in a lineary action.

The second type; is characterized by his number of pistons coordinated in an orbicular

modelinside a cover; which in rotation around its axis by a shaft that is in line with the

pumping pistons. We identify two designs of axial piston motors ; swashplate and bent

axis types. In Swashplate designs the pistons and drive shaft are arranged in parallel. In

the next one , the pistons are sloped to the main drive shaft.

 Among the lower models used two designs, roller star motors is characterized by a low

friction, high efficiency and high start-up torque than gyrator designs. They also provide,

low-speed operation and offer longer life with less wear on the rollers. Running and

present extended life through low endurance on the pulleys. Gyrators furnish continued

fluid-tight sealing over their soft operation. [19]: www.mobilehydraulictips.com/hydraulic-

motors/

Building of the frame including actuators for a small prototype of an airship (2017)

709

Figure 51: Radial piston motor. [19]: www.mobilehydraulictips.com/hydraulic-motors/

28.4.3 Details about axial piston hydraulic motor:

A pivotal piston engine is like to an axial piston pump and is the most functional common

engine frequently utilized in aerospace, consequent to high power to weight ratio. A

schematic of an axial piston engine is shown in Figure 8. As can be seen in the figure, the

axial piston pump is similar to a piston pump, excluding that the swashplate (plateau

oscillant) corner is presently constant (i.e., there is no compensator and control piston).

The entry part of the engine is the high pressure side and the way out is low pressure. The

push distinction causes the pump to rotate. Since the swashplate is constant, quickness of

this engine is controlled by either controlling entry pressure (Δp across the motor) or the

flow rate. Also, such as pumps, hydraulic engines resort to own 9 pistons, or probably 7

(more pistons raise extraction and for this reason increase output torque). Piston motors

extend the top sealing for high input pressures and work best in high torque, low speed

purposes. They have the best sealing and will be the most effective. An axial piston engine

with a constant swashplate is unidirectional (rotate in 1 direction only). To be bi-

directional, the swashplate would require to be changeable status. Finally, piston motors

will own a case drain line to allow piston drain to spout to return. [20]:

28.4.4 Motor Installation Considerations:

The most important parameters for the installation of any motor are listed below.

Building of the frame including actuators for a small prototype of an airship (2017)

710

Dimensions – global dimensions for the motor are intended to establish the desired

setup volume.

Interfaces – interfaces contain piping connections and places on the motor, as well as

assembly handle and output shaft site.

Weight – weight of the motor, which is commonly provided as a dried weight. When

full of with fluid, weight will be higher.

Noise – Motors turn on at high velocity and produce racket. A specialization for

extreme noise level should be considered for motor installations.

Attachments – way of connexion of the motor to the airframe affects constructional

stiffness of the motor and also noise transition into the airframe.

Motor/Shaft Alignment – put the motor and shaft on one line; needs to hold to tight

tolerances. Considerations are tolerance stickups, relative motion between motor and

shaft, possible angular displacements on installations, spline teeth dimensions, etc.

incorrect alignment can cause exaggerated vibration (leading to premature failure), or

failure of the motor seals.

Splines – Usually some grease is applied to the splines to reduce wear. Selection of

lubrication should include temperature, corrosion inhibiting and acceptable life of the

grease before collapse take place.

Torque Requirements – we should consider start-up and running torque.First one is

higher than second. Start-up torque accelerates the mass of the motor and load, leading

to temporary high stresses within the mounting hardware and motor.Obviously, the

speed of the motor must match the manufacturer’s recommended speed for actuation

device. A gear arrangement may be used, if in demand.

Building of the frame including actuators for a small prototype of an airship (2017)

711

Axial and Radial Shaft Load Capability – Be sure that the motor shaft and splines are

designed specifically to sustain to the loads that motor will confront during its all life.

Inlet and outlet fittings must be matched to the motor.

Direction of Rotation – We distinguish two types of motors about direction: uni-

directional or bi-directional. So a bi-directional pump is to be used in aerospace

application. Clearly, the control valve position must be matched to the suit direction of

rotation. [21]:

28.5 Second actuator chosen: servo actuator

28.5.1 Reason for choose of servo actuator:

Servomotors are not so old; they can therefore be integrated into various applications.

Despite their small dimensions; they offer a hard rap and a very good energy yield. With

these specifications; their uses extend into the field of toy automobiles; robots, radio

control aircraft; as well as in industry such as robotics; pharmacy; etc. [22]:

http://www.jameco.com/jameco/workshop/howitworks/how-servo-motors-work.html

They are also used in powerful heavy sailing boats. The servos are rated for speed and

torque. Although these motors exist in different sizes but their patterns are similar. These

small motors are extremely powerful compared to their size; and their feed for a load is

suitable. For this; generally a servo loaded by a small element is a well valued energy. [23]

So that all we came to mention leads to replace the hydraulics with the servo because "it

has some characteristics of the aircraft and some other of robots. Also, the lightness of its

weight and strength that is good, in addition to the light exchange of energy make it

overcome the hydraulic and replace it in this Type of applications.

28.5.2 General information about servo:

A servomotor is a type of motor that incorporates in the same housing the mechanics (DC

motor) and the simplified control electronics, generally servo-controlled in position with a

limit of 180 degree angle travel, but also available in continuous rotation .

Building of the frame including actuators for a small prototype of an airship (2017)

712

Its advantage is the ease of control by an external digital signal and the high gearing that

the gears integrated in its housing allow.

these motors are usually used to move pieces (sails, capstans, drifts, control surfaces, flaps)

of models, boats or planes, and are recognizable thanks to their standardized box,

rectangular and black.

They are therefore used as actuators or for the motorization of small robots, possibly by

modifying their mechanics so that they rotate continuously, thus eliminating the servo-

control in position. [24]: http://www.pobot.org/+-servomoteur-+.html?lang=fr

Usually; servo motors comes with arms (metals or plastic) that is connected to the object

required to move (see figure below to the right).

Servo have 3 wires:

Black wire: GND (ground); RED wire: +5v; Colored wire: control signal (Figure 52: scheme for

the three wire of servo.).

Figure 52: scheme for the three wire of servo. [25]: https://www.scribd.com/document/99583469/Introduction-to-

Servo-Motors-Arduino
The third pin accepts the control signal which is a pulse-width modulation (PWM) signal.

It can be easily produced by all micro- controllers and an Arduino board. This accepts the

signal from your controller that tells it what angle to turn to. The control signal is fairly

simple compared to that of a stepper motor. It is just a pulse of varying lengths. The length

of the pulse corresponds to the angle the motor turns to.

The pulse width sent to servo ranges as follows:

Minimum: 1 millisecond ---> Corresponds to 0 rotation angle.

Building of the frame including actuators for a small prototype of an airship (2017)

713

Maximum: 2 millisecond ---> Corresponds to 180 rotation angle.

Any length of pulse in between will rotate the servo shaft to its corresponding angle. For

example, 1.5 ms pulse corresponds to rotation angle of 90 degree (Figure 53: scheme explaining

the pulse width and its corresponding angle.).

This is will explained in figure below. [25]:

https://www.scribd.com/document/99583469/Introduction-to-Servo-Motors-Arduino

Figure 53: scheme explaining the pulse width and its corresponding angle. [25]:

https://www.scribd.com/document/99583469/Introduction-to-Servo-Motors-Arduino

28.5.3 Types of servo motors

There are three Main Types of servo motors which are:

Positional Rotation Servo: (Figure 54: positional rotation servo.

This variety rotates within a 182° range. It’s not designed to turn beyond its preset limits.

Useful for limited-range applications like moving levers or steering linkages.

Building of the frame including actuators for a small prototype of an airship (2017)

714

Figure 54: positional rotation servo. [26]:

Continuous Rotation Servo: (Figure 55: continuous rotation servo.

While levers are often used on standard servos, wheels and gears become more useful

with this style, which can turn in any direction independently and continuously.

Figure 55: continuous rotation servo. [26]:

Linear Servo: Fehler! Verweisquelle konnte nicht gefunden werden.(Figure 56: Spectrum

Mini servo linear servo Gear box material.

This type offers more gears than the positional rotation servo, but is otherwise very

similar. It uses a rack and pinion mechanism to change the output back and forth instead

of circularly. This servo is rare, but can be found in larger hobby planes and robots. [26]:

Building of the frame including actuators for a small prototype of an airship (2017)

715

Figure 56: Spectrum Mini servo linear servo Gear box material. [26]:

Building of the frame including actuators for a small prototype of an airship (2017)

716

29 Actuator System of TEMOLeb-Mintad

29.1 Hydraulic actuator system

29.1.1 Work principal for hydraulic motor

In the figure below (Figure 57: simple work principal of hydraulic actuator.; two cylinders are

used; to understand the principle of hydraulic actuator operation. In fact; the section of

the left cylinder is 1 square centimeter; and that of the right is 10 square centimeters.

The two cylinders are filled by an incompressible fluid. If a pressure unit is applied to

the left cylinder, which is used to push the pump; of 10 centimeters; the effect of this

force on the right cylinder is to push the piston one centimeter with a unit force. Which

implies that a unit of force applied on one side of the cylinder provides 10 units of this

force on the other side. This relation results from the Pascal principle which shows us

the proportionality between force and pressure:

This type of cylinder (or called a linear hydraulic motor) is useful in systems that

require high strength but not much accuracy. For example, if you need a linear force to

move a robot. The action of the hydraulic pressure on these actuators provides a

reciprocating movement of the piston included in the cylinder. And since the load is

attached to the piston, it will move in parallel with its motion. Even a rotating action

can be created by transforming the hydraulic pressure.

 P =

Building of the frame including actuators for a small prototype of an airship (2017)

717

Figure 57: simple work principal of hydraulic actuator.

29.1.2 FreeCAD design proposal

Parts

and

details

Date and FreeCAD file Screenshot

Oil

tank

April /2017

oil_tank.FCStd

Pipes April/2017

pipes.FCStd

Piston April/2017

piston.FCStd

Building of the frame including actuators for a small prototype of an airship (2017)

718

Pump

Electric

Motor

May/2017

pump_22 5 2017.FCStd

Table 11: freecCAD design for each part of the proposal hydraulic actuator system.

The whole motor is drawed below:

whole_hydraulic_mot
or_22_5_2017.FCStd

Table 12: freeCAD model of whole actuator.

We later discovered that this type of actuator who drives the piston in one direction is not

enough to move the rudder and elevator in two different directions, when the airships

control system gives the command. And to do that, we need a system acting in both

directions such as the “double acting cylinder”. This last isn’t a very easy system; a lot of

problems we face if we are to manufacture this type… Even if we want to buy it.

Building of the frame including actuators for a small prototype of an airship (2017)

719

29.2 Servo actuator system

29.2.1 Adopted Motor (Figure 58: the servo motor which we buy.

Figure 58: the servo motor which we buy.

29.2.2 Basic parts of the servo (Figure 59: picture showing all interior parts for any
servo (motor, gearbox, potentiometer, and control electronics).

Figure 59: picture showing all interior parts for any servo (motor, gearbox, potentiometer, and

control electronics).

1. Motor

2. Gearbox

3. Position sensor

4. Motor control electronics

Building of the frame including actuators for a small prototype of an airship (2017)

720

29.2.3 Servo motor block diagram (Figure 60: servo motor block diagram.

Figure 60: servo motor block diagram.

29.2.3.1 Control computer:

The mobile application used “BlunoBasicDemo”; send an electronic control signal

containing the angle of each servo and the on or off for propeller.

29.2.3.2 Electronic control system:

It is an interconnection between 2 signals: input and output. A signal is transformed to

another one using a process; in the objective to create motion, change a speed, etc.

specifically, in our project we use the type called closed loop electronic control system. By

correcting the error occurred; it helped us to main the system more stable and enhance its

control. In the following a scheme (Figure 61: the concept of electronic control system. is showed

to explain this concept.

Figure 61: the concept of electronic control system.

29.2.3.3 Motor:

Inside the servo is a DC motor. This one will turn when receiving an electric signal from

the control system.

29.2.3.4 Gear train:

An assembly of many gears; receive the rotation force from DC motor; and transform it

into torque.

Building of the frame including actuators for a small prototype of an airship (2017)

721

29.2.3.5 Position sensor:

Such as a potentiometer; which has to learn continuously the mechanical position of the

shaft by changing the resistance of an interior resistor.

29.2.3.6 Servo output:

A PWM signal was sent to the motor, turn the shaft in the desired position. This can

describe the output of a servo.

29.2.4 Design of servo actuator system (FreeCAD)

Parts and details Date and FreeCAD file Screenshot

Servo Motor

servomotor.FCStd

Rudder

rudder.FCStd

Table 13: freeCAD model of servo motor and the airship rudder.

29.2.5 Motor Controller and Interfaces

The work which is described in this section was done by CNCLab (see quotation in Appendix).

The mobile application named “BlunoBasicDemo” sends a command to the Bluetooth

module taking place on the Arduino board. It passes through the motor drive then arrive

to the servo actuator in the form of PWM signal which is responsible for rotating the servo

in different angles.

Building of the frame including actuators for a small prototype of an airship (2017)

722

29.2.5.1 Mobile App:

Figure 62: BlunoBasicDemo logo.

BlunoBasicDemo (Figure 62: BlunoBasicDemo logo. is a basic Demo for Bluno including all the

code and executable on Android, IOS and Android. You can easily develop your own with

this Demo.

29.2.5.2 Bluetooth Module: (BLE Link -A Bluetooth 4.0 module for Arduino)

Figure 63: BLE Link -A Bluetooth 4.0 module for Arduino.

Description:

It is a peripheral that quickly connects the device to the mobile via BLE, using the XBEE

model suitable for all XBEE screens. Many of the applications for Android and IOS

systems are developed to be at the service of users who must use it to communicate

between BLE and Arduino.

Specification:

Price: 23.95$

Mark: DFRobot

Serial number: WRL0024

Chip: TI CC2540>

Building of the frame including actuators for a small prototype of an airship (2017)

723

Working voltage: +3.3DC

Power consumption: working 10.6 mA average, ready mode: 8.7 mA

Pin Layout: Compatible With XBEE pinout

Frequency: 2.4 GHz

Transfer rate: 1 Mbps

Modulation: GFSK, Bluetooth low power, V4.0

Sensitivity: -93dB

Operating temperature: - 40 +85

Transmission distance: 60 m in free space

Size: 32mm * 22mm (1.26 * 0.87")

2.2.5.3. Arduino controller: Romeo V2-All in one Controller-motor drive built in

Figure 64: Romeo V2-All in one Controller-motor drive built in.

Description:

Romeo V2 [R3] (Figure 64: Romeo V2-All in one Controller-motor drive built in.) is an All-in-One

Arduino, microcontroller, made specifically for robotics applications. This type of Arduino

based on the ATmega32u4 chip, can be programed fast via the Arduino IDE. Thanks to

ATmega32u4 chip, the ease and the simplicity of RoMeo V2. Another application of

Romeo V2 is that it can control a stepper motor.

Specification:

Building of the frame including actuators for a small prototype of an airship (2017)

724

Price: 46.95 $

Mark: DFRobot

Serial number: DEV0005

DC Supply: USB Powered or External 6V ~ 23V DC

DC Output: 5V (2A) / 3.3V DC

Motor driver Continuous Output Current: 2A

Microcontroller: ATmega32u4

Bootloader: Arduino Leonardo

Compatible with the Arduino R3 pin mapping

Analog Inputs: A0-A5, A6 - A11 (on digital pins 4, 6, 8, 9, 10, and 12)

PWM: 3, 5, 6, 9, 10, 11, and 13. Provide 8-bit PWM output

5 key inputs for testing

Auto sensing/switching external power input

Serial Interface

TTL Level

USB

Support Male and Female Pin Header

Built-in XBEE socket

Integrated sockets for APC220 RF Module and DF-Bluetooth Module

Three I2C/TWI Interface Pin Sets (two 90°pin headers)

Two way Motor Driver with 2A maximum current

One Stepper Motor Drive with 2A maximum current

Size: 89 x 84 x 14mm

Building of the frame including actuators for a small prototype of an airship (2017)

725

2.2.5.4. Motor drive: HR 2 channel dc motordrive dual h bridge stepmotor reversing PWM

speed control mini L298N

Figure 65: HR 2 channel dc motordrive dual h bridge stepmotor reversing PWM speed control mini

L298N.

Description:

 HR 2 motordrive (Figure 65: HR 2 channel dc motordrive dual h bridge stepmotor reversing PWM

speed control mini L298N. can be used in a device need a voltage between 2 and 10 v. with his

2 pin each to 1.5 A DC current ; it can manage the position and speed control.

Note that in this project motor drive is used only for DC motor which’s responsable of

propeller motion and speed (i.e. servo motor don’t need motor drive, it will be directly

connected to arduino).

Specification:

Price: 3.95$

Serial number: DRV0023

H bridge motor dual drive, and can drive two DC motor or 1 line 4 phase stepper motor;

The voltage of the power supply module 2V-10V;

The signal input voltage 1.8-7V;

Single channel current of 1.5A, peak current up to 2.5A, low standby current (less than

0.1uA);

The built-in common conduction circuit, the input end is suspended, the motor will not

malfunction;

Building of the frame including actuators for a small prototype of an airship (2017)

726

The built-in overheat protection circuit with hysteresis effect (TSD), there is no need to

worry about motor stall;

Product size: 24.7*21*5mm (LxWxH), ultra-small size, suitable for assembly and vehicle;

Mounting whole diameter: 2 mm.

Weight: 5g

29.2.6 Power Management: Polymer Lithium Ion Battery - 1000mah 7.4v

Figure 66: Polymer Lithium Ion Battery - 1000mah 7.4v.

Description:

This LiPo (Figure 66: Polymer Lithium Ion Battery - 1000mah 7.4v. is an excellent battery that can

be used in any application; who need a little power supply has several punch as in

robotics. Its low voltage and sufficient flow allows it to acquire many electronic and some

small motors

The battery has two cells and produces 7.4 V to store 1000 mAh of charge. This type of

batteries requires a specific charger.

Specification:

Price: 13.95$

Mark: SparkFun Electronics®

Building of the frame including actuators for a small prototype of an airship (2017)

727

Serial number: PWR0024

7.4V 2-cell pack

1000mAh of charge

Discharge rate: 25C continuous

Charge plug: JST-XH

Discharge plug: JST-RCY

Dimensions: 70mm x 35mm x 18mm

Weight: 85g (2.99oz)

29.3 Software Development on Arduino side with the Arduino integrated

development environment (IDE)

29.3.1 Architecture of the program on the Arduino

Arduino IDE is a software which can used to program Arduino board; with C or C++

languages; referring to its special programming rules. It supplies a software library from

the Wiring project, which provides many common input and output procedures.

To well writing the code; two functions are required:

Setup (): This function is called once when a sketch starts after power-up or reset. It is used

to initialize variables, input and output pin modes, and other libraries needed in the

sketch.

Loop (): is executed repeatedly in the main program. It controls the board until the board

is powered off or is reset.

Another functions furnishes by the internal libraries; are also used in this program:

pinMode (), digitalWrite (), and delay ().

The program code is than converted into a text file; in hexadecimal encoding using a

specific program; that is loaded into the Arduino board by a loader program in the board's

firmware. So you will give short strokes at a click; and the program become uploaded.

https://en.wikipedia.org/wiki/Integrated_development_environment
https://en.wikipedia.org/wiki/Integrated_development_environment

Building of the frame including actuators for a small prototype of an airship (2017)

728

29.3.2 Bluetooth_Blimp_Control: Code and explication

Building of the frame including actuators for a small prototype of an airship (2017)

729

Building of the frame including actuators for a small prototype of an airship (2017)

730

Building of the frame including actuators for a small prototype of an airship (2017)

731

Bluetooth_Blimp_Control.ino

29.4 Final assembly

Each part which was described and discussed in the previous chapter will be seen in this

chapter in the final assembly; which contains: the programmed arduino,4 servos;

bluetooth module;DC Motor; and the battery. All that we have mentioned appears in the

following photo (Figure 67: the final assembly of servo actuator system and its interfaces.).

Building of the frame including actuators for a small prototype of an airship (2017)

732

Figure 67: the final assembly of servo actuator system and its interfaces.
 In effect the program already written will then uploaded to the arduino board. Once the

upload finished; and the arduino supplied by the compatible power ; all servos turned to

their intial position (900) as defined in the code.

Building of the frame including actuators for a small prototype of an airship (2017)

733

29.5 Testing the integrated actuator

To test this assembly there are several steps to follow. First; make sure that all peripheral

devices are well connected to the Arduino board; and the board is supplied by the

compatible battery. The light seen on the Arduino confirms the arrival of current into the

board. Then; verify the position of all servos on PWM pins (6, 9, 10, and 11) and the DC

motor position. Later; start to connect your mobile Bluetooth to BLE link Bluetooth.

And now we start the control using the mobile application “BlunoBasicDemo”. To do that

you must enter 5 number between each 2 numbers a comma. The 4 first numbers will be

the rotation angle of all 4 servos; which must be between the minimum (450) and the

maximum (135 0) angles. And the last number can be 0 (to turn off the propeller’s motor)

and 1 (to turn it on).

This process is illustrated in the following figure: (Figure 68: showing how to use BunoBasicDemo

to give order to our system.

Building of the frame including actuators for a small prototype of an airship (2017)

734

Figure 68: showing how to use BunoBasicDemo to give order to our system.

Each servo will turns in the required angle.

735

30 Prototype Construction

Alumininium Pipes for skelleton

Building of the frame including actuators for a small prototype of an airship (2017)

736

Building of the frame including actuators for a small prototype of an airship (2017)

737

Building of the frame including actuators for a small prototype of an airship (2017)

738

Building of the frame including actuators for a small prototype of an airship (2017)

739

 740

Appendix C: for Actuator System

 741

Appendix C: for Actuator System

Initial Working packages

Outworked by Amena Shaker

Appendix C: for Actuator System

 742

Quotation for Arduino based actuator system

All material and interfaces from: www.cnclablb.com

http://www.cnclablb.com/

Appendix D: For Prototype Construction

 743

Appendix D: For Prototype Construction

Initial Working Packages

Appendix D: For Prototype Construction

 744

 745

Development of a GCS (Ground Control System) (2018)

From:

 746

Contents

CONTENTS 746

1 APP STRUCTURE: 747

1.1 HEADLINE WIDGET CONTAIN: 747

1.2 MAIN AREA: 748

1.3 LEFT NAVIGATION PANEL CONTAIN: 748

1.4 RIGHT NAVIGATION PANEL CONTAIN: 749

1.5 FOOTER WIDGET CONTAIN: 749

2 WIDGET: 750

2.1 HOME WIDGET: 750

2.2 ASI WIDGET: 750

2.3 MAP WIDGET: 751

2.4 CAMERA WIDGET: 751

2.5 CONTROLLER WIDGET: 752

3 CONFIGURATION PAGE: 753

3.1 GENERAL INFO CONFIGURATION: 753

3.2 CONNECTION CONFIGURATION: 754

3.3 KNOBS CONFIGURATION: 754

3.4 PFD CONFIGURATION: 755

3.5 MAP CONFIGURATION: 755

3.6 ROUTE CONFIGURATION: 756

3.7 TASK CONFIGURATION: 757

4 CONTROLLERS 758

4.1 SIGNAL STRENGTH 758

4.2 KNOBS CONTROLLER 758

5 USER CONTROL CODE SUMMARY: 759

5.1 CONFIGURATION: 759

5.2 CONTROLLER: 759

5.3 FOOTERWIDGET: 759

5.4 HEADLINEWIDGET: 760

5.5 HOMEWIDGET: 760

5.6 MAPWIDGET: 760

5.7 PFDWIDGET: 760

5.8 MAINMENU: 761

5.9 APPCONFIG: 762

5.10 LIBRARIES: 763

6 REFERENCES: 764

Headline Widget contain:

747

31 App Structure:

App structure consist of one main page, divided to 5 panels

- Headline Widget

- Main area

- Right navigation panel

- Left navigation panel

- Footer widget

Each panel contain the following:

31.1 Headline Widget contain:

- LOGO

- General info

- Caution-Warning indicator

- Caution\Warning\Notes main list

Caution shall be shown in Red, Warning shall be shown in Yellow, Notes shall be shown in White

- Route Altitude\Speed info

- Data Link 1&2 signal strength indicator

- Gas Pressure Info

App Structure:

748

- Remaining flight time Count down

Show the remaining Time of the lotto battery in Minutes than in Seconds, it shall be colored Red

when it decrease to seconds

31.2 Main Area:

The area where the widget will be shown after selection and navigation from the Left and right

navigation panels

31.3 Left navigation panel contain:

- Button to navigate to Home page

- Button to navigate to ASI widget

- Button to navigate to Map widget

- Button to navigate to Camera widget

- Button to navigate to Controller widget

Right navigation Panel Contain:

749

31.4 Right navigation Panel Contain:

- Button to access the App configuration

- Button to Log-Out and close the App

31.5 Footer Widget Contain:

- 4 Quick access knobs to access important entrance

Knobs can be enabled or disabled from app configuration

- App sign and version

Widget:

750

32 Widget:

32.1 Home Widget:

Show the general info and states of the vehicle, and the flight mission

32.2 ASI Widget:

Show the Altitude and the speed of the lotto, with the orientation.

Map Widget:

751

32.3 Map Widget:

Map Widget is a GMap controller to show map with the lotto on it with the route and zone it

should be pass, the route and zone set from the Route Configuration page

32.4 Camera Widget:

Show view of the lotto camera

Widget:

752

32.5 Controller Widget:

Contain the three monitoring widget with the controller of the lotto to fully access, log file of each

flight mission will be saved as a txt file in “My Documents\AvionicsMissions”

General Info Configuration:

753

33 Configuration Page:

Configuration page divided to tabs as follows:

- General

o General Info

o Connection

o Knobs

- Widgets

o PFD (ASI)

o Map

- Mission

o Route

o Task

33.1 General Info Configuration:

Press Update to save the update or it will be ignored

Configuration Page:

754

33.2 Connection Configuration:

33.3 Knobs Configuration:

None disable the knobs

PFD Configuration:

755

33.4 PFD Configuration:

This values will be configure the PFD view of the ASI widget

33.5 Map Configuration:

Map Widget view can be configure from here, map provider can be google or bing, knowing that

the bing map is faster, while the google contain more info. Map is work online and offline if it

already loaded before to the cache.

Configuration Page:

756

33.6 Route Configuration:

Zone: is the safe zone of the flight mission, a caution will be pop-up when the lotto get out from its

safe zone, zone shall be shown as a red zone on the map.

Route: Is the route which the lotto should trace, a warning it will be pop-up in each time the lotto

go away from the route, Route shall be shown as a red trace on the map

Each point in the zone or route list shall be consist of a Lat. and Long. separate by coma ‘,’ and

each line while represent a point.

Map with Zone and route routed:

Task Configuration:

757

33.7 Task Configuration:

Controllers

758

34 Controllers

34.1 Signal Strength

Use levels and colors to indicate signal strength, color and level will be change as follows:

- Till 10%: one Light Gray level

- Till 30%: 2 Red levels

- Till 40%: 3 Red levels

- Till 50%: 3 Yellow levels

- Till 70%: 4 Yellow levels

- Then, 5 Green levels

34.2 Knobs controller

Using this controller, user can quick access the field of the knobs without leaving widgets, each

controller contain an up and a down arrow to increase and decrease value of the knobs.

Configuration:

759

35 User Control Code Summary:

35.1 Configuration:

LoadSettings Load all settings from AppConfig to the user control fields

btn_Menu_Click Callback for the Configuration menu tab choosing

btn_Connect_Serial_Click Prepare the parameters for the connect to serial function

serialport_connect Make a connection to a serial port

btn_Update_Click Update the settings from the user control fields to the AppConfig

Sport Public static element of the serial port

35.2 Controller:

Controller_Load Load Controller widget settings from the AppConfig

btn_Send_Click Send Command via serial port

trackAltitudeValue_Scroll Callback to change the altitude value

trackAirSpeedValue_Scroll Callback to change the speed value

UpdateAltitudeGaugeParams Update the PFD view

MouseStick_MouseStickMoved Callback on move to set the move speed and direction

MouseStick_MouseDoubleClick Callback on double click to specify the move and set command

InsertLogLine Function to write log line on log display and file

ParseMoveInfo Parse move info to move command

trackAirSpeedValue_MouseUp Callback on Mouse up to write log for the new speed value

trackAltitudeValue_MouseUp Callback on Mouse up to write log for the new altitude

btn_Clear_Click Callback to clear move command

35.3 FooterWidget:

FooterWidget_Load Call UpdateKnobs function to load Footer knobs

UpdateKnobs Load Knobs into footer

pb_Down_Click Move one step down from the knobs value

pb_Up_Click Move one step up to the knobs value

User Control Code Summary:

760

35.4 HeadlineWidget:

HeadlineWidget_Load Load Headline info and settings, and start the clock and

stopwatch timer

LoadGeneralInfo Load General info from the AppConfig to the Headline widget

AddWarningCautionNote Public function used to add warning\Caution\Note to the list

AnimateItem Used to animate the new item add to the list

The headline widget use the SignalStrength control from the Libraries folder to indicate the

Datalink signel strength

35.5 HomeWidget:

LoadGeneralInfo Load general info to the home screen

35.6 MapWidget:

LoadMap Load widget map under the settings set in the AppConfig

trackBar1_Scroll Callback to change map zoom on track bar scroll

Addmarker Add the Airship icon to the map

gmap_OnMarkerClick Event called when the airship marker click

AddPolygon Add the Zone polygon set in the AppConfig

gmap_OnPolygonClick Event called when the zone polygon click

AddRoute Add the route of the flight set in the AppConfig mission to the

map

gmap_MouseMove Callback on mouse move to display the coordinate on the mouse

point

GetMouseCoordinate Public function return the mouse coordinate

35.7 PFDWidget:

InitializeGauges Initialize the gauges of the PFD widget, and set the callback of

the sport receiver

sport_DataReceived Callback of the sport receiver

SetValue Update PFD values under the data received from the sport

receiver

MainMenu:

761

SetText Update the value of the PFD info label

Redraw Redraw the user control

GraphicUserControl_Resize Callback to redraw the PFD widget when the user control

resized

GraphicUserControl_Paint Callback to paint the Widget

The PFD Widget use the classes and interfaces and controllers in the Libraries\PFDLib folder

35.8 MainMenu:

MainWindow_Load Callback on page load to load the home widget

ResetButtons Function to reset buttons selection and update headline content

btn_Home_Click Callback on Home button click to load Home Widget

btn_ASI_Click Callback on ASI button click to load PFD Widget

btn_Map_Click Callback on Map button click to load Map Widget

btn_Camera_Click Callback on Camera button click to load Camera Widget

btn_Controller_Click Callback on Controller button click to load Controller Widget

btn_Config_Click Callback on Config button click to load Config Widget

btn_LogOut_Click Callback on logout button click to logout and close the app

User Control Code Summary:

762

35.9 AppConfig:

Setting Type Description Default

Value

GCO String

GCE String

Mission String

MinAlt Int Minimum value of the altitude roller 0

MaxAlt Int Maximum value of the altitude roller 200

MinSpeed Int Minimum value of the speed roller 0

MaxSpeed Int Maximum value of the speed roller 20

Knob1 String Parameter of the footer quick access knob 1

(choose from: ALT Preset, DH Preset, GS, none)

ALT Preset

Knob2 String Parameter of the footer quick access knob 2

(choose from: ALT Preset, DH Preset, GS, none)

DH preset

Knob3 String Parameter of the footer quick access knob 3

(choose from: ALT Preset, DH Preset, GS, none)

GS

Knob4 String Parameter of the footer quick access knob 4

(choose from: ALT Preset, DH Preset, GS, none)

None

AltPreset Int The altitude preset value 13

DHPreset Int The DH preset value 100

GS Int The ground speed value 125

MapProvider String The Map provider Google

InitialMapZoom Int The initial map zoom value

(choose value from 0 to 16)

10

OrigLat String The map origin initial latitude 34.4289699

OrigLon String The map origin Initial Longitude 35.836247

Zone String The safe zone of the flight mission

Route String The route of the flight mission

Task String The task of the mission

ShowMapCenter Bool Add map center cross to the map or not False

LogFilePath String Path of the log file on the local computer

MissionStart Bool Mission is start or not False

Libraries:

763

35.10 Libraries:

GMap library (DLL) Used in Map widget

PrimayFligthDisplay

(DLL)

Used with its PFDLib file contents as it is in the PFD widget

MouseStick1 (DLL) Used on the mouse stick in the controller widget

SignalStrength (user

Control)

Used on the Headline widget to show signal strength

 764

36 References:

Setup zip file:

 765

Development of a FCS (Flight Control System) (2018)

Last update: 16.4.2019

Author: MMJZ

AECENAR @ 2018/19

 766

AECENAR @ 2018

Contents

1 SYSTEM ARCHITECTURE 768

2 SERVO ACTUATOR SYSTEM 769

2.1 ADOPTED MOTOR 769

2.2 BASIC PARTS OF THE SERVO 769

2.3 SERVO MOTOR BLOCK DIAGRAM 770

2.3.1 Control computer: 770

2.3.2 Electronic control system: 770

2.3.3 Motor: 770

2.3.4 Gear train: 771

2.3.5 Position sensor: 771

2.3.6 Servo output: 771

2.4 DESIGN OF SERVO ACTUATOR SYSTEM (FREECAD) 771

2.5 MOTOR CONTROLLER AND INTERFACES 771

2.5.1 Mobile App: 772

2.5.2 Bluetooth Module: (BLE Link -A Bluetooth 4.0 module for Arduino) 772

2.5.3 Arduino controller: Romeo V2-All in one Controller-motor drive built in 773

2.5.4 Motor drive: HR 2 channel dc motordrive dual h bridge stepmotor reversing PWM speed control mini

L298N 775

2.6 POWER MANAGEMENT: POLYMER LITHIUM ION BATTERY - 1000MAH 7.4V 776

3 REALIZATION OF INERTIAL MEASUREMENT UNIT (IMU) 778

3.1 IMU-SENSOR: LSM9DS0 779

3.2 LSM9DS0 HOOKUP GUIDE 780

3.2.1 Covered In This Tutorial 780

3.2.2 About the LSM9DS0 780

3.2.3 Choose Your Own Adventure: SPI or I
2
C 781

3.2.4 Breakout Overview 782

3.2.5 Basic Arduino Example 785

3.2.6 Resources and Going Further 787

4 WIFI COMMUNICATION WITH NRF24L01 788

4.1 ARDUINO LIBRARY 789

5 SOFTWARE DEVELOPMENT ON ARDUINO SIDE WITH THE ARDUINO INTEGRATED DEVELOPMENT

ENVIRONMENT (IDE) 792

5.1 ARCHITECTURE OF THE PROGRAM ON THE ARDUINO 792

5.2 BLUETOOTH_BLIMP_CONTROL CODE 792

5.3 IMU SENSOR LSM9DS0 CODE 795

5.4 CONTROL LOOP 797

5.5 WIFI COMMUNICATION CODE 797

5.6 FULL CODE 800

6 ASSEMBLY 808

6.1 ACTUATOR ASSEMBLY 808

Development of a FCS (Flight Control System) (2018)

767

6.2 IMU ASSEMBLY 814

6.3 WIFI MODULE ASSEMBLY 814

6.4 FULL ASSEMBLY 815

7 FINAL IMPLEMENTATION 816

Development of a FCS (Flight Control System) (2018)

768

37 System Architecture

Development of a FCS (Flight Control System) (2018)

769

38 Servo actuator system

38.1 Adopted Motor

Figure 69: the servo motor which we buy.

38.2 Basic parts of the servo

Figure 70: picture showing all interior parts for any servo (motor, gearbox, potentiometer, and

control electronics).

1. Motor 2. Gearbox

3. Position sensor 4. Motor control electronics

Development of a FCS (Flight Control System) (2018)

770

38.3 Servo motor block diagram

Figure 71: servo motor block diagram.

38.3.1 Control computer:

The mobile application used “BlunoBasicDemo” for testing to send an electronic control

signal containing the angle of each servo and the on or off for propeller.

Then it should be controlled by the GCS and the Lotte_Regler.

38.3.2 Electronic control system:

It is an interconnection between 2 signals: input and output. A signal is transformed to

another one using a process; in the objective to create motion, change a speed, etc.

specifically, in our project we use the type called closed loop electronic control system. By

correcting the error occurred; it helped us to main the system more stable and enhance its

control. In the following a scheme (Figure 61: the concept of electronic control system. is

showed to explain this concept.

Figure 72: the concept of electronic control system.

38.3.3 Motor:

Inside the servo is a DC motor. This one will turn when receiving an electric signal from

the control system.

Development of a FCS (Flight Control System) (2018)

771

38.3.4 Gear train:

An assembly of many gears; receive the rotation force from DC motor; and transform it

into torque.

38.3.5 Position sensor:

Such as a potentiometer; which has to learn continuously the mechanical position of the

shaft by changing the resistance of an interior resistor.

38.3.6 Servo output:

A PWM signal was sent to the motor, turn the shaft in the desired position. This can

describe the output of a servo.

38.4 Design of servo actuator system (FreeCAD)

Parts and details Date and FreeCAD file Screenshot

Servo Motor

servomotor.FCStd

Rudder

rudder.FCStd

Table 14: freeCAD model of servo motor and the airship rudder.

38.5 Motor Controller and Interfaces

The work which is described in this section was done by CNCLab.

The mobile application named “BlunoBasicDemo” sends a command to the Bluetooth

GCS
Bluetooth

module
Arduino

Controllor
Motor
drive

servo

Development of a FCS (Flight Control System) (2018)

772

module taking place on the Arduino board. It passes through the motor drive then arrive

to the servo actuator in the form of PWM signal which is responsible for rotating the servo

in different angles.

38.5.1 Mobile App:

Figure 73: BlunoBasicDemo logo.

BlunoBasicDemo (Figure 62: BlunoBasicDemo logo. is a basic Demo for Bluno including all

the code and executable on Android, IOS and Android. You can easily develop your own

with this Demo.

38.5.2 Bluetooth Module: (BLE Link -A Bluetooth 4.0 module for Arduino)

Figure 74: BLE Link -A Bluetooth 4.0 module for Arduino.

Description:

It is a peripheral that quickly connects the device to the mobile via BLE, using the XBEE

model suitable for all XBEE screens. Many of the applications for Android and IOS

systems are developed to be at the service of users who must use it to communicate

between BLE and Arduino.

Specification:

Price: 23.95$

Development of a FCS (Flight Control System) (2018)

773

Mark: DFRobot

Serial number: WRL0024

Chip: TI CC2540>

Working voltage: +3.3DC

Power consumption: working 10.6 mA average, ready mode: 8.7 mA

Pin Layout: Compatible With XBEE pinout

Frequency: 2.4 GHz

Transfer rate: 1 Mbps

Modulation: GFSK, Bluetooth low power, V4.0

Sensitivity: -93dB

Operating temperature: - 40 +85

Transmission distance: 60 m in free space

Size: 32mm * 22mm (1.26 * 0.87")

38.5.3 Arduino controller: Romeo V2-All in one Controller-motor drive built in

Figure 75: Romeo V2-All in one Controller-motor drive built in.

Description:

Romeo V2 [R3] (Figure 64: Romeo V2-All in one Controller-motor drive built in.) is an All-in-

One Arduino, microcontroller, made specifically for robotics applications. This type of

Arduino based on the ATmega32u4 chip, can be programed fast via the Arduino IDE.

Thanks to ATmega32u4 chip, the ease and the simplicity of RoMeo V2. Another

application of Romeo V2 is that it can control a stepper motor.

Development of a FCS (Flight Control System) (2018)

774

Specification:

Price: 46.95 $

Mark: DFRobot

Serial number: DEV0005

DC Supply: USB Powered or External 6V ~ 23V DC

DC Output: 5V (2A) / 3.3V DC

Motor driver Continuous Output Current: 2A

Microcontroller: ATmega32u4

Bootloader: Arduino Leonardo

Compatible with the Arduino R3 pin mapping

Analog Inputs: A0-A5, A6 - A11 (on digital pins 4, 6, 8, 9, 10, and 12)

PWM: 3, 5, 6, 9, 10, 11, and 13. Provide 8-bit PWM output

5 key inputs for testing

Auto sensing/switching external power input

Serial Interface

TTL Level

USB

Support Male and Female Pin Header

Built-in XBEE socket

Integrated sockets for APC220 RF Module and DF-Bluetooth Module

Three I2C/TWI Interface Pin Sets (two 90°pin headers)

Two way Motor Driver with 2A maximum current

One Stepper Motor Drive with 2A maximum current

Size: 89 x 84 x 14mm

Development of a FCS (Flight Control System) (2018)

775

38.5.4 Motor drive: HR 2 channel dc motordrive dual h bridge stepmotor reversing PWM speed
control mini L298N

Figure 76: HR 2 channel dc motordrive dual h bridge stepmotor reversing PWM speed control

mini L298N.

Description:

 HR 2 motordrive (Figure 65: HR 2 channel dc motordrive dual h bridge stepmotor reversing

PWM speed control mini L298N. can be used in a device need a voltage between 2 and 10 v.

with his 2 pin each to 1.5 A DC current ; it can manage the position and speed control.

Note that in this project motor drive is used only for DC motor which’s responsable of

propeller motion and speed (i.e. servo motor don’t need motor drive, it will be directly

connected to arduino).

Specification:

Price: 3.95$

Serial number: DRV0023

H bridge motor dual drive, and can drive two DC motor or 1 line 4 phase stepper motor;

The voltage of the power supply module 2V-10V;

The signal input voltage 1.8-7V;

Single channel current of 1.5A, peak current up to 2.5A, low standby current (less than

0.1uA);

The built-in common conduction circuit, the input end is suspended, the motor will not

malfunction;

The built-in overheat protection circuit with hysteresis effect (TSD), there is no need to

worry about motor stall;

Development of a FCS (Flight Control System) (2018)

776

Product size: 24.7*21*5mm (LxWxH), ultra-small size, suitable for assembly and vehicle;

Mounting whole diameter: 2 mm.

Weight: 5g

38.6 Power Management: Polymer Lithium Ion Battery - 1000mah 7.4v

Figure 77: Polymer Lithium Ion Battery - 1000mah 7.4v.

Description:

This LiPo (Figure 66: Polymer Lithium Ion Battery - 1000mah 7.4v. is an excellent battery that

can be used in any application; who need a little power supply has several punch as in

robotics. Its low voltage and sufficient flow allows it to acquire many electronic and some

small motors

The battery has two cells and produces 7.4 V to store 1000 mAh of charge. This type of

batteries requires a specific charger.

Specification:

Price: 13.95$

Mark: SparkFun Electronics®

Serial number: PWR0024

7.4V 2-cell pack

Development of a FCS (Flight Control System) (2018)

777

1000mAh of charge

Discharge rate: 25C continuous

Charge plug: JST-XH

Discharge plug: JST-RCY

Dimensions: 70mm x 35mm x 18mm

Weight: 85g (2.99oz)

Development of a FCS (Flight Control System) (2018)

778

39 Realization of Inertial Measurement Unit (IMU)

The IMU has the following parts:

- Gyro

- Accelerometer

- Magnetometer

The software runs on a raspberry pi.

Development of a FCS (Flight Control System) (2018)

779

39.1 IMU-Sensor: LSM9DS0

LSM9DS0 IMU Breakout - 9DoF

Price : 39.95$

Mark : SparkFun Electronics®

Serial number : SEN0080

Description:

This is the LSM9DS0, a versatile motion-sensing system-in-a-chip that houses a 3-axis

accelerometer, 3-axis gyroscope, and 3-axis magnetometer. That’s right, 9 degrees of freedom

(9dof) from a single IC!

Each sensor in the LSM9DS2 supports a wide range of, well, ranges: the accelerometer’s scale can

be set to ± 2, 4, 6, 8, or 16 g, the gyroscope supports ± 245, 500, and 2000 °/s, and the magnetometer

has full-scale ranges of ± 2, 4, 8, or 12 gauss. Additionally, the LSM9DS0 includes an I2C serial bus

interface supporting standard and fast mode (100 kHz and 400 kHz) and an SPI serial standard

interface.

FEATURES

3 acceleration channels, 3 angular rate channels, 3 magnetic field channels

±2/±4/±6/±8/±16 g linear acceleration full scale

±2/±4/±8/±12 gauss magnetic full scale

±245/±500/±2000 dps angular rate full scale

16-bit data output

SPI / I2C serial interfaces

Development of a FCS (Flight Control System) (2018)

780

Analog supply voltage 2.4 V to 3.6 V

Programmable interrupt generators

Embedded self-test

Embedded temperature sensor

Embedded FIFO

39.2 LSM9DS0 Hookup Guide24

39.2.1 Covered In This Tutorial

This tutorial is devoted to all things LSM9DS2. We’ll introduce you to the chip itself, then the

breakout board. Then we’ll switch over to example code, and show you how to interface with the

board using an Arduino and our SFE_LSM9DS0 Arduino library.

 The tutorial is split into the following pages:

 About the LSM9DS0 – An overview of the LSM9DS0, examining its features and capabilities.

 Breakout Overview – This page covers the LSM9DS0 Breakout Board – topics like the pinout,

jumpers, and schematic.

 Hardware Assembly – Assembly tips and tricks, plus some information about the breakout’s

dimensions.

 Basic Arduino Example – How to install the Arduino library, and use a simple example

sketch.

 Advanced Arduino Example – A more advanced Arduino sketch – using the library –

showing off features like switch the sensors' scales and data rates.

 Using the Arduino Library – An overview of the SFE_LSM9DS0 Arduino library.

39.2.2 About the LSM9DS0

The LSM9DS2 is one of only a handful of IC’s that can measure three key properties of movement

– angular velocity, acceleration, and heading – in a single IC.

The gyroscope can measure angular velocity – that is “how fast, and along which axis, am I

rotating?” Angular velocities are measured in degrees per second – usually abbreviated to DPS or

°/s. The LSM9DS0 can measure up to ± 2000 DPS, though that scale can also be set to either 245 or

500 DPS to get a finer resolution.

An accelerometer measures acceleration, which indicates how fast velocity is changing – “how fast

am I speeding up or slowing down?” Acceleration is usually either measured in m/s2 (meters per

second per second) or g’s (gravities [about 9.8 m/s2]). If an object is sitting motionless it feels about

1 g of acceleration towards the ground (assuming that ground is on earth, and the object is near

24 https://learn.sparkfun.com/tutorials/lsm9ds0-hookup-guide?_ga=2.72099031.592506407.1511257598-

1712679554.1505480322

https://github.com/sparkfun/SparkFun_LSM9DS0_Arduino_Library
https://learn.sparkfun.com/tutorials/lsm9ds0-hookup-guide/about-the-lsm9ds0
https://learn.sparkfun.com/tutorials/lsm9ds0-hookup-guide/breakout-overview
https://learn.sparkfun.com/tutorials/lsm9ds0-hookup-guide/hardware-assembly
https://learn.sparkfun.com/tutorials/lsm9ds0-hookup-guide/basic-arduino-example
https://learn.sparkfun.com/tutorials/lsm9ds0-hookup-guide/advanced-arduino-example
https://learn.sparkfun.com/tutorials/lsm9ds0-hookup-guide/using-the-arduino-library
https://learn.sparkfun.com/tutorials/gyroscope
https://learn.sparkfun.com/tutorials/tutorials/

Development of a FCS (Flight Control System) (2018)

781

sea-level). The LSM9DS0 measures its acceleration in g’s, and its scale can be set to either ± 0, 4, 6,

8, or 16_g_.

Finally, there’s the magnetometer, which measures the power and direction of magnetic fields.

Though they’re not easily visible, magnetic fields exist all around us – whether you’re holding a

tiny ferromagnet or feeling an attraction to Earth’s magnetic field. The LSM9DS0 measures

magnetic fields in units of gauss (Gs), and can set its measurement scale to either ± 2, 4, 8, or 12 Gs.

By measuring these three properties, you can gain a great deal of knowledge about an object’s

movement. 9DOF’s have tons and tons of applications. Measuring the force and direction of

Earth’s magnetic field with a magnetometer, you can approximate your heading. An

accelerometer in your phone can measure the direction of the force of gravity, and

estimate orientation (portrait, landscape, flat, etc.). Quadcopters with built-in gyroscopes can look

out for sudden rolls or pitches, and correct their momentum before things get out of hand.

The LSM9DS0 measures each of these movement properties in three dimensions. That means it

produces nine pieces of data: acceleration in x/y/z, angular rotation in x/y/z, and magnetic force in

x/y/z. On the breakout board, the z-axis runs normal to the PCB, the y-axis runs parallel to the

short edge, and the x-axis is parallel to the long edge. Each axis has a positive and negative

direction as well, noted by the direction of the arrow on the label.

The LSM9DS2 is, in a sense, two IC’s smashed into one package – like if you combined

an L3G4200D gyro with an LSM303DLMTR accel/mag. One half of the device takes care of all-

things gyroscope, and the other half manages both the accelerometer and magnetometer. In fact, a

few of the control pins are dedicated to a single sensor – there are two chip select pins (CSG for

the gyro and CSXM for the accel/mag) and two serial data out pins (SDOG and SDOXM).

39.2.3 Choose Your Own Adventure: SPI or I
2

C

In addition to being able to measure a wide variety of movement vectors, the LSM9DS0 is also

multi-featured on the hardware end. It supports both SPI and I2C, so you should have no

difficulty finding a microcontroller that can talk to it.

http://en.wikipedia.org/wiki/Magnetometer
http://en.wikipedia.org/wiki/Earth%27s_magnetic_field
https://www.sparkfun.com/products/10612
https://www.sparkfun.com/products/10888
https://learn.sparkfun.com/tutorials/serial-peripheral-interface-spi
https://learn.sparkfun.com/tutorials/i2c
https://cdn.sparkfun.com/assets/8/b/b/4/5/9DOF-3axes.png

Development of a FCS (Flight Control System) (2018)

782

For much more detailed information about the IC, we encourage you to check out the

datasheet!25

39.2.4 Breakout Overview

Now that you know everything you need to about the LSM9DS2 IC, let’s talk a bit about the

breakout board it’s resting on. On this page we’ll discuss the pins that are broken out, and some of

the other features on the board.

39.2.4.1 The Pinout

In total, the LSM9DS0 Breakout breaks out 13 pins.

Here’s an overview of each of the pin functions:

Pin

Label
Pin Function Notes

CSG Chip Select Gyro

This pin selects between I2C and SPI on the gyro. Keep it HIGH for

I2C, or use it as an (active-low) chip select for SPI.

HIGH (1): SPI idle mode / I2C enabled

LOW (0): SPI enabled / I2C disabled.

CSXM
Chip Select

Accel/Mag (XM)

This pin selects between I2C and SPI on the XM. Keep it HIGH for

I2C, or use it as an (active-low) chip select for SPI.

HIGH (1): SPI idle mode / I2C enabled

LOW (0): SPI enabled / I2C disabled.

SDOG SPI: Gyroscope MISO In SPI mode, this is the gyroscope data output (SDO_G).

25 https://cdn.sparkfun.com/assets/f/6/1/f/0/LSM9DS0.pdf

https://cdn.sparkfun.com/assets/f/6/1/f/0/LSM9DS0.pdf
https://cdn.sparkfun.com/assets/f/6/1/f/0/LSM9DS0.pdf
https://cdn.sparkfun.com/assets/7/f/7/9/1/top-view-pinout.jpg

Development of a FCS (Flight Control System) (2018)

783

I2C: Gyro address

select

In I2C mode, this selects the LSb of the I2C address (SA0_G)

SDOXM

SPI: Accel/Mag MISO

I2C: XM address

select

In SPI mode, this is the XM data output (SDO_XM).

In I2C mode, this selects the LSb of the I2C address (SA0_XM)

SCL Serial Clock I2C and SPI serial clock.

SDA
SPI: MOSI

I2C:Serial Data

SPI: Device data in (MOSI)

I2C: Serial data (bi-directional)

VDD Power Supply
Supply voltage to the chip. Should be regulated between 2.4V and

3.6V.

GND Ground 0V voltage supply

DEN
Gyroscope Data

Enable

Mostly unknown. The LSM9DS0 datasheet doesn't have much to

say about this pin.

INTG
Gyro Programmable

Interrupt

An interrupt that can be programmed as active high/low, push-

pull, or open drain. It can trigger on over/under rotation speeds.

DRDYG Gyroscope data ready
An interrupt that can indicate new gyro data is ready or buffer

overrun.

INT1XM
Accel/Mag Interrupt

1

A programmable interrupt that can trigger on data ready, over-

acceleration or "taps".

INT2XM
Accel/Mag Interrupt

2

A programmable interrupt that can trigger on data ready, over-

acceleration or "taps".

These pins can all be classified into one of three categories: communication, interrupts, or power.

Power Supply

The VDD and GND pins are where you’ll supply a voltage and 2V reference to the IC. The

breakout board does not regulate this voltage, so make sure it falls within the allowed supply

voltage range of the LSM9DS0: 2.4V to 3.6V. Below is the electrical characteristics table from the

datasheet.

Development of a FCS (Flight Control System) (2018)

784

The communication pins are not 5V tolerant, so they’ll need to be regulated to within a few mV of

VDD.

Another very cool thing about this sensor is how low-power it is. In normal operation – with every

sensor turned on – it’ll pull around 6.5mA.

Communication

CSG, CSXM, SDOG, SDOXM, SCL, and SDA are all used for the I2C and SPI interfaces. The

function of these pins depends upon which of the two interfaces you’re using.

If you’re using using I2C here’s how you might configure these pins:

 Pull CSG and CSXM HIGH. This will set both the gyro and accel/mag to I2C mode.

 Set SDOG and SDOXM either HIGH or LOW. These pins set the I2C address of the gyro

and accel/mag sensors.

 Connect SCL to your microcontroller’s SCL pin.

 Connect SDA to your microcontroller’s SDA pin.

 The board has a built-in 12kΩ pull-up resistor on both SDA and SCL lines. If that value is

too high, you can add a second 12kΩ resistor in parallel to divide the pull-up resistance to

about 5kΩ.

Or, if you’re using SPI:

 Connect CSG and CSXM to two individually controllable pins on your microcontroller.

These chip-selects are active-low – when the pin goes LOW, SPI communication with either

the gyro (CSG) or accel/mag (CSXM) is enabled.

 SDOG and SDOXM are the serial data out pins. In many cases you’ll want to connect them

together, and wire them to your microcontroller’s MISO (master-in, slave-out) pin.

https://cdn.sparkfun.com/assets/0/3/6/a/1/electrical-characteristics.jpg

Development of a FCS (Flight Control System) (2018)

785

 Connect SCL to your microcontroller’s SCLK (serial clock) pin.

 Connect SDA to your microcontroller’s MOSI (master-out, slave-in) pin.

Interrupts

There are a variety of interrupts on the LSM9DS0. While connecting up to these is not as critical as

the communication or power supply pins, using them will help you get the most out of the chip.

The accelerometer- and magnetometer-specific interrupts are INT1XM and INT2XM. These can

both be programmed to interrupt as either active-high or active-low, triggering on events like data

ready, tap-detection, or when an acceleration or magnetic field passes a set threshold.

DRDY and INTG are devoted gyroscope interrupts. DRDY can be programmed to go high or low

when new gyroscope readings are ready to read. INTG is a little more customizable, it can be used

to trigger whenever angular rotation exceeds a threshold on any axis.

1) Basic Arduino Example

This example will show you how to download and install the SFE_LSM9DS0 library, and use it in

it’s most basic form. We’ll use I2C and ignore the interrupts, which means we’ll be using as few

wires and Arduino pins as possible.

2) Download and Install the Library

We’ve written a full-featured Arduino library to help make interfacing with the LSM9DS2’s gyro

and accelerometer/magnetometer as easy-as-possible. Visit the GitHub repository to

download the most recent version of the library, or click the link below:

DOWNLOAD THE SFE_LSM9DS0 ARDUINO LIBRARY

For help installing the library, check out our How To Install An Arduino Library tutorial. You’ll need

to move the SFE_LSM9DS0 folder into a libraries folder within your Arduino sketchbook.

3) Simple Hardware Hookup (I
2

C)

The library will work with either I2C or SPI. Since we’re trying to be as frugal with our Arduino

pins as possible, I2C it is! Here’s a fritzing diagram for this example:

Connecting the LSM9DS0 to a RedBoard via a Bi-Directional Logic Level Converter.

This hookup relies on all of the jumpers on the back of the board being set (as they should be,

unless they’ve been sliced). If the jumpers have been disconnected, connect all four CS and SDO

pins to 3.3V.

Since we’re using I2C all we have to do is connect SDA to SDA and SCL to SCL. Unfortunately,

since the LSM9DS2’s maximum operating voltage is 3.6V, we need to use a level shifting board to

switch between 3.3V and 5V.

https://github.com/sparkfun/SparkFun_LSM9DS0_Arduino_Library
https://github.com/sparkfun/SparkFun_LSM9DS0_Arduino_Library/archive/master.zip
https://learn.sparkfun.com/tutorials/installing-an-arduino-library
https://www.sparkfun.com/products/12009
https://learn.sparkfun.com/tutorials/bi-directional-logic-level-converter-hookup-guide

Development of a FCS (Flight Control System) (2018)

786

Alternatively, if you have a 3.3V-operating Arduino – like the 3.3V/8MHz Pro – you can

connect SDA and SCL directly from microcontroller to sensor.

Heck, you can even mount the breakout board on top of the Arduino Pro. If you do this, you’ll

need to set A3 HIGH and A2 LOW. The sensor pulls little enough current that the Arduino’s I/O

pins can power it!

The wireless hookup: mounting an LSM9DS0 on top of an Arduino Pro. Pull A2 LOW and A3 HIGH

to power the breakout.

4) Open the LSM9DS0_Simple Example

Once you’ve installed the library, open Arduino (or restart it if it was already open). You’ll find

this first example under the File > Examples > SFE_LSM9DS0 > LSM9DS0_Simple:

After uploading the code, open up your serial monitor and set the baud rate to 115200 bps.

You should see something like this begin to stream by:

https://www.sparkfun.com/products/10914
https://cdn.sparkfun.com/assets/9/8/9/2/b/simple-pro_bb.png

Development of a FCS (Flight Control System) (2018)

787

Each serial output blurb spits out the readings from all nine dimensions of movement. First the

gyroscope readings (“G: x, y, z”) in degrees per second (DPS). Then come three degrees of

acceleration in g’s (“A: x, y, z”), followed by the magnetic field readings (“M: x, y, z”)

in gauss (Gs).

Try moving your breadboard around (carefully, don’t disconnect any wires!). Are the numbers

changing? Check out the acceleration values – the axis normal to gravity should feel about 1 g of

acceleration on it.

Does the heading output what you’d expect? If north seems a few degrees off, you may need to

adjust for your declination. That means adding or subtracting a constant number that correlates to

your location on this map.

That’s all there is to it! If you want to get more out of the LSM9DS0 by using the interrupt outputs,

check out the next page! Or check out the Using the Arduino Library Page for help using the

library.

39.2.5 Resources and Going Further

Hopefully that info dump was enough to get you rolling with the LSM9DS0. If you need any more

information, here are some more resources:

 LSM9DS0 Datasheet – This datasheet covers everything from the hardware and pinout of

the IC, to the register mapping of the gyroscope and accelerometer/magnetometer.

 LSM9DS0 Breakout Schematic

 LSM9DS0 Breakout EAGLE Files

http://www.ngdc.noaa.gov/geomag/declination.shtml
https://learn.sparkfun.com/tutorials/using-the-arduino-library
https://cdn.sparkfun.com/assets/f/6/1/f/0/LSM9DS0.pdf
https://cdn.sparkfun.com/assets/8/c/c/4/9/lsm9ds0_breakout-v10-schematic-.pdf
https://learn.sparkfun.com/tutorials/(https:/cdn.sparkfun.com/assets/f/6/9/6/d/lsm9ds0-breakout-v10-EAGLE.zip
https://cdn.sparkfun.com/assets/3/9/7/1/5/serial_monitor-simple.png

Development of a FCS (Flight Control System) (2018)

788

40 Wifi Communication with nRF24L01

Let’s take a closer look at the NRF24L01 transceiver module. It uses the 2.4 GHz band
and it can operate with baud rates from 250 kbps up to 2 Mbps. If used in open space and
with lower baud rate its range can reach up to 100 meters.

The module can use 125 different channels which gives a possibility to have a network of
125 independently working modems in one place. Each channel can have up to 6
addresses, or each unit can communicate with up to 6 other units at the same time.

The power consumption of this module is just around 12mA during transmission, which is
even lower than a single LED. The operating voltage of the module is from 1.9 to 3.6V, but
the good thing is that the other pins tolerate 5V logic, so we can easily connect it to an
Arduino without using any logic level converters.

https://howtomechatronics.com/tutorials/arduino/how-to-build-an-arduino-wireless-network-with-multiple-nrf24l01-modules/

Development of a FCS (Flight Control System) (2018)

789

Three of these pins are for the SPI communication and they need to be connected to the
SPI pins of the Arduino, but note that each Arduino board have different SPI pins. The pins
CSN and CE can be connected to any digital pin of the Arduino board and they are used
for setting the module in standby or active mode, as well as for switching between transmit
or command mode. The last pin is an interrupt pin which doesn’t have to be used.

So once we connect the NRF24L01 modules to the Arduino boards we are ready to make
the codes for both the transmitter and the receiver.

40.1 Arduino Library

First we need to download and install the RF24 library which makes the programming less
difficult.

RF24-master.zip

https://github.com/tmrh20/RF24/

Development of a FCS (Flight Control System) (2018)

790

Here are the two codes for the wireless communication and below is the description of
them.

So we need to include the basic SPI and the newly installed RF24 libraries and create an
RF24 object. The two arguments here are the CSN and CE pins.

1. RF24 radio(7, 8); // CE, CSN

Next we need to create a byte array which will represent the address, or the so called pipe
through which the two modules will communicate.

1. const byte address[6] = "00001";

We can change the value of this address to any 5 letter string and this enables to choose
to which receiver we will talk, so in our case we will have the same address at both the
receiver and the transmitter.

In the setup section we need to initialize the radio object and using the
radio.openWritingPipe() function we set the address of the receiver to which we will send
data, the 5 letter string we previously set.

1. radio.openWritingPipe(address);

On the other side, at the receiver, using the radio.setReadingPipe() function we set the
same address and in that way we enable the communication between the two modules.

1. radio.openReadingPipe(0, address);

Then using the radio.setPALevel() function we set the Power Amplifier level, in our case I
will set it to minimum as my modules are very close to each other.

1. radio.setPALevel(RF24_PA_MIN);

Note that if using a higher level it is recommended to use a bypass capacitors across GND
and 3.3V of the modules so that they have more stable voltage while operating.

Next we have the radio.stopListening() function which sets module as transmitter, and on
the other side, we have the radio.startListening() function which sets the module as
receiver.

1. // at the Transmitter

2. radio.stopListening();

1. // at the Receiver

2. radio.startListening();

In the loop section, at the transmitter, we create an array of characters to which we assign
the message “Hello World”. Using the radio.write() function we will send that message to
the receiver. The first argument here is the variable that we want to be sent.

1. void loop() {

2. const char text[] = "Hello World";

3. radio.write(&text, sizeof(text));

4. delay(1000);

5. }

By using the “&” before the variable name we actually set an indicating of the variable that
stores the data that we want to be sent and using the second argument we set the number

Development of a FCS (Flight Control System) (2018)

791

of bytes that we want to take from that variable. In this case the sizeof() function gets all
bytes of the strings “text”. At the end of the program we will add 1 second delay.

On the other side, at the receiver, in the loop section using the radio.available() function
we check whether there is data to be received. If that’s true, first we create an array of 32
elements, called “text”, in which we will save the incoming data.

1. void loop() {

2. if (radio.available()) {

3. char text[32] = "";

4. radio.read(&text, sizeof(text));

5. Serial.println(text);

6. }

7. }

Using the radion.read() function we read and store the data into the “text” variable. At the
end we just print text on the serial monitor. So once we upload both programs, we can run
the serial monitor at the receiver and we will notice the message “Hello World” gets printed
each second.

Development of a FCS (Flight Control System) (2018)

792

41 Software Development on Arduino side with the Arduino integrated
development environment (IDE)

41.1 Architecture of the program on the Arduino

Arduino IDE is a software which can used to program Arduino board; with C or C++

languages; referring to its special programming rules. It supplies a software library from

the Wiring project, which provides many common input and output procedures.

To well writing the code; two functions are required:

Setup (): This function is called once when a sketch starts after power-up or reset. It is used

to initialize variables, input and output pin modes, and other libraries needed in the

sketch.

Loop (): is executed repeatedly in the main program. It controls the board until the board

is powered off or is reset.

Another functions furnishes by the internal libraries; are also used in this program:

pinMode (), digitalWrite (), and delay ().

The program code is than converted into a text file; in hexadecimal encoding using a

specific program; that is loaded into the Arduino board by a loader program in the board's

firmware. So you will give short strokes at a click; and the program become uploaded.

41.2 Bluetooth_Blimp_Control Code

#include <Servo.h> //include the library servo

Servo Servo1; //create 4 objects and rename each one

Servo Servo2;

Servo Servo3;

Servo Servo4;

#define MinAngle 45 //define the minimum and maximum angle for servo rotation

#define MaxAngle 135

#define DirPin 4 //choose 2 pin for the propeller direction and speed,pin 5 must be a PWM

pin.

#define SpdPin 5

https://en.wikipedia.org/wiki/Integrated_development_environment
https://en.wikipedia.org/wiki/Integrated_development_environment

Development of a FCS (Flight Control System) (2018)

793

int S1Val = 90; // define the initial angle of each servo

int S2Val = 90;

int S3Val = 90;

int S4Val = 90;

int PMotor = 0; //0: off, 1: fwd, 2: bck

//the propeller is initially off mode.

String str = "";

void setup() // to apply all initial value on servos and propeller

{

 Serial.begin(9600); //serial1 is to make sure that all informations arrive write.

 Serial1.begin(9600); //serial is a connection between bluetooth and arduino.

//9600 is the boad rate: the speed of communication between the bluetooth and the arduuino.

 pinMode(DirPin, OUTPUT); // a function has 2 parameter(direction or speed) & (input or

output)

 pinMode(SpdPin, OUTPUT);

// digitalWrite(DirPin, LOW);

 analogWrite(SpdPin, 0); // to be sure that the initial speed is zero.

 Servo1.attach(6); //to choose the servos pins between 14 pins in the arduino board; which

must be PWM pin.

 Servo2.attach(9);

 Servo3.attach(10);

 Servo4.attach(11);

 Servo1.write(S1Val); //to give each servo his initial value.

 delay(100); /*a pause between the motion of each 2 servos(so as not be exposed to a shortage

 of electricity if the 4 servos start together)*/

 Servo2.write(S2Val);

 delay(100);

 Servo3.write(S3Val);

 delay(100);

 Servo4.write(S4Val);

}

void loop()

Development of a FCS (Flight Control System) (2018)

794

{

 if (Serial1.available())/*when an ordedr arrived to the bluetooth port this function become

valid

 so the processor enter into it and start to performs all steps inside */

 {

 S1Val = Serial1.parseInt(); //parsint: whatever the value was it will be taked as an integer

 S2Val = Serial1.parseInt(); /*to check the value arrived from the bluetooth to serial1

 and send it to s1val(value for servo1)*/

 S3Val = Serial1.parseInt();

 S4Val = Serial1.parseInt();

 PMotor = Serial1.parseInt();

 MoveActuators();

 }

}

void MoveActuators()

{

 S1Val = constrain(S1Val, MinAngle, MaxAngle); /*define for each servo the minimum and

maximum angle

 to do not take an angle out of this interval*/

 S2Val = constrain(S2Val, MinAngle, MaxAngle);

 S3Val = constrain(S3Val, MinAngle, MaxAngle);

 S4Val = constrain(S4Val, MinAngle, MaxAngle);

 Serial.print(" S1: "); //to print all result

 Serial.print(S1Val);

 Serial.print(" S2: ");

 Serial.print(S2Val);

 Serial.print(" S3: ");

 Serial.print(S3Val);

 Serial.print(" S4: ");

 Serial.print(S4Val);

 Serial.print(" PMotor: ");

 Serial.println(PMotor);

 Servo1.write(S1Val); // to apply all ordered values

 delay(500);

 Servo2.write(S2Val);

 delay(500);

 Servo3.write(S3Val);

Development of a FCS (Flight Control System) (2018)

795

 delay(500);

 Servo4.write(S4Val);

 delay(500);

 switch (PMotor)

 {

 case 0:

 // turn motor off

// digitalWrite(DirPin, LOW);

 analogWrite(SpdPin, 0);

 break;

 case 1:

 // move motor cw (clock wise)

 digitalWrite(DirPin, LOW);

 analogWrite(SpdPin, 50);

 break;

 case 2:

 // move motor ccw (conter clock wise)

 digitalWrite(DirPin, HIGH);

 analogWrite(SpdPin, 50);

 break;

 }

}

Bluetooth_Blimp_Control.ino

41.3 IMU Sensor LSM9DS0 Code

#include <SPI.h> // Included for SFE_LSM9DS0 library

#include <Wire.h>

#include <SFE_LSM9DS0.h>

#define LSM9DS0_XM 0x1D // Would be 0x1E if SDO_XM is LOW

#define LSM9DS0_G 0x6B // Would be 0x6A if SDO_G is LOW

LSM9DS0 dof(MODE_I2C, LSM9DS0_G, LSM9DS0_XM);

#define PRINT_SPEED 100 // 100 ms between prints

Development of a FCS (Flight Control System) (2018)

796

void setup()

{

 Serial.begin(9600); // Start serial at 115200 bps

 uint16_t status = dof.begin();

 Serial.print("LSM9DS0 WHO_AM_I's returned: 0x");

 Serial.println(status, HEX);

 Serial.println("Should be 0x49D4");

 Serial.println();

}

void loop()

{

 printOr();

 delay(PRINT_SPEED);

}

void printOr()

{

 dof.readGyro();

 dof.readAccel();

 dof.readMag();

 float pitch, roll;

 float x = dof.calcAccel(dof.ax), y = dof.calcAccel(dof.ay), z = dof.calcAccel(dof.az);

 pitch = atan2(x, sqrt(y * y) + (z * z));

 roll = atan2(y, sqrt(x * x) + (z * z));

 pitch *= 180.0 / PI;

 roll *= 180.0 / PI;

 Serial.print("#P: ");

 Serial.print(pitch, 2);

 Serial.print(",#R: ");

 Serial.println(roll, 2);

}

AccModule_Spark.i

no

Development of a FCS (Flight Control System) (2018)

797

Full Code sketch:

Avionics_Control.in

o

41.4 Control Loop

void ReglerCheck(float pitch, float roll)

{

 S1Val = S3Val = 90 + roll;

 S2Val = S4Val = 90 + pitch;

 MoveActuators();

}

Avionics_Control_W

ith_Regler_RoMeo.ino

Avionics_Control_W

ith_Regler_UNO.ino

41.5 Wifi Communication code

#include <SPI.h>

#include "nRF24L01.h"

#include "RF24.h"

#include "printf.h"

RF24 radio(9,10);

const uint64_t pipes[2] = { 0xDEDEDEDEE7LL, 0xDEDEDEDEE9LL };

boolean stringComplete = false; // whether the string is complete

static int dataBufferIndex = 0;

boolean stringOverflow = false;

char charOverflow = 0;

char SendPayload[31] = "";

char RecvPayload[31] = "";

char serialBuffer[31] = "";

void setup(void) {

 Serial.begin(9600);

Development of a FCS (Flight Control System) (2018)

798

 printf_begin();

 radio.begin();

 radio.setDataRate(RF24_250KBPS);

 radio.setPALevel(RF24_PA_MAX);

 radio.setChannel(70);

 radio.enableDynamicPayloads();

 radio.setRetries(15,15);

 radio.setCRCLength(RF24_CRC_16);

 radio.openWritingPipe(pipes[0]);

 radio.openReadingPipe(1,pipes[1]);

 radio.startListening();

 radio.printDetails();

 Serial.println();

 Serial.println("RF Chat V01.0");

 delay(500);

}

void loop(void) {

 nRF_receive();

 serial_receive();

} // end loop()

void serialEvent() {

 while (Serial.available() > 0) {

 char incomingByte = Serial.read();

 if (stringOverflow) {

 serialBuffer[dataBufferIndex++] = charOverflow; // Place saved overflow byte into

buffer

 serialBuffer[dataBufferIndex++] = incomingByte; // saved next byte into next buffer

 stringOverflow = false; // turn overflow flag off

 } else if (dataBufferIndex > 31) {

 stringComplete = true; // Send this buffer out to radio

 stringOverflow = true; // trigger the overflow flag

Development of a FCS (Flight Control System) (2018)

799

 charOverflow = incomingByte; // Saved the overflow byte for next loop

 dataBufferIndex = 0; // reset the bufferindex

 break;

 }

 else if(incomingByte=='\n'){

 serialBuffer[dataBufferIndex] = 0;

 stringComplete = true;

 } else {

 serialBuffer[dataBufferIndex++] = incomingByte;

 serialBuffer[dataBufferIndex] = 0;

 }

 } // end while()

} // end serialEvent()

void nRF_receive(void) {

 int len = 0;

 if (radio.available()) {

 len = radio.getDynamicPayloadSize();

 radio.read(&RecvPayload,len);

 delay(5);

 RecvPayload[len] = 0; // null terminate string

 Serial.println("R:");

 Serial.print(RecvPayload);

 Serial.println();

 RecvPayload[0] = 0; // Clear the buffers

 }

} // end nRF_receive()

void serial_receive(void){

 if (stringComplete) {

 strcat(SendPayload,serialBuffer);

 // swap TX & Rx addr for writing

 radio.openWritingPipe(pipes[1]);

 radio.openReadingPipe(0,pipes[0]);

 radio.stopListening();

 radio.write(&SendPayload,strlen(SendPayload));

Development of a FCS (Flight Control System) (2018)

800

 Serial.println("S:");

 Serial.print(SendPayload);

 Serial.println();

 stringComplete = false;

 // restore TX & Rx addr for reading

 radio.openWritingPipe(pipes[0]);

 radio.openReadingPipe(1,pipes[1]);

 radio.startListening();

 SendPayload[0] = 0;

 dataBufferIndex = 0;

 } // endif

} // end serial_receive()

RF24_config.h RF24.h printf.h nRF24L01.h Serial_Chat_Tested.i

no

41.6 Full code

#include <Servo.h> //include the library servo

#include <SPI.h> // Included for SFE_LSM9DS0 library

#include <Wire.h>

#include <SFE_LSM9DS0.h>

#include "nRF24L01.h"

#include "RF24.h"

#include "printf.h"

// Comment out this section if you're using SPI

// SDO_XM and SDO_G are both grounded, so our addresses are:

#define LSM9DS0_XM 0x1D // Would be 0x1E if SDO_XM is LOW

#define LSM9DS0_G 0x6B // Would be 0x6A if SDO_G is LOW

// Create an instance of the LSM9DS0 library called `dof` the

// parameters for this constructor are:

// [SPI or I2C Mode declaration],[gyro I2C address],[xm I2C add.]

LSM9DS0 dof(MODE_I2C, LSM9DS0_G, LSM9DS0_XM);

RF24 radio(7,8);

Development of a FCS (Flight Control System) (2018)

801

Servo Servo1; //create 4 objects and rename each one

Servo Servo2;

Servo Servo3;

Servo Servo4;

// Do you want to print calculated values or raw ADC ticks read

// from the sensor? Comment out ONE of the two #defines below

// to pick:

#define PRINT_CALCULATED

//#define PRINT_RAW

#define PRINT_SPEED 50 // 500 ms between prints

#define MinAngle 45 //define the minimum and maximum angle for servo rotation

#define MaxAngle 135

#define DirPin 4 //choose 2 pin for the propeller direction and speed,pin 5 must be a PWM

pin.

#define SpdPin 5

int S1Val = 90; // define the initial angle of each servo

int S2Val = 90;

int S3Val = 90;

int S4Val = 90;

int PMotor = 0; //0: off, 1: fwd, 2: bck

//the propeller is initially off mode.

String str = "";

bool ReglerON = true;

const uint64_t pipes[2] = { 0xDEDEDEDEE7LL, 0xDEDEDEDEE9LL };

boolean stringComplete = false; // whether the string is complete

static int dataBufferIndex = 0;

boolean stringOverflow = false;

char charOverflow = 0;

char SendPayload[31] = "";

char RecvPayload[31] = "";

Development of a FCS (Flight Control System) (2018)

802

char sendBuffer[31] = "";

void setup() // to apply all initial value on servos and propeller

{

 Serial.begin(9600); //serial1 is to make sure that all informations arrive write.

 //while (!Serial);

 radio.begin();

 uint16_t status = dof.begin();

 Serial.print("LSM9DS0 WHO_AM_I's returned: 0x");

 Serial.println(status, HEX);

 Serial.println("Should be 0x49D4");

 Serial.println();

 pinMode(DirPin, OUTPUT); // a function has 2 parameter(direction or speed) & (input or

output)

 pinMode(SpdPin, OUTPUT);

// digitalWrite(DirPin, LOW);

 analogWrite(SpdPin, 0); // to be sure that the initial speed is zero.

 Servo1.attach(6); //to choose the servos pins between 14 pins in the arduino board; which

must be PWM pin.

 Servo2.attach(9);

 Servo3.attach(10);

 Servo4.attach(11);

 Servo1.write(S1Val); //to give each servo his initial value.

 delay(100); /*a pause between the motion of each 2 servos(so as not be exposed to a shortage

 of electricity if the 4 servos start together)*/

 Servo2.write(S2Val);

 delay(100);

 Servo3.write(S3Val);

 delay(100);

 Servo4.write(S4Val);

 radio.setDataRate(RF24_250KBPS);

Development of a FCS (Flight Control System) (2018)

803

 radio.setPALevel(RF24_PA_MAX);

 radio.setChannel(70);

 radio.enableDynamicPayloads();

 radio.setRetries(15,15);

 radio.setCRCLength(RF24_CRC_16);

 radio.openWritingPipe(pipes[0]);

 radio.openReadingPipe(1,pipes[1]);

 radio.startListening();

 delay(500);

}

void loop()

{

 nRF_receive();

 printOr();

}

void printOr()

{

 dof.readGyro();

 dof.readAccel();

 dof.readMag();

 float pitch, roll;

 float x = dof.calcAccel(dof.ax), y = dof.calcAccel(dof.ay), z = dof.calcAccel(dof.az);

 pitch = atan2(x, sqrt(y * y) + (z * z));

 roll = atan2(y, sqrt(x * x) + (z * z));

 pitch *= 180.0 / PI;

 roll *= 180.0 / PI;

 //Serial1.print("#P: ");

 //Serial1.print(pitch, 2);

 //Serial1.print(",#R: ");

 //Serial1.println(roll, 2);

 String data = "#P: ";

Development of a FCS (Flight Control System) (2018)

804

 data = data + pitch;

 data = data + ",#R: ";

 data = data + roll;

 data.toCharArray(sendBuffer, 31);

 nRF_send();

 if(ReglerON)

 ReglerCheck(pitch, roll);

 else

 delay(PRINT_SPEED);

}

void ReglerCheck(float pitch, float roll)

{

 S1Val = S3Val = 90 + roll;

 S2Val = S4Val = 90 + pitch;

 MoveActuators();

}

void MoveActuators()

{

 S1Val = constrain(S1Val, MinAngle, MaxAngle); /*define for each servo the minimum and

maximum angle

 to do not take an angle out of this interval*/

 S2Val = constrain(S2Val, MinAngle, MaxAngle);

 S3Val = constrain(S3Val, MinAngle, MaxAngle);

 S4Val = constrain(S4Val, MinAngle, MaxAngle);

 Serial.print(" S1: "); //to print all result

 Serial.print(S1Val);

 Serial.print(" S2: ");

 Serial.print(S2Val);

 Serial.print(" S3: ");

 Serial.print(S3Val);

 Serial.print(" S4: ");

 Serial.print(S4Val);

 Serial.print(" PMotor: ");

 Serial.println(PMotor);

Development of a FCS (Flight Control System) (2018)

805

 Servo1.write(S1Val); // to apply all ordered values

 delay(50);

 Servo2.write(S2Val);

 delay(50);

 Servo3.write(S3Val);

 delay(50);

 Servo4.write(S4Val);

 delay(50);

 switch (PMotor)

 {

 case 0:

 // turn motor off

 //digitalWrite(DirPin, LOW);

 analogWrite(SpdPin, 0);

 break;

 case 1:

 // move motor cw (clock wise)

 digitalWrite(DirPin, LOW);

 analogWrite(SpdPin, 50);

 break;

 case 2:

 // move motor ccw (conter clock wise)

 digitalWrite(DirPin, HIGH);

 analogWrite(SpdPin, 50);

 break;

 }

}

void nRF_receive(void) {

 int len = 0;

 if (radio.available()) {

 len = radio.getDynamicPayloadSize();

 radio.read(&RecvPayload,len);

 delay(5);

 RecvPayload[len] = 0; // null terminate string

 Serial.print("R:");

 Serial.print(RecvPayload);

Development of a FCS (Flight Control System) (2018)

806

 Serial.println();

 char* command = strtok(RecvPayload, ",");

 while(command != 0) {

 *command = 0;

 S1Val = atoi(command);

 ++command;

 S2Val = atoi(command);

 ++command;

 S3Val = atoi(command);

 ++command;

 S4Val = atoi(command);

 ++command;

 PMotor = atoi(command);

 MoveActuators();

 }

 if(S1Val == 90 && S2Val == 90 && S3Val == 90 && S4Val == 90)

 ReglerON = true;

 else

 ReglerON = false;

 RecvPayload[0] = 0; // Clear the buffers

 }

}

void nRF_send(){

 strcat(SendPayload,sendBuffer);

 // swap TX & Rx addr for writing

 radio.openWritingPipe(pipes[1]);

 radio.openReadingPipe(0,pipes[0]);

 radio.stopListening();

 radio.write(&SendPayload,strlen(SendPayload));

 Serial.print("S:");

 Serial.print(SendPayload);

 Serial.println();

 // restore TX & Rx addr for reading

Development of a FCS (Flight Control System) (2018)

807

 radio.openWritingPipe(pipes[0]);

 radio.openReadingPipe(1,pipes[1]);

 radio.startListening();

 SendPayload[0] = 0;

 dataBufferIndex = 0;

}

Avionics_Control_W

ith_Regler_RoMeo_Wifi.ino

Development of a FCS (Flight Control System) (2018)

808

42 Assembly

42.1 Actuator Assembly

Each part which was described and discussed in the previous chapter will be seen in this

chapter in the final assembly; which contains: the programmed arduino,4 servos;

bluetooth module;DC Motor; and the battery. All that we have mentioned appears in the

following photo (Figure 67: the final assembly of servo actuator system and its interfaces.).

Figure 78: the final assembly of servo actuator system and its interfaces.
 In effect the program already written will then uploaded to the arduino board. Once the

upload finished; and the arduino supplied by the compatible power ; all servos turned to

their intial position (900) as defined in the code.

Development of a FCS (Flight Control System) (2018)

809

To test this assembly there are several steps to follow. First; make sure that all peripheral

devices are well connected to the Arduino board; and the board is supplied by the

compatible battery. The light seen on the Arduino confirms the arrival of current into the

board. Then; verify the position of all servos on PWM pins (6, 9, 10, and 11) and the DC

motor position. Later; start to connect your mobile Bluetooth to BLE link Bluetooth.

And now we start the control using the mobile application “BlunoBasicDemo”. To do that

you must enter 5 number between each 2 numbers a comma. The 4 first numbers will be

the rotation angle of all 4 servos; which must be between the minimum (450) and the

maximum (135 0) angles. And the last number can be 2 (to turn off the propeller’s motor)

and 1 (to turn it on).

This process is illustrated in the following figure: (Figure 68: showing how to use

BunoBasicDemo to give order to our system.

Development of a FCS (Flight Control System) (2018)

810

Figure 79: showing how to use BunoBasicDemo to give order to our system.

Each servo will turns in the required angle.

Development of a FCS (Flight Control System) (2018)

811

Development of a FCS (Flight Control System) (2018)

812

Development of a FCS (Flight Control System) (2018)

813

Servos angle:

Development of a FCS (Flight Control System) (2018)

814

42.2 IMU Assembly

42.3 Wifi Module Assembly

Development of a FCS (Flight Control System) (2018)

815

42.4 Full Assembly

Servo pins:

- Servo 1 to pin 6

- Servo 2 to pin 9

- Servo 3 to pin 10

- Servo 4 to pin 11

IMU Module I2C pins:

- SDA to SDA

- SCL to SCL

- GND to GND

- Vcc to 3.3V

nRF24L01 SPI pins:

- Vcc to 3.3V

- GND to GND

- CSN to pin 7

- CE to pin 8

- MOSI to ICSP

- SCK to ICSP

- MISO to ICSP

Development of a FCS (Flight Control System) (2018)

816

43 Final Implementation

43.1 Migrated to small prototype

Development of a FCS (Flight Control System) (2018)

817

44 Mintad Prototype Test Rig Quick Guide

 818

Marketing Concept (2017-2019)

Marketing Concept (2017-2019)

819

Literature

820

Literature

Diplomarbeit (DA) Samir Mourad 2000

DA Jamal Ebeidieh 2002

DA Muhammad Subhan 2002

DA Abdelfattah Ammar 2005

...

