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A Method for the Numerical Calculation of Hydrodynamic Shocks 

J. VON NEUMANN AND R. D. RICHTMYER 

Institute/or Advanced Study, Princeton, New Jersey 
(Received September 26, 1949) 

The equations of hydrodynam~cs are mo~i.fied by.the inclusion of additional terms which greatly simplify 
the p~oce?ur~s needed for stepwise numencal solutIOn of the equations in problems involving shocks. The 
quantitative l~flUl:nce of t~ese terms can .be made as small as one wishes by choice of a sufficiently fine mesh 
for t~~ numerical mtegratl~ns. A se~ of difference equations suitable for the numerical work is given, and the 
conditIOn that must he satisfied to msure their stabilty is derived. 

I. INTRODUCTION 

IN the investigation of phenomena arising in the flow 
of a compressible fluid, it is frequently desirable to 

solve the equations of fluid motion by stepwise numeri
cal procedures, but the work is usually severely compli
cated by the presence of shocks. The shocks manifest 
themselves mathematically as surfaces on which density, 
fluid velocity, temperature, entropy and the like have 
discontinuities; and clearly the partial differential 
equations governing the motion require boundary condi
tions connecting the values of these quantities on the 
two sides of each such surface. The necessary boundary 
conditions are, of course, supplied by the Rankine
Hugoniot equations, but their application is compli
cated because the shock surfaces are in motion relative 
to the network of points in space-time used for the 
numerical work, and the differential equations and 
boundary conditions are non-linear. Furthermore, the 
motion of the surfaces is not known in advance but is 
governed by the differential equations and boundary 
conditions themselves. In consequence, the treatment 
of shocks requires lengthy computations (usually by 
trial and error) at each step, in time, of the calculation. 

We describe here a method for automatic treatment 
of shocks which avoids the necessity for application of 
any such boundary conditions. The approximations in 
it can be rendered as accurate as one wishes, by suitable 
choice of interval sizes and other parameters occurring 
in the method. It treats all shocks, correctly and auto
matically, whenever and wherever they may arise. 

The method utilizes the well-known effect on shocks 
of dissipative mechanisms, such as viscosity and heat 
conduction. l When viscosity is taken into account, for 
example, the shocks are seen to be smeared out, so that 
the mathematical surfaces of discontinuity are replaced 
by thin layers in which pressure, density, temperature, 
etc. vary rapidly but continuously. Our idea is to 
introduce (artificial) dissipative terms into the equa
tions so as to give the shocks a thickness comparable to 

1 Lord Rayleigh (Proc. Roy. Soc. A84, 247 (1910» and G. I. 
Taylor (Proc. Roy. Soc. A84, 371 (1910» showed on the basis of 
general thermodynamical considerations that' dissipation is 
neces.sarily present in shock waves. Late;, R. Becker (Zeits. f. 
PhYSik 8, 321 (1922» gave a detailed discussion of the effects of 
heat conduction and viscosity. Recently, L. H. Thomas (J. Chern. 
Phys. 12, 449 (1944» has investigated these effects further in 
terms of the kinetic theory of gases. 
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(but preferably somewhat larger than) the spacing of the 
points of the network. Then the differential equations 
(~ore accurately, the corresponding difference equa
tIOns) may be used for the entire calculation, just as 
though there were no shocks at all. In the numerical 
results obtained, the shocks are immediately evident· 
as near-discontinuities that move through the fluid with 
very nearly the correct speed and across which pressure, 
temper.ature, etc. have very nearly the correct jumps. 
. It WIll ~e seen that for the assumed form of dissipa

tIOn (and, mdeed, for many others as well), the Rankine
Hugoniot equations are satisfied, provided the thick
ness of the shock layers is small in comparison with other 
physically relevant dimensions of the system. We then 
consider one way in which the transition from differen
tial to finite-difference equations can be made and we 
discu~s the mathematical stability of these equations. 
It will be seen that the dissipative terms have the 
effect of making the stability condition more stringent 
than the familiar one of Courant, Friedrichs, and 
~ewy,z but ~ot seriously so if the amount of dissipation 
mtroduced IS only enough to produce a shock thickness 
comparable with the spatial interval length of the net
work used. 

The method has been applied, so far, only to one
dimensional flows, but appears to be equally suited to 
the study of ~ore complicated flows; where, indeed, 
shock calculatIOns by direct application of the Hugoniot 
equa tions would ordinarily be prohibitively difficult 
even for rapid, automatic computers. ' 

The discussions which follow are primarily intended 
to give a complete picture of the ideas and mathe
matical procedures involved. In some places (Chapter 
VII, also the essential inferences from some of the 
material of Chapters IV, V) the mathematical discus
sions are, however, carried through only with a view 
to give a ~omplete chain of the necessary procedure, 
but not WIth all the detail that rigorous proofs in a 
primarily mathematical paper would require. The rea
son for doing this was partly desire to avoid incon
venient length, partly that of not wishing to have to 
select now the precise degree of generality for the 

2.C<;lUra~t, .Friedrichs, and Lewy, Math. Ann. 100, 32 (1928).
It I.S l~ this Important pal?~r that th~~e authors first published 
t?elr. dlscove!''Y of the conditIOnal stablhty of the difference-equa
tion mtegratlOn method for partial differential equations. 
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validity of the method. It seems preferable to reserve 
such discussions for later occasions. 

The validity of our methods has been tested em
pirically on various computational applications. These 
are partly still under analysis, and will be published and 
discussed elsewhere. 

II. THE BASIC EQUATIONS 

Consider a one-dimensional fluid motion. Let x be 
the Lagrangean coordinate, and X=X(x, t) be the 
Eulerian coordinate. That is, X(x, t) gives the position, 
at time t, of a fluid.element that was initially at position 
x. Let po(x) be the initial density, so that V and U, 
given by 

and 
Vex, t)=(l/po(x»(ax/ax) 

U(x, t)=ax/at, 

(1) 

(2) 

are the specific volume and fluid velocity, respectively. 
The equations of motion, of energy, and of continuity 
are: 

and 

po(au /at)= - (ajax) (p+q), 

(as/ at)+(p+q)(av / at) =o, 

po(av / at) = (au/ax). 

(3) 

(4) 

(5) 

In these equations, p= p(x, t) is the ordinary (or static) 
fluid pressure and S= Sex, t) is the internal energy per 
unit mass. A connection between S, p, V is established 

. by an equation of state, which will be assumed, for the 
purpose of illustration, to have the form 

S= (pV)/('Y-1) (6) 

which holds, for example, in the case of a perfect gas. 
'Y is a constant> 1. It is supposed that the dissipative 
mechanism can be represented by the additional term q 
in the pressure, which is assumed to be negligibly small, 
except in the neighborhood of the shock. 

III. THE EXPRESSION FOR q 

The dissipation is introduced for purely mathematical 
reasons. Therefore q may be taken as any convenient 
function of p, V, etc. and their derivatives, provided 
that the following requirements are met: 

1. The Eqs. (3), (4), and (5) must possess solutions without 
discontinuities. 

2 The thickness of the shock layers must be everywhere of the 
same order as the interval length ~x used in the numerical com
putation, independently of the strength of the shock and of the 
condition of the material into which it is running. 

3. The effect of the terms containing q in (3) and (4) must be 
negligible outside of the shock layers. 

4. The Hugoniot equations must hold when all other dimensions 
characterizing the flow are large compared to the shock thickness. 

We shall show that the expression 

q= _ (PocAx)2 avo lavi 

V at at 
(7) 
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meets the requirements. c is a dimensionless constant 
near unity. The dissipative mechanism is essentially 
a non-linear viscosity as can be seen more clearly if 
(7) is written equivalently (for the one-dimensional 
case) as 

q= _ (cAx)2 au./aul 

V ax ax, 
(8) 

by use of (5). To show that the expression (7) meets the 
stated requirements, we consider a steady-state shock. 

IV. STEADY-STATE PLANE SHOCK 

Imagine a long pipe containing a fluid initially in 
equilibrium (thermally and mechanically), into which 
a piston is pushing from one end with constant speed, 
as shown in Fig. 1. In the absence of dissipation the 
specific volume, V, and the fluid velocity, U, are, at a 
given instant, as shown by the solid curves in the 
graphs, whereas in the presence of dissipation they 
are as shown by the dashed curves. In either case, the 
shock is steady, at least approximately, after it has 
gone to a sufficiently great distance from the initiating 
piston. Then U, V, S, etc. depend on x and t only 
through the combination 

w=x-st, (9) 

where s is the speed of the shock relative to the original, 
or Lagrangean, coordinates. We suppose that Po and 
Ax are constants (independent of x). 

It is convenient to define 

M=poS (10) 

-in a co-moving coordinate system, M is the mass cross
ing unit area in unit time-Whereupon Eqs. (3)-(5) 
become: 

M(dU /dw) = (d/dw) (p+q), (11) 

and 
(dS/dw) + (p+q)(dV / dw) = 0, 

-M(dV /dw)=dU/dw. 

Then, (11) and (13) give: 

-M2(dV/dw) = (d/dw) (p+q) ; 

v 

1 -f 
X ! 

~ MOVI~G U~DlSTURBED 
FLUID FLUID 

U . 

1 
-\1\ 

SHOCK FRONT 

• X 
FIG. 1. Steady-state plane shock. 

(12) 

(13) 

(14) 
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v 

--.------ Vi. 

Vf -----r-
----~~-~-~-----.. ~ i1llo 

FIG. 2. Specific volume in steady shock. 

and (12) and (14) give 

d8 d dV 
-+-[(p+q) VJ+ M2V-= o. 
dw dw dw 

The solutions of (13), (14), (15) are: 

MV+U=C1 

WV+p+q=C2 

where CJ, C2, and Ca are constants. 
Let the initial and final values be denoted by: 

(15) 

(16) 

(17) 

Asw--H.o; V~Vi, ~Pi, 8~8i, ~; (19) 

As~- OJ:); V~V" ~Pt, 8~8h q~O. (20) 

Then (17) gives: 

M2(V;- V,)=P,-Pi; (21) 

so that by (6), . 

P V= [('Y-1)/2]WV2+C4 V+C5, 

whereupon (17) gives: 

qV =C2-[('Y+ 1)/2]M2V2-C4V -C5• 

(26) 

(27) 

The right member of (27) is a quadratic in V that 
vanishes for V = Vi and for V = V" so that, clearly, 

(
dV)2 1'+1 

(Mc.:lX)2 - =qV=-M2(Vi- V)(V- VI)' (28) 
dw 2 

(Equation (28) can also be obtained from (27) by direct 
use of the Hugoniot equations and the equations that 
fix C2, C4, C6.) 

To solve (28), put: 

V i+ VI V i - VI if; 
if;= V ---, if;o=--, cp=-, (29) 

so that 

or 

Therefore, 

2 2 if;o 

dcp 
c.:lx-= [(1'+ 1)/2J!(I- cp2)!. 

dw 

J 
dcp 

w=[2/('Y+1)]lc.:lx woarcsincp 
(1- cp2)! 

where 
wo= [2/( 'Y+1)J1c.:lx. 

(30) 

(31) 

(32) 

(33) and (18) and (21) together give: 

8,-8 i =!(P i+P,)(V;- VI). (22) Finally, 

(21) and (22) are the equations of Hugoniot and are 
seen to be independent of the amount and form of the 
dissipation, provided that q~O as ~± OJ:). The physi
cal reason for this is that the Hugoniot equations are 
direct consequences of the conservation laws of mass, 
momentum and energy, and the form of dissipation 
assumed is such as top reserve the over-all conservation 
of these quantities. These laws require that in a shock 
a certain amount of mechanical energy be converted 
irreversibly into heat. In the steady state, the motion 
adjusts itself, in the shock layer, until precisely that 
amount of work is done against the pressure q according 
to Eq. (3) and is converted into heat according to 
Eq. (4). 

To investigate the shape of the shock, we first look 
for solutions satisfying 

(av/at)::;o or (dV/dw)~O. (23) 

This is normally the case for a shock moving to the 
right. Then (7) can be written: 

qV = + (Mc.:lX)2(dV /dW)2. 

From (17) and (18) 

$_!M2V2=Ca-C2V, 
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(24) 

(25) 

Vi+ VI V i - VI 'lq 
if;=V----=--sin-· (34) 

2 2 Wo 

Because of our initial assumption (23) that dV /dw~O, 
we can use only a half wave of the solution (34), but 
this half wave can be pieced together with two other 
particular solutions, 

(35) 

(they satisfy Eq. (28), to make the composite con
tinuous solution depicted in Fig. 2. Wo is a measure of 
the thickness of the shock, and is of order .:lx, provided 
c is of order unity, independently of the strength of the 
shock and conditions ahead of it, by Eq. (33). Through
out most of the system q is negligible in comparison with 
the ordinary pressure, p, because of the factor (.:lX)2 
in (7); but in the shock layer q becomes comparable 
with P because of the abnormally large value of aVjOt 
there. 

Expression (7) thus meets all requirements. 
It may be noted that if we had looked instead for 

solutions having dV /dt> 0, no solution would have been 
found for which all quantities are continuous and 
bounded, because in that case the opposite sign would 
occur in (28), leading to the hyperbolic instead of ordi-
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nary sine function. Therefore negative shocks do not 
exist in the steady state, for our equations. Negative 
shocks do not exist in the physical world, either, so that 
our expression (7) is satisfactory from this point of view. 

v. STABILITY OF THE DIFFERENTIAL 
EQUATIONS 

Suppose that at some instant there is superposed on 
a desired solution U(x, t), Vex, t), etc., a small per
turbation bU, bV, etc. It is of interest to know whether 
the perturbation grows with increasing time. To in
vestigate this we replace U, V, etc. by U+bU, V+oV, 
etc. in (3), (4), (5), (8), after first rewriting (4), by use 
of (6), in the form: 

['YP+( 'Y-l)q](aV / at)+ v(ap/ at) =0. (36) 

We obtain in this way the equations of first variation: 

po(a/at)bu=-(a/ax)(bp+bq), (37) 

at at 
a v ['YoP+('Y-1)bq]+[ 'YP+('Y-1)q]~oV 1 

a ap 
+ V-bp+-bV=O, (38) 

at at 

oq= (CIlX:~ aU.1 aUI ov _ 2 (CIlX)2.1 aUI~ou, (39) 
VZ ax ax v ax ax 

a a 
Po-oV=-5U. (40) 

at ax 

In writing the last term of (39) we have assumed that 
the perturbation is not large enough to alter the sign of 
au/ax. (37) to (40) are a set of simultaneous linear 
differential equations for oU, oV, op, oq. Their coeffi
cients depend on the desired solution U, V, p, q, and are 
thought of as smoothly varying functions of x, t. We 
shall be concerned with rapidly varying perturbations. 
We therefore treat the coefficients of (37) to (40) as 
constants in a small region and look for solutions having 
the form: 

where bUo, bVo, bpo, aqo, k, and ex are constant and k 
is real. Substitution of (41) into (37) to (40) leads to 
four simultaneous homogeneous linear equations in 
oUo, oVa, opo, oqo. The vanishing of the determinant of 
these equations establishes an equation connecting ex 
and k. By solving this equation, for given k, and ex
amining the real part of ex, we can determine whether 
a given Fourier component (41) of the perturbation 
grows with increasing time. This program is readily 
carried out, but we omit the details in the interest of 
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brevity. The determinantal equation is: 

(expO)2'Y-+ 2- -(kcllx)2 -av poa aV laul 
at V at ax 

1 aV aU laul ---(kcllx)2_. - +k2a[ 'YP+('Y-1)q] 
V2 at ax ax 

+ p02a3V +2Poa2(kCIlX)21 :~I 

--(kcllx)2_. - +k2--=O. (42) ex au laul ap 
V ax ax at 

If we restrict our attention to Fourier components with 
very large k, only certain terms of (42) need be retained, 
the others being negligible either by viture of being of 
lower order in k or by virtue of being of lower order in a. 
Two cases are distinguished: in shock regions we retain 
all terms in (42) ; in normal regions we drop the dissipa
tive terms (those containing Ax). In the two regions, 
the dominant terms, in the sense explained, give: 
shock regions: 

normal regions: 

a= _ 2 (kCIlX)21 a UI 
PoV ax 

k2 'YP 
a 2=---. 

poV Po 

(43) 

(44) 

It is seen that small disturbances are damped out in 
the shock layers but propagate without either growth 
or decay in normal regions. This corresponds to physical 
reality, so our expression (7) is satisfactory also as 
regards stability of the resulting differential equations. 

We can furthermore identify the terms in the equa·· 
tions of variation that lead to the dominant terms in 
(42). They give: 

shock regions: 

where 

normal regions: 

where 

a a2 

-oU~rY-8U 
at ax2' 

u= 2 (CIlX)2/ aUI ; 
Vpo ax 

a2 a2 

-oU~so2-aU, 
ap ax2 

'YP 
S02=_-. 

P02V 

(45) 

(46) 

Thus our system has the character of a diffusion equa
tion in the shock layers and of a sound equation else
where. 
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VI. FINITE DIFFERENCE EQUATIONS 

There are many systems of finite difference equations 
equivalent to the differential equations, but we shall 
restrict the discussion to one of the simplest. Certain 
other systems are much superior from the point of view 
of stability but are more complicated from the point of 
view of numerical solution. Systems of the latter type 
will be discussed elsewhere. 

Let the points of a rectangular network with spacings 
Ax and At be denoted by Xz, tn(/=O, 1, 2, "', Lj 
n=O, 1, 2, ... ). We shall also have occasion to deal 
with intermediate points, having coordinates Xl+! dg. 
HXZ+l+XZ) etc. To facilitate the writing, we introduce 
abbreviations such as: 

(47) 

The difference equations corresponding to (3), (5), (8)' 
and (36) are: 

u1n+l- U l "-! 

po 
PZ+1 n+ql+! n-! -'Pl-.i n_ ql-~ n-~ 

, (48) 
At 

and 

Ax 

V l+t,,+l- VzHn U1+1nH - UlnH 
Po 

At Ax 

2(CAX)2 

(Ul+lnH-UZnH)·jUZ+lnH-UznHj 

(49) 

, (50) 

These equations are correct to second order of small 
quantities Ax and At, except for the terms containing q 
in (48) which are only correct to the first orderj but 
these terms are negligible except in the shock layers and 
are physically artificial in any case. 

For numerical solution, suppose that all quantities 
are known for superscript n or less. Compute Uln+! from 
(48) for each I; compute V zHn+l from (49) for each I; 
compute ql+!nH from (50) for each I; compute Pl+tnH 

from (51) for each lj this completes a cycle. Boundary 
conditions are needed, an example being (rigid walls at 
ends of a tube): UonH""O, ULn+!;=o. 

VII. STABILITY OF THE DIFFERENCE EQUATIONS 

Equations (48) to (51), being only approximations 
to the differential equations, cannot be expected to give 
all features of the solution with precision. If U, V are 
thought of as being expanded in Fourier series with 
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coefficients depending on t, the long-wave-length com
ponents are accurately given by (48) to (51), provided 
Ax and At are sufficiently small, but the components 
whose wave-lengths are of order Ax are always falsified 
somewhat. This falsification is harmless, provided that 
all physically relevant components are treated accur
ately j this requires not only that Ax and At be small but 
also that the physically insignificant components with 
wave-lengths of order Ax remainsmaJI during the entire 
calculation. It may happen not only that the short
wave-length components are falsified but also that their 
amplitudes increase with increasing n, in spite of the 
stability of the di.lferential equations. This increase is 
generally exponential and, if it occurs, quickly makes 
gibberish of the entire calculation. 

The avoidance of such catastrophes, when partial 
differential equations are approximated by difference 
equations, has been the subject of study by various 
investigators, beginning with the fundamental paper 
of Courant, Friedrichs, and Lewy referred to in refer
ence 1. We shall give a somewhat heuristic discussion 
of the stability questions met in the present problem. 

We again suppose a small perturbation BU, BV, etc., 
superposed on a smooth solution, and consider the 
equations of variation of (48) to (51). According to the 
analysis of Part V, the dominant terms are expected to 
be (see Eqs. (45) and (46»: 

shock regions: 

liUI,,+l-liU I "-! BU l+l n- i - 2liUzn-!+liUI_1 n-t 

At (Ax)2 
(52) 

normal regions: 

liUln+!- 20u1n-l+oUzn-l 

OU1+l n-l_ 20u1n-l+M/I_1 n-j 
~S02 ______ ----- (53) 

and this can be verified by writing out the difference 
equations of variation in detail. 

As before, we consider perturbations of the fotm: 

oU=oUoeik*"t, etc., (54) 

so that: 
bUt+!= 8U orl~n+t, (55) 

where: 
s=eikllx, ~=e"llt. (56) 

For stability we require that j ~ j ::; 1 for all real k. 
We consider normal regions first. Substitution of (55) 

into (53) and cancellation of common factors gives: 

1 (SOAt)2 
~-2+-=2 - (cosMx-1). 

~ Ax 
(57) 
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If we call 

Sot..t 
L=

t..x' 

the solution of (57) is 

h2=b±(b2-1)! 
where 

b= l-L2(I-cosMx). 

(58) 

(59) 

(60) 

According to (60), b is always < 1, so there are two cases: 

-1<b<l, Ihl=I~21=1; stability; (61) 

b< -1, I hi < 1 < I ~21; instability. . (62) 

From Eq. (60) it is seen that (61) will hold for all k if 
and only if 

L:S; 1. (63) 

This is the familiar condition for stability of hydro
dynamical equations of the form (53). 

A similar treatment of Eq. (52) for the shock region 
yields directly: 

(Jt..t 
~-1=2-- (cosMx-l), (64) 

(t..X)2 

and the stability condition is clearly that 

2(Jt..t (t..x) 2 

--<lor t..t<--· 
(t..X)2- - 2(J 

(65) 

To interpret this result, we calculate (J according to 
(45) for the steady shock discussed in Part IV. From 
(33), (34); 

Therefore 
Vi - Vf W 

(J=sct..x--(C1+1)/2)~ cos-, (67) 
V Wo 

and the stability condition (65) takes the form: 

t..t< Vt..x (_2_)~ 1 (68) 

2sc(Vi - Vf ) ,+1 cos (w/wo)' 

or, 

t..X( 2 )1 (7]+ 1)/(7]-I)+sin(w/wo) 
t..t<- - (69) 

- 4sc 1'+ 1 cos (w/wo) , 

VOLUME 21, MARCH, 1950 

by further use of (34), where 

'I]=Vi/Vj • (70) 

The quantity 7] is a measure of the shock strength. 
Equation (69) shows that different parts of the shock 
layer (i.e., different values of w) impose different re
strictions on t..t. The effective restriction is obtained by 
replacing the right member of (69) by its minimu~ 
value for - (1!"/2)wo:S;w:S; (1!"/2)wo. The minimum of the 
last factor in (69) is found to be 2(7]W(17-1), and the 
stability condition is 

t..X( 2 )t 1)~ 
6,.1<- -- --. 

-2sc 1'+1 71-1 
(71) 

For practical application, it is convenient to express 
(71) in terms of the quantity L appearing in the normal 
hydrodynamic stability condition (63). By elimination 
of Pi from the Hugoniot Eqs. (21), (22), and (8), the 
speed of the shock is found to be 

where SO! is the speed of sound, relative to Lagrangean 
coordinates, in the material behind the shock. By com
bining (71) and (72) and use of (58), the stability condi
tion becomes: 

SO!!).! 1 {[7]-(I'-l)/(I'+l)J17P 
L!=--:S; 

t..x 2c 71-1 
(73) 

Lastly, the shock strength, and hence I), is generally 
unknown until the calculation has been performed; it is 
therefore advisable to replace the right member of (73) 
by its minimum with respect to '1]. 1) can vary in the 
range 1:S; I):S; (1'+ 1)/ (1'-1) (the latter value corre
ponding to an infinitely strong shock) and the minimum 
of (73) is attained at the upper end of this range, where 
the last factor in (73) has the value 'Yt. Our final, 
sufficient condition for stability reads: 

(74) 

This condition has been found to insure stability in test 
calculations, whereas a serious violation of it leads to 
trouble. The choice c= 1 has been found to yield good 
results in practice for the representation of shocks, in 
which case the stability condition is at worst slightly 
more severe than the one that must be observed, any
way (compare Eq. (63», to insure stability of the 
motion behind the shock. 
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