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WAZER
. A ONE-DIMENSIONAL, TWO-TEMPERATURE
HYDRODYNAMIC CODE

Abstract

The physics and mathematics used in the computer code WAZER is described.
This code can perform calculations on plasmas which involve thermal diffusion, heat
transfer between ion and electron populations, heat loss from the electrons due to
radiation, hydrodynamic effects, absorption of laser light, fusion, and loss of energy
across the boundaries in the form of either heat or work. The description includes the
mathematical formulation of the physical laws involved and the differencing techniques
used to solve the partial differential equations of heat transport and hydrodynamic

motion.

I. Introduction

The physical system for which this code (computer program) can be used to
perform calculations consists of a one~dimensional volume containing a plasma con-
sisting of two heat-conducting populations, ions and electrons, which may be at different
temperatures. This volume may contain several regions in which the properties of the
ionic population may be different. The code calculates the effects of various physical
processes in this plasma, such as:

e Heat flow due to thermal diffusion in both populations.

® Heat exchange between the two populations.

®Heat loss from the electrons as radiation.

e Hydrodynamic effects of all energy transformations.

@ Addition of energy through the absorption of laser light.

® Production of energy by thermonuclear reactions.

® Gain or loss of energy by heat conduction across one boundary or by work

done on or by the system at the boundary.
In the hydrodynamic part of the calculations, the gas is treated as a single fluid

in each subregion.

II. Hydrodynamic and Heat Transfer Equations

The code performs the calculations in two distinct operations during each time

‘ step. First the hydrodynamic motion of the material is calculated; then energy changes



produced by heat diffusion and exchange between populations and by creation of new

energy through thermonuclear reactions or absorption of laser light is treated. We

discuss these two steps in this order.
1. HYDRODYNAMIC EQUATIONS! .

The conservation of mass in each region may be described in Lagrangian

coordinates by
V= V(Y- w. (1)

Here V = 1/p is the specific volume of the medium and p is the density. In Eq. (1),
u = r is the velocity of the medium. Since Lagrangian coordinates are being used, V
and u are associated with a particle in the medium whose coordinates are r rather than

with a point in space. The equation of motion of the medium is
u = -VVp (2)
where
P=pP;*+Pg- (3)
In Eq. (3), p; and pg are the pressures exerted by the ions and electrons respectively.
For the purposes of these calculations, it is more convenient to express Egs. (1)

and (2) in terms of partial derivatives with respect to m rather than r, where m is

defined in cartesian, cylindrical, and spherical geometries as follows:

Table I. Dimensions of m. dm = prﬁ-1 dr = (ré_l/V)dr (4)
Geometry § m (units)
In Eq. (4), 6 has the values 1, 2, and 3 in
Cartesian 1  mass/unit area

each of the three geometries, respectively.

Cylindrical 2 mass/unit length-radian Table I shows the dimensions of m for the

Spherical 3 mass/steradian three cases. Thus Eqgs. (1) and (2) take
the following forms:
v = (V/ré_l) [d(rén1 u)/dr| = d(ra_lu)/dm (5)
L
and
[
u=-rfl (dp/dm). (8)




2. ENERGY CONSERVATION EQUATIONS
The first law of thermodynamics for a system may be expressed by2
U+pV=Q (7)

where U is the rate of increase of the internal energy of a system, p\}' is the rate at
which work is being done by the system, and Q is the rate at which heat is entering the
system. U may be expressed as a function of V and 6, the temperature of the system.

Therefore in Eq. (7) we let
U =Ug6 + U,V (8)

In Eq. (8), UG = (3U/89)V = C, the heat capacity at constant volume, and
Uy = (3U/3V)6. Thus Eq. (7) becomes

Co +(p + U,V = Q. (9)
The so-called "energy equation' of thermodynamics is given in Zemamsl«:y2 as

Uy = 6pg - P (10)
where Pg = (Bp/ae)v. Therefore Eq. (9) becomes

Cé +6p,V = Q. (11)

The ion and electron populations are treated as two subsystems of the whole
system, each with its own temperature, and the first law of thermodynamics as ex-
pressed by Eq. (11) is applied to each. The flow of heat into (or out of) each small
increment of mass, represented by Q in Eq. (11), may be caused by four processes:

(1) Exchange of heat between one population and the other through thermal

coupling processes.

(2) Loss of heat through radiation.

(3) Diffusion of heat from one point to another in space through each of the two

populations.

(4) Various, as yet unspecified, processes which serve as heat sources in the

system. Some of these heat sources are described further in Section III.



3. HEAT EXCHANGE BETWEEN POPULATIONS

Heat is transferred between the ion and electron populations because of coulomb

interaction. The rate of heat exchange through this mechanism is
Qe = 20.(6; - 6) (12)

where 91 and ee are the 10n and electron temperatures and W, is given by Spitzer3 as

2\2
o V2r/k (N ze” ) VL | .
¢ mM[(Ge/m)+(ei/M)]3/2

In Eq. (13) Ne is the electron density, Z is the ionic charge, e is the eléctronic charge,
m and M are the electronic and ionic masses respectively, k is Boltzmann's constant,
and the quantity L = In (1 + Ai)is the so-called "coulombean logarithm."

For partially ionized materials we must use an "effective' value of Z in Eq. (13)
above. For most purposes we will use Z, the average number of electrons stripped off
each nucleus, as a sufficiently good approximation for this value recognizing that this
may be too small for this and other processes involving Z under some conditions. Thus
we will have Ne = ZNi in Eq. (13) where Ni is the ion density. Since it is usually the
case that 6;/M <<< 6,/m,

_ 1/2 ( =2 2)2 3/2
v, = (2am/K)? (NZ% ) VL /Mo’ 2, (131)
In Eq. (13), Ni = NO/AV where NO is Avogadro's number and A is the ionic mass in
atomic mass units.
The argument Ai of the coulombean logarithm is given by Spitzer as

A2 = (9x/47N)) (kee/Zez)S (14)

where the factor y, given in Spitzer, is a correction for quantum effects and depends

inversely on ee.

4. HEAT LOSS THROUGH BREMSSTRAHLUNG

Heat is lost by the electron population through bremsstrahlung. The rate of loss

is given by Spitzer3 as

Qr = 20,6, (15)




where W, for a Born approximation and a Maxwellian distribution of electron velocity
is given as
1
= (2°5%Z%%v/3 hme )(27rk/mee)2 (16)

in which c is the speed of light.

It is assumed that any radiation generated by this process passes out of the
system without interacting.

5. HEAT DIFFUSION
The rate of flow of heat through each of the populations due to diffusion is
A
f = -AVO = -A(d6/dr)r. (17)

Hence the rate of increase of heat in each population at a point in space is
Qn = -VV-f= -[)\réhl(de/dr)] (18)
D - = m

where the subscript m implies differentiation of the quantity in brackets with respect
to m. The quantity A may be calculated by3

40(2/7r)3/2k(k91)5/2 om
A, = a
' ml/2 (Ze)4Li
s0(2/m3/ k(ke ) °/
>Le - 1/2 4 (19b)

L(Z+344+0261nZ)

for ions and electrons, respectively. The arguments of L and L the coulombean

1ogar1thms for ions and electrons, respectively, are A = A (0 /ze ) /X and
2

e = A Z As usual Z may be replaced by Z for part1al 1omzat10n

6. HEAT TRANSFER EQUATIONS

The equations resulting from the application of the first law of thermodynamics

to the ion and electron populations are, respectively,

C,0, + (py); VO, = S, +[ “Lisg, /8r)] - 20_(6, - 6) (20)



: o = 5-1 ] i
Cobg * (P VO, =S, +[x r° (B0 /8r)| - 20,6,

+ 2(;)0(9.l - ee) 21)
where the subscripts i and e identify the quantities as pertaining to ions or electrons,
respectively, and where (pe)i = (api/aei)V and (pe)e = (8pe/86e)v. Si and Se are the
heat source densities for the ion and electron populations. The first law of thermo-

dynamics for the whole system is simply the sum of Eqs. (20) and (21)

. . _ 6"1] _

U+pv=_8+ l)&r fm Zwree (22)
where

U=0U;+U, (23)

P =p; + pe (24)

f=1 +1 (25)

S = Si + Se (26)

and where Ui’ Ue’ and U are the internal energy densities of the ions, the electrons,

and the whole system, respectively.

7. EQUATIONS OF STATE

An equation of state calculation is necessary to evaluate Egs. (20) and (21). Such
a calculation should provide values of p, U, Py and C for both ions and electrons where
their temperatures are distinguished, or common values of these variables where the
temperatures are not distinguished. In some problems, this calculation also provides
a value of Z, the average number of electrons stripped off each atom.

For many calculations, the equation of state used for both ions and electrons is

that of an ideal gas
p = Nké (27)

in which k is Boltzmann's constant and N is the number of ions or electrons per unit

volume. The internal energy per unit mass 1s

U = (3/2)NkeV. (28)




Hence
Pg = Nk (29)
and
C = UG = (3/2)NkV. (30)
For cases where materials are partially dissociated or ionized, modifications are
made in the above equations to incorporate the effect of these phenomena. The

numerical coefficient in Eq. (28) must also be increased to account for the internal

energy absorbed by molecules or ions with more than three degrees of freedom.

II1. Energy Sources

The deposition of energy in plasmas by laser light and thermonuclear reactions is

accomplished in the following manner,
1. ABSORPTION OF LASER LIGHT

The mechanism for absorption of laser light by plasmas is assumed to be free-
free absorption (the inverse of bremsstrahlung). Bound-free (photoelectric) and
bound-bound (spectroscopic line) absorptions are ignored.

Energy is supplied to the electron population by the laser light at a rate Se where
Se = KV¢ (31)

in which K is the absorption coefficient and ¢ is the light intensity (energy/unit time-

unit area). Here ¢ is
o =(y +yyrdt (32)

where 1//+ and ¢y are the outwardly and inwardly directed light fluxes. In this system,
the light flux enters at the far boundary where

por o) =), (33)

t) being a sequence of values assigned to the incoming flux at the outer boundary. The
light then passes inward through the system being modified by absorption in the following

way:



dy /dr = Ky . (34)

It is reflected at the inner boundary, i.e.
- +
Y (r=0)=y (r=0) (35)

after which it passes out through the system again being modified as follows:

¢
dy*/dr = -y (36)
At temperatures greater than 10 eV and specific volumes greater than 100 cmS/g,
deuterium gas is almost fully ionized (>90%). Under such conditions, the free-free
absorption coefficient for light is given by the following formula derived by means of an
unscreened Born approximation with stimulated emlssion4 included:
- 2 7/2 -1/2

K; = AN N,Z_.. (I /hw)"/ “Fla)e (37)

where
_ 2 58 -

A = 64h"/3cm”e” and o = ﬁw/kee. (38)
IO is one Rydberg (13.6 eV), w is the frequency of the light, Zeff is the effective ionic
charge, ¢ is the dielectric constant, and

1

F(a) = 2(a/7)* sinh (@/2K (@/2) (39)
where Ko(a/2) is a modified Bessel function of the second kind. If damping is
neglected, €, the dielectric constant, is given by

_ 2
€ =1-(w /w (40)
p
in which wp, the plasma frequency is given by
2 _ 2
Wy = 4dge Ne/m. (41)
At temperatures below 10 eV, the absorption of light by a gas is more

complicated. We are mainly interested in the absorption of light by a gas that has ¢
already been partially ionized by some other agency and will be rapidly heated to
temperatures above 10 eV by absorption of intense laser light. Thus, we may deal with N
this absorption by approximating the low temperature absorption coefficient by the
coefficient for free-free absorption of microwaves in weakly ionized gases,” i.e. by ‘




K, = vc(wp/w)z/c (42)

in which Ve the electron-molecule collision rate, is given by
ve TN (ove) o0 W & ©) (43)

where Na is the number of atoms or molecules per unit volume, Ve is the electron
velocity, and o, the electron-molecule cross section for momentum transfer, may be

estimated from data in Ref. 4. Hence
B 2, 2 3,%
K, = 47N _N_o(e /cw”) (3k/m°)? . (44)

For the case of hydrogen (or deuterium) where there is one electron per nucleon,
the value of K; and Ka may be calculated by means of the following approximation

formulas which are forms of Eqs. (37) and (44):

9
K. = 2.78 X 10 (45)

i 2
V(1 + 5.4 /Ge)(l + 5586e)

K, = (4 X 10°) Jéz/vz (46)

where the effect of the dielectric constant ¢ has been left out and where V is in cmg/g,
ee is in keV, and Ki and Ka are in cm_l. Values of K for use in Egs. (31), (34), and

(36) are obtained by combining Ki and Ka according to the formula:
K =1[( - 0K, + x| (47)

in which f is the degree of ionization. The quantity f may be calculated by means of
ionization equilibrium relations, such as those given in Landau and Lifshi‘cz.6

As the plasma frequency wp given b}i Eq. (41) approaches the light frequency w,
F]

the coefficient K must be multiplied by ¢ ~ Light is totally reflected'7 when wp > w.

For laser light from neodymium-doped glass, this occurs at an electron density of

approximately 1021/cm3 which will therefore be called the critical electron density.

2. ENERGY FROM THERMONUCLEAR REACTIONS

The thermonuclear reactions of interest in the design of this code are

D+ T—=qa(3.6 MeV) +n(l4.1 MeV)
—T(1.0 MeV) + p(3.0 MeV)

D+ D
T 3He(0.8 MeV) + n(2.45 MeV)

-9~



where, as indicated, the D-D reaction goes about 50 percent into each of the two

branches. Hence, the rate of change of the densities of the tritium nuclei N and the

deuterium nuclei ND are
N, = -R NN + (})Ror N2
T pT D T ¢/8ppip
N, = -R.._ N2 - R N..N
D pD'D ~ ®*pDTVTYD

where the rate constants RDT and RDD are given by

Rpr = <"DTV> = Rpp(6))
Rpp = {ppY) = Rpp6y)-

In Eqgs. (50) and (51), O‘DT(V) and DD

(v), the cross-sections for the above two

(48)

(49)

(50)

(51)

reactions, are averaged over a Maxwellian distribution of velocities in a gas having a

temperature ei. If the system is small compared to the range of the alpha particles and

protons, it may be assumed that these ions and the neutrons carry off their energy,

and the only purpose of this calculation is to determine the rate of neutron formation.

If the system is large compared to the range of the alphas and protons, it is assumed

that the ions deposit their energy immediately and locally in the gas while the neutrons

carry off their energy. Thus, the rate of energy production per unit mass by the D-T

reaction is

SDT = (3.6 MeV) RDTNDNTV.

(52)

The two D-D reactions are lumped and the energies of their product ions are averaged

in calculating their energy production per unit mass.

)(2.4 MeV) R N2 V.

S DD'D

- (1
DD_(Z

(53)

The factor of % is included because each deuteron is counted twice in deriving Eq. (53),

once as a target and once as a projectile.

It has been estimated8 that the reaction products apportion their energies between

the ion and electron populations in the following amounts:

6_S

g =_8 DT . e DD
i 32+ 6e 120 + 0
g - 32 SDT s 120 SDD

e 32+6e 120+9e

where Ge, the electron temperature, is in keV.

-10=-

(54)

(55)




IV. Difference Equations

To form difference equation approximations in these calculations, the entire
one-dimensional region is divided into J zones. The following conventions will be used
here with respect to zones and time steps:

Subscript j indicates the value of a variable at the right boundary {(or outer
boundary in the case of cylindrical or spherical coordinates) of'thelth zone, J indicates
the value at the right-hand (or outer) boundary of the whole system. The left-hand

boundary (or center) is taken immoveable and non-conducting in these calculations.
Subscript j - 1/2 indicates the value of a variable in the middle of the jth zone.
Superscript n indicates the value of a variable at the end of the nth time step;

n - 1/2 indicates the value during or at the middle of the nth time step.

1. DIFFERENCING THE HYDRODYNAMIC EQUATIONS

In the difference-equation approximation to Eq. (6), the quantity p (and p; where
it is not part of p) is replaced by p + q (and p; by p; * q) where q is the so-called
"von Neumann q."9 The purpose of q is to prevent mathematical instabilities by

spreading shock fronts over about three zones. Quantity q is defined by

Q
1

[bAm(au/Bm)] 2/V V < 0 (compression) (56)
q=0 v > 0 (expansion) (57)

where usually b = A2,
The difference equation approximation to Eq. (6) is

1
n+s _ n-% ( n)6—1 n n n-z n-i) ( n
u. = u. - {r. . - D. + - At /Am. ] . 58
j j j (P5ez - Pj-3) (qj+% 91 / mJ) (58}
In Eq. (58), At” and Amj are given by
1 1
At? = LAtttz 4 AR77) (59)
Am. = 3(Am, 1 + .
rn;| 5 ( mJ+% AmJ_%) (60)

[

where Am_ 1 is the mass between the boundaries j + 1 and j, At"7Z is the duration of

2
the nth time step, and Eq. (56) is approximated by

_ _ 2
9-3 = [t “j—l’] Vit (61)

-11-



Ar 118 defined as the thickness of the jth zone and 1s calculated by

n+1 +.]; 1 1
Ar , =AY, +(un 2 . ur1+2) At?FE (62)
1~z 1-2 ) 1-1
Simalarly
1 1
I‘r1+1 _ I‘n - un+2 Atn+2. (63)

J J J

For the three different geometries, the specific volume 1s calculated as follows:

n+1 n+l
Cartesian: V. 1=Ar , [Am__1 (64)
(6 = 1) S bt o
+1 +1
Cylindrical: Vrl , = %(Arn 1 /Am l)(rm-l + rn+1) (65)
(6 = 2) 1-2 1~z J-2 J 1-1
2
Spherical: Vnzl = Arnzl Am_ 1 P Sl l-(AI‘ntl) (66)
(6 = 3) J-2 J-2 J-2 J -1 3 J-2
and
n+3 _ 1 (.n+l n
VJ_g =32 (Vj_% *V 1 ). (67)

The rate of change of V with time 1s also needed for the energy equations

.n+3 n+1 1
P = (VI V) e (88)
-2 \g-z 2

2. DIFFERENCING THE HEAT TRANSFER EQUATIONS

In differencing Egs. (20) and (21), an implicit backward substitution differencing

scheme 1s used.10 The difference equation analogue of these equations, written in

matrix notation for compactness, are as follows:
n+l  n n+l _.n ) n+1 n >J
‘lé -0 = + -1 e + 0 -18 + 8
(‘ﬂ‘% ‘ﬂ"%) B3 T2, [(*ﬂ+% =itz (‘J-% =3-7
Ol s RS N Car )| 1 (€6 )
J 1-z 1-2 15 175 =172 1-2 I~z

ST .<-9_n+l+gn ) (69)

a

e
1
[N
[
|
(M

The proper time-step index on all the coefficients in Eq. (69) 1s n + 3 which 1s left off

for convenience. In Eq. (69), the vector quantities § and 3 are

-12 ~



file:///~3-2

and

(Si - qV>
B = Am.
Se

The quantities @, a, and Y are diagonal matrices which are

e

m

t 2

IR
I

A O 6-1
r
Ar

[
1
D

and
(pg); O .
VAm

1=
il
o)

0 (pe)e

The quantity w is a square matrix which is

) -W
C [¢]

w = Am
- W w tw
c ¢ r

(70)

(71)

(72)

(73)

(74)

(75)

Equation (69) may be expanded for use in systems whose state is described by any

number of temperatures by merely increasing the dimension of the vector and matrix

quantities. The solution of Eq. (69) will be developed with this in mind.

may be rearranged in the form

+
Aol oa gl aa Pl
= Ttz S Tyr SIlH30 Tiez
2
where
A, 1 =ag. 1 tw., 1 +Y,. 1 *+a.+a
=~z =)z =j2 =iz =) =)l

-13-

Equation (69)

(76)

(77)



and

B4 “Bj-4 *g (gr;*‘% } "rJl"E) T &j-1 (—r;"'i ) QIJI-%)
“Liep o O gy By ey gy (78)
Equation (75) may be solved to give
8.4 "S-t Byrg TRy (79)

where, since Eq. (76) explicitly involves only Qn+1, the n + 1 may now be omitted.
The matrix C and the vector D may be found as follows. Rewrite Eq. (79) as

£ 37¢ 3 8514+ 5. (79"
is Tigy i5

Substitute Eq. (79') into Eq. (76) and rearrange to obtain

.1 °0. 1 a."6.1+E. 80
Bi-3 7 95-5 7257 Gy T E (80)
where
.1 FA. 1 -a. .- 81
IgJ-% =J-% g]—l g‘]_g ( )
and
. = B. +ta. .+ D .. 82
St % &1 =08 (82)
172
Hence
_ -1
C.1 =K 7, *a. (83)
=]=2 =J-E =]
and
_ -1
1=K, - E. 3 (84)
—J-2 =i~z J=2
where g-l is the inverse of the matrix K.
During each time step, the components of -—Qj i and Dj -1 are evaluated from

C 3 and D 3 by means of Egs. (81), (82), (83), and (84). To start this evaluation,
IR )

-14-




a, and hence g_% are taken as0, and 2_% is taken as Qn_% . The calculation of the
components of each gj_% is determined from Qj+§ by means of Eq. (79) starting with
_QJ_% , the temperatures in the outermost zone, which is determined by the boundary
conditions at the outermost boundary. These boundary conditions will be described in
Section IV.4. The innermost boundary is considered to be a thermally insulated,

immoveable wall.

3. EVALUATION OF THE COEFFICIENTS
i 1
The evaluation of many of the coefficients in Eq. (69) involves 9r11+2 and 62+2 .
These values of § are calculated by extrapolation. A quadratic expression for 6 in terms
of t is fitted to the values of % (en'm+1 + en-m) for m equal to 1, 2, and 3 with the
corresponding values of t. This expression is then evaluated at tn+%. There results for

each of the 6's in both media

3
~ 1 _ -
6n+2 =%§ : Cm(On m+l i en m) (85)
m=1
where
) ) n-2
Cy = 1 —[%(Atmf)z -(Atn”f - At 2) (ath + a3 /D
1 n-z
D = a2 [2Atn -(Atn+2 -at 2 )]
c,=1+ /ot + (Atn‘z/mn'?’)c3
C, = ~(at?/at™ ) - [1 + (Atn‘2/Atn‘1)] C,.

Other useful values of the 6's and their powers may be computed from those

found in Eq. (85) by means of the expressions

—ntl ol ol
91j1+2:% <9n+12 + en 2> (86)

i

Values of the #'s and their powers computed by means of Eqs. (85), (86), and (87) are

and

Nof

(ST

~ n+3 ~ ol 2 ~
0% = 3f(8%2 T+ BT
J+§ j'

substituted into the various formulas already given to evaluate the coefficients.
In the evaluation of the a's, it may be noticed that Ar is not evaluated on the
boundaries of the zones. The two non-zero components of a in Eq. (72) are more pre-

cisely determined by

-15-



1 1 1 1

n+y n+%)6—1 < n+;z n+§) ( n-+z n+§> -1

. 2 = {r] Ar, A + [Ar A , 88
%] (rJ itz )+ j-z [/ i (88)

where

+1 -n+3 _n+3 L —n+3 _n+3
A2 eafE, 2 v 2} and ATTE =@ [, v 7).
J itz gtz B -z J-z ’

The general method for the evaluation of the A's is given in Spitzer.3 The evaluation of
the A's and the other coefficients have differed in detail in various specific applications
from the methods given here (even as the equations of state differ from the ideal gas
law for ions and electrons in various applications). Since the actual formulas used must
be tailored to the specific physical problem, these formulas will not be given in greater
detail here.

4. BOUNDARY CONDITIONS
The "inner'" boundary (j = 0) is taken to be an immoveable, perfectly reflecting,

thermally insulated wall. Various combinations of boundary conditions may be used at

the outer boundary (j = J):

Temperature
e Thermally insulated boundary: 0 J+1/2 =0, GJ = 0, for both ions and electrons,
e Temperature determined: 9J+1/2 = g(t) for both ions and electrons,

Here the components of a , may be determined trom Eq. (73) with the factor of 2 left

J
out of the denominator since the zone center is only a distance Ar/2 from the

boundary.

Velocity and Pressure

ePressure determined: Py = p(t).

Here the velocity u. of the outer boundary is determined by the code.

J

eVelocity determined: uj = u(t).

Here the pressure on the outer boundary is determined by the code.
5. CALCULATION OF THE ENERGY SOURCES

In difference equation form, Egs. (34) and (36) may be expressed as follows:

/ej_%) (89) .
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+ o+
. =Y. e -K. . .
Vi Ty exp Ry 1Arg eyt

) (90)
where ([/_J is given by Eq. (33) and l,[/-{ by Eq. (35). The values of K are calculated by
Eq. (47) with Eqs. (45) and (46) or, for more general cases, Egs. (37) and (44); the
energy source density terms are calculated by Egs. (31) and (32). The divisor €1
modifies the effective absorption to account for the increase in the dielectric constant
as the plasma frequency approaches the frequency of the light. We wish to produce
total reflection when the electron density approaches the critical electron density
closely (within 98 percent, for instance). Hence we let yj = (Ne)j/Nc Wwhere Nc is the
critical density. Suppose we have

yj<1-§' forj=J,J~-1,J-2,..., k+1
yjzl—’é forJ =k, k-1,..., 2,1

where € = 0.02 for the 98 percent case, then

1
= ..l 2 = -
€1 [1 2 (yj+yj_l)] j=J,J-1,...,k+2 (91)
1 3
ket * |1 F Gy + 1) (92)
+ -
Y =V (93)

and (S ). 1 =0 for j< k.
e Jj-2 -

In calculations involving fusion, the densities NT and ND are expressed in terms

of fractions, f = NT/N and g = ND/N where N = N,% + N%,
ND indicates that these are the initial values of the variables. In terms of the fractions,

f and g, the difference equation forms of Egs. (48) and (49) are

the superscript 0 on NT and

1 PRI R | 1 nel 1
Marl & CDAtn+2 [R%TI‘Z $0+2 gn+2 1 R%-l]-az (gn+2 )2]/Vn+2 (94)
n+l n n+z n+3 ~fn+% ~n+% n+y ~n+i 2 Vn+—é
g =g -Cpat Ry g +Rpp (€ %) (95)

~rtt ~n4t
where CD = NO/(3fO + 2go). The quantities 72 ang gn+2 in Eqs. (94) and (95) are
extrapolated values of the variables which may be calculated by means of

~m L 1 1 -

RN I SN BN o Y ot (96)
~ 1 1 _1 -

g7 = g+ L (atVT AR TR - BT, (97)
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6. At CONTROL

During each time step in the calculations, the size of the time step At is con-
trolled to satisfy a number of conditions:
e At must lie between preselected limits Atmax and Atrnin' §
e Ax/At should not exceed the rate at which a disturbance would be propagated
through the medium hydrodynamically (Courant condition).
e At will be increased or decreased in such a way as to hold the percentage
change in V and 6 below certain selected values.
The Courant condition is given by

py
er”‘l = Max [(Vr.l+£‘ pr.”f)z/Arr.l*j] i (98)
3 -z " )-2 J=z2

The maximum fractional changes in V and 6 are given by

o1
RO = pMax |(vPHL - vR L) /v (99)
2 . J"z J-z '_l
J 1=z
n+z
Rr31+1 = Max [(e‘.‘fj - 9‘.‘_1) / 0, f]. (100)
jti,ep N 372 372 /) -2 |

Thus to satisfy all the conditions above we must have

3
n+s 1 1
2 _ . n+1 n+3s n+1 n+s /on+1
At = Max [Atmin’ Mm(Atmax’Kl/Rl s K2At /R2 s K3At /R3 )] (101)
where Kl’ Kz, and K3 are parameters which may be selected at the option of the person
performing the calculation to modify the effect of these various conditions.

V. Energy Checks

One of the features of computational programs used in these calculations is the
incorporation of a system of energy checks. To insure that no machine error in the
preparation of the input data has occurred and to assist in troubleshooting the programs
when changes or modifications are made, values of the different forms of energy are
totalled at the end of each time step to see that the law of conservation of energy is

obeyed.
1. INTEGRAL FORMS OF THE FIRST LAW

Equations (20) and (21) may be written in the form:

U PV =5 -Q, *+Qp, (102)
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ﬁ +pe\7 =Se+Qc _Qr+QDe (103)

where

Q. = 2w, (6; - 6,) (104)
Qr = 206, (105)
Qp= V(Y D) = -(*7Mp) (106)

Equation (106) holding for both ions and electrons. Adding Eqs. (102) and (103) gives,
in view of Eqgs. (23) and (26),

I'J+p\'f=s+QD-Qr (107)

where
Qp 7 Qp; * Qe (108)

To find suitable integral forms of Eqgs. (102), (103), and (107), we first consider
the integration of the pV term in each of these equations. From Eq. (5) we have

1

Vdm = d(ur® ™). (109)
From Eq. (6) we have
. 6-1 _ 2
ud = -ur (dp/dm) = (d/dt)(u”/2). (110)

Integration of Eq. (110) with respect to m gives
: Jos-1
T = -I ur” “(dp/dm)dm (111)
o

where T is the total kinetic energy. The right-hand side of Eq. (111) may be
integrated by parts to give

. _ J _
T = - |ur® lle +J pd(ur6 1). (112)
(o)
Thus from Eqgs. (109) and (112) we have

6-1

J . .
f pvdm = T + |ur pIJ. (113)
o
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Equation (102) may be rewritten

U; +pV = S; - Q, +Qp; +p,V. (114)

Equations (114) and (103) may be integrated with respect to m with the help of
Egs. (109) and (113) to give

J
C o -1 I PO 1 L 5-1
ei+T+(ur pi)J—si e, (fir )J jo ur dpe (115)
L 4 fur®t ) =s +e - -(f ’5'1) + ’ 21la (116)
€e (ur Pels e S " fp el J ou Pe
in which
J
e, = j Ude, X =1i,e (117)
o
J
Sy =J Sde, (118)
o
J
§-1\ _ _ :
(fxr )J- ) Qp,dm, (119)
J . J _ _ J _
f pXVdm = pxd(ur6 1) = (pxur‘5 l)J —f ur(5 ldpx, (120)
o) o o
J .
e. = Qrdm, and (121)
o
J .
e, ~ . chm. (122)

Equations (115) and (116) added together give

6-1y ¢ (123)

é+'i‘+(ur6_lp)J=s—(fr 3 -

The physical significance of the quantities defined by Eqgs. (117) through (122)

may be described as follows:

e, - total internal energy of the ions or electrons. o

S, - total energy source rate for the ions or electrons.

-20-
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rate of heat loss by the ions or electrons across the outer boundary.

(pxuré-l)J - rate at which work is done by the icns or electrons on the external

environment.

()
1

total rate of heat loss through radiation.

total rate of heat transfer from the ions to electrons (or from the

o
1

electrons to the ions).

It may be noted that in these calculations the ions and electrons are somewhat
artificially constrained to move together hydrodynamically even though they have their
own independent internal energies and exert their own independent pressures. There-

fore

J
j ur‘s_1 dpe - total rate at which work is done by the ions on the electrons
o

to maintain the above constraint.
2. ENERGY CHECKS
If the computer program is working correctly, Egs. (115), (116) and (123) must

each be satisfied. Hence their integral with respect to time must be satisfied.

Therefore let

n+1l _ n+1 .
e, = E (Ux)j—% Amj_% x=1i,e (124)
J
! (unﬂ)z Am. 1 + 3% z un+1)2 Am (125)
=0y J-z " L (j i
j
tn-l-l .
gt =j s dt = g + at??? E S )" Am. . (126)
X X X X i~z )z
O .
j
n+1
n+1 _(* n n+z z : .0ty
E =J e dt = E_+At 2 Q) Am, 1 (127)
c o c c ' Cj—% j~2
j
tn+1 J 1 1 1 L 1
+ - +5 5 5 \6 - n+y +3
G21=J I uréldpdt=G2+Atn22 uttz (r’F‘J'Z)‘Sl[(p),f—(p)’f‘f
1
n+3 n+3 ; n+g\s-1 n+y n+z
-G R LA Ml (GRS N (128)
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t + RS
g+l =j e dt = ER + at?*? z R TNy (129)
r r r r';.1 L
(o) - J=2 J=z2
j
tn+1 1 1 1 1
n+l _ §-1 | n+§( n+s\6 -1 n+3s n+s
W, -IO (ur pX)Jdt va+[uJ r; ) (p) 5 ]At (130)
tn+1 1 41 1 1
n+l _ 5—1) o n+z n+z n+y n+z
F, -fo (fxr ) dt = FY 2(a )7 [("o)ﬂ% “’x),;-% At (131)

where in Eqs. (124), (126), (127), and (129) the summation is from 1 to J and in
Eqgs. (125) and (128) it is frlom 1toJ -1, and where it must be remembered to use

7% + g% in place of p}'Z in Eq. (130).
Thus, each time the program edits the calculation, a check is made to see how

well the following equations are satisfied:

oDl Tn-&-l = e+ 7° 4+ Hr}+l - gl Fp+1 _ W1.'1+1 _ Gn-i-l (132)
i i i c i i e
en+1 = e+ Hn-l-l + En+1 _ Fn+1 _ Wn+1 + Gn+1 - En+1. (133)
e e e c e e e r
Adding Egs. (132) and (133) gives
N Tn+1 =+ 7° + Hn+1 _ Fn+1 _ Wn+1 _ E;Hl. (134)
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VI. Sequence of Operations in the Calculations

Figure 1 shows the general order in which the calculations described in this

report are performed.

Start |

Pressures
b, e
PP

(section 11.7)

Energy checks
(section V)

A

Energy transfer

(sections IV.2,
IV.4)

Time step size

Y At

(section IV.6)

Hydrodynamics

(section IV.1)

B!

Forward
extrapolation

of 8’
(section IV.3)

|

Coefficients
a,v,a

(sections 1.3,
1.4,11.5,1v.2,
iv.3)

!

Sources S

Fig. 1. Flow diagram of calculations.
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