
NLAP-WEDC Report 2024

AECENAR Association for Economical and Technological Cooperation in the Euro-Asian and North-African Region

NLAP-WEDC REPORT 2024 - Part I: Full waste management (Summary)

With contributions of:

Mariam EL REZ Abdullah KASSEM Ali DIB Amro ZAWIT

Last Update: 11.03.2025 08:57

Table of Contents

 Project 1: Full waste management pilot project (Summary)	Prefa		. 3
 1.2 Taking household waste from buildings and manual waste separation	1	Project 1: Full waste management pilot project (Summary)	.5
 1.3 Organic waste treatment	1.1	Position Full waste management	.6
 1.4 Incineration of refused waste with improved filtering	1.2	Taking household waste from buildings and manual waste separation	.6
 1.4.1 Geration of Electric Power from Waste Incinerator	1.3	Organic waste treatment	.8
 1.5 Video of full (3 parts) waste management (with new Electrofilter) (in Arabic)	1.4	Incineration of refused waste with improved filtering	.9
1.6 Video of full (3 parts) waste management (with new Electrofilter) (in English)		1.4.1 Geration of Electric Power from Waste Incinerator	12
	1.5	Video of full (3 parts) waste management (with new Electrofilter) (in Arabic)	12
1.7 Petition to Municipality of Tripoli to operate the pilot system in Tripoli	1.6	Video of full (3 parts) waste management (with new Electrofilter) (in English)	12
	1.7	Petition to Municipality of Tripoli to operate the pilot system in Tripoli	13

Preface

This report contains a short description of 3 parts (full) waste management pilot project.

1 Project 1: Full waste management pilot project (Summary)

1.1 Position Full waste management

The incineration results in Bkaa Sifrin showed the need to separate (and for efficiency also treatment) of organic waste to reduce the percentage of liquids in the waste. A household waste sorting project was proposed and designed in 2023, and the practical part was implemented in 2024.

1.2 Taking household waste from buildings and manual waste separation

1.3 Organic waste treatment



Input of organic waste

Methan gas generation and filtering

1.4 Incineration of refused waste with improved filtering

1.4.1 Geration of Electric Power from Waste Incinerator

1.5 Video of full (3 parts) waste management (with new Electrofilter) (in Arabic)

1.6 Video of full (3 parts) waste management (with new Electrofilter) (in English)

Flue Gas Cooling in front of the Electrofilter. Only 1% of smoke was visible: (integrated into 3steps waste management film from 2023 and improved with subtitles)

1.7 Petition to Municipality of Tripoli to operate the pilot system in Tripoli

جانب رئيس بلدية طرابلس الفيحاء الدكتور رياض يمق المحترم، الموضوع: طلب تخصيص قطعة أرض مناسبة لعمل محطة معالجة النفايات. المستدعى: جعية AECENAR العلمية الألمانية ومؤسسة طاقة الشمال.

السلام عليكم وحمة الله وبركاته وبعد،

1. تتقدم جعية AECENAR العلمية الألمانية ومؤسسة طاقة الشمال ممثلتان برئيسيهما الدكتور سمير مراد من حضرتكم بطلب الحصول على ارض في منطقة بلدية طرابلس وذلك لمدة ستة أشهر قابلة للتجديد، بحدف استعمالها لتشغيل محطة معالجة النفايات لأغراض علمية.

2 يُفضَّل أن تكون مساحة الأرض تقريبا ألف متر مربع وتكون بعيدة نوعا ما عن الأماكن السكنية.

3. إن المحطة المذكورة ذات مواصفات مطابقة للبيئة حسب المعايير الأوروبية.

تتألف المحطة من ثلاثة أقسام: فرز ، تخمير ومعالجة حرارية.

نشكر لكم تعاونكم وتقبلوا منا فائق الاحترام.

طرابلس في 19. 11. 2024

د. سمير مراد Jan Caml

AECENAR Harba Building, 1 st floor (near to Hospital Albert Haykal) Tel.: 06409544 / 76341526 Email: info@aecenar.com

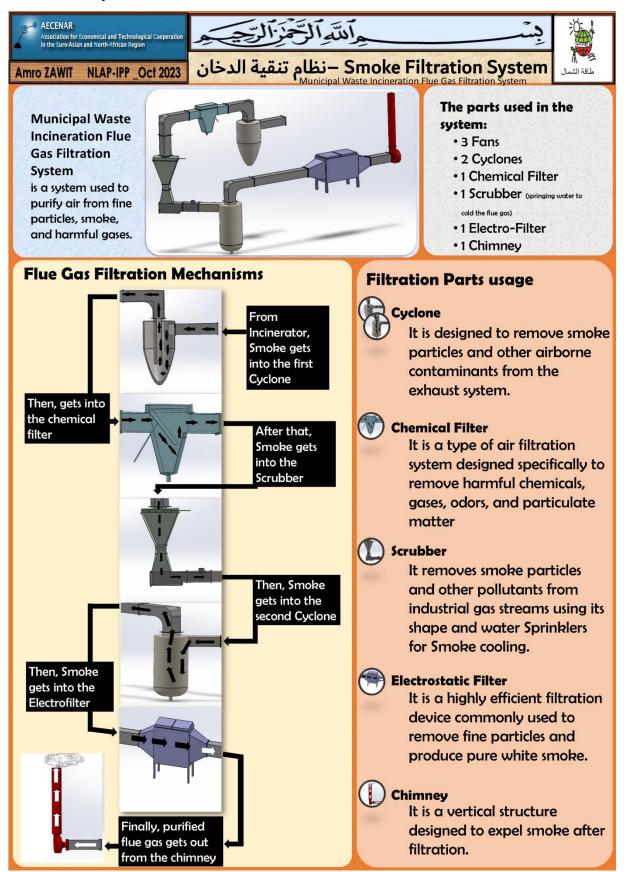
NLAP-WEDC REPORT 2024 – Part II: Project 2 (Improvement of Filter System in Incinerator Power Plant NLAP-IPP)

With contribution of:

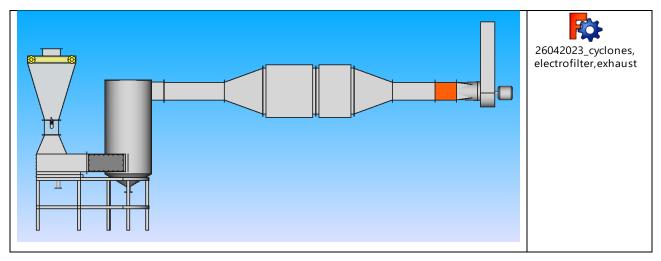
Amro ZAWIT Maryam EL REZ Abdullah KASSEM Ali DIB

Last Update: 11.03.2025 23:18

Table of Contents

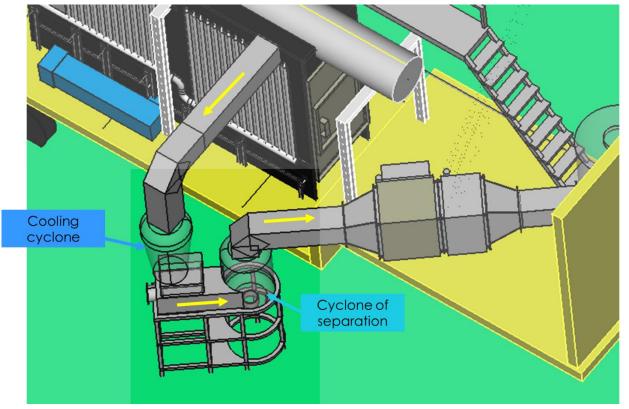

2	Projec	t 2: Improvement of Filter System in Incinerator Power Plant 2023/24	5					
2.1	Filter S	System Overview	5					
2.2	Assem	bly of Components	6					
2.3	The 2 (Cyclones	6					
	2.3.1	Cyclone Sizing	6					
	2.3.2	Design of cyclone	13					
2.4	Ventu	ri scrubber	15					
	2.4.1	Sizing of cooling with separation cyclone	15					
2.5	Atomi	zer nozzles for incinerator Exhaust gas cooling for Electro-Filter	18					
2.6	Electro	ofilter	21					
	2.6.1	Options of electro filter installation	22					
2.7	Electro	ofilter Internal details	23					
	2.7.1	Electro design (tubes with central electrode)	23					
	2.7.2	Iron filter design	24					
	2.7.3	Fin filter design	25					
	2.7.4	ESP box design	26					
	2.7.5	ESP assembly design	26					
	2.7.6	Electro-Filter Assembly design	27					
2.8	Carbo	n Filter	27					
	2.8.1	Carbon filter box design	27					
	2.8.2	Carbon filter stand design	28					
	2.8.3	Carbon filter design	28					
	2.8.4	Carbon assembly design	28					
2.9	NLAP	-IPP Chemical Filter (Realization)	29					
2.10	Barrel	Water Filter	30					
2.11	Realiza	Realization of filter system on Ras Maska site 2024						
2.12	NLAP	JLAP-IPP Mobile Plant at Ras Maska						
	2.12.1	NLAP-IPP Ras Maska 19.10.2023	36					
	2.12.2	NLAP-IPP, Ver. 21.10.23	38					
	2.12.3	NLAP-IPP (last Ver. on 02.07.24)	39					
2.13	NLAP	-IPP Process Control System (Automation)	40					

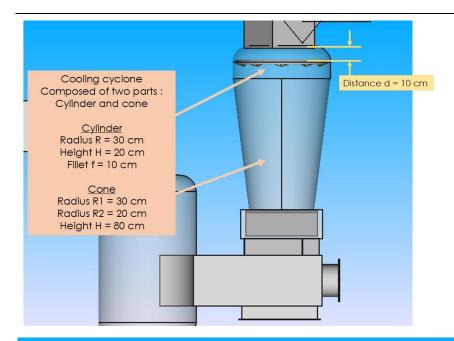
	2.13.1	NLAP-IPP_PCS(Modbus address on the PLC) [xlsx file]	40
	2.13.2	Process Control system Topology	
	2.13.3	Control Panel, Version 06.09.2023	43
	2.13.4	Wiring Panel	44
	2.13.5	Turbine Governing System (TGS)	44
2.14	Testing	g without Electro-filter for temperature Calculation	45
2.15	Test 01	1.09.2023 - Ras Maska	54
	2.15.1	Goal	54
	2.15.2	Description	54
	2.15.3	Test Specification	55
	2.15.4	Steps	
	2.15.5	Pictures related to the test	
	2.15.6	Data Collected	63
	2.15.7	Data Analysis	63
	2.15.8	Future Work	63
2.16	Filtrati	ion test (18.12.2023)	63
	2.16.1	Goal	63
	2.16.2	Table of System Test	65
	2.16.3	Graph of the Temperature Sensors [Temperature in degree Celsius]	73
	2.16.4	Test Analysis	73
	2.16.5	What should we do next?	74
	2.16.6	Pictures related to test on 18.12.23	74
2.17	Test.A	tomizing Nozzle Air to Fluid ratio (27.04.2024)	92
2.18	Test.A	tomizing Nozzle Air to Fluid ratio (08.05.2024)	94
2.19	Flue G	Gas into Water test (12.06.2024)	96
2.20	Flow g	gas into Barrel water Filter Test (24.6.2024)	97
2.21	Filtrati	ion test on 27.06.2024	99
2.22	Filtrati	ion test (02.07.2024)	103
2.23	Cleani	ng Electro-Filter (8.7.24)	107
2.24	Filtrati	ion test	110
2.25	The rig	ght way to clean the Filters	113

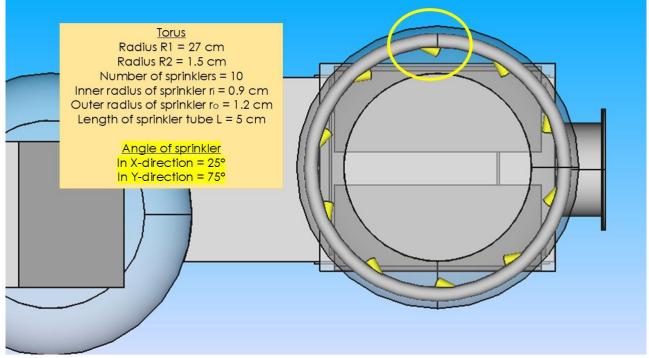


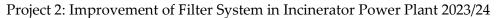
2.26	Cleani	ng Electro-Filter using KLEAN LAND Technique (11.07.2024)	. 116
2.27	Here is	s how our cleaning of the Electro-Filter was done	. 120
	2.27.1	First, we brought a Plastic tank	. 120
	2.27.2	Second, we cut its top	. 121
	2.27.3	Third, we clean it	. 121
	2.27.4	Fourth, we bought a resistor to get the water to 80 degrees, which is best for Nation	
	2.27.5	Fifth, we filled the tank with water	. 122

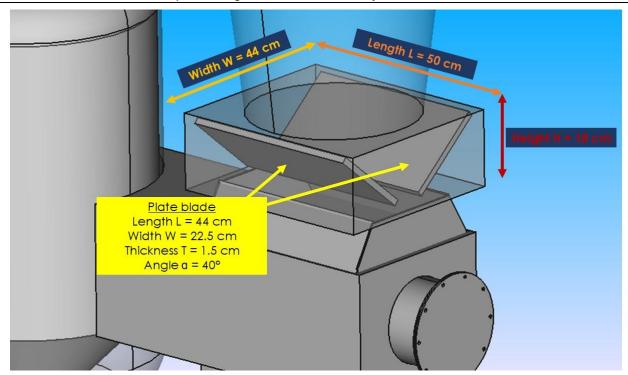
- 2 Project 2: Improvement of Filter System in Incinerator Power Plant 2023/24
- 2.1 Filter System Overview

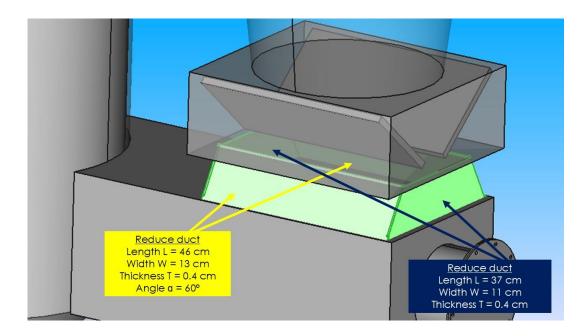


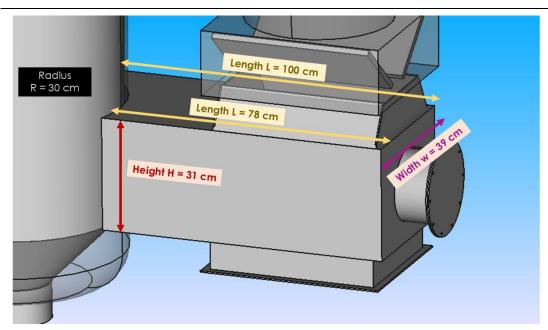

2.2 Assembly of Components

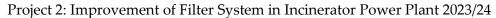


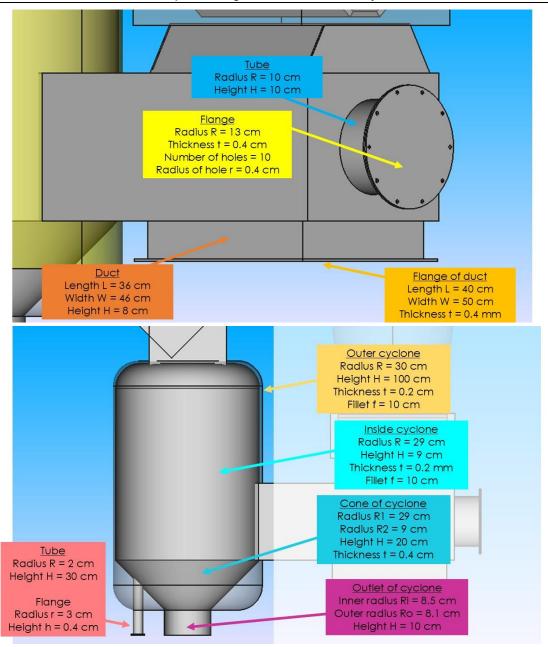

2.3 The 2 Cyclones

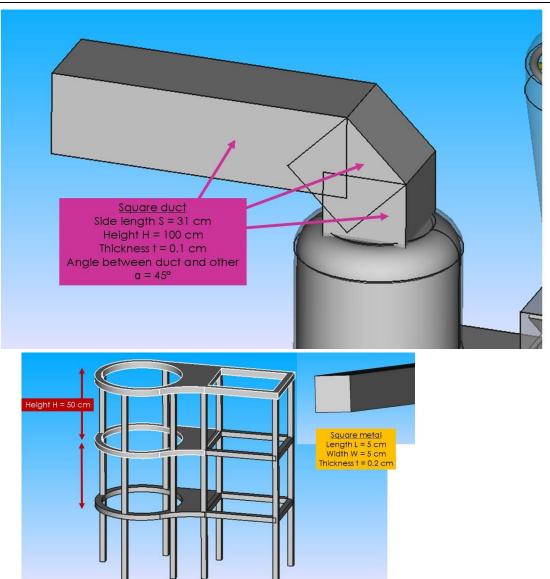

2.3.1 Cyclone Sizing

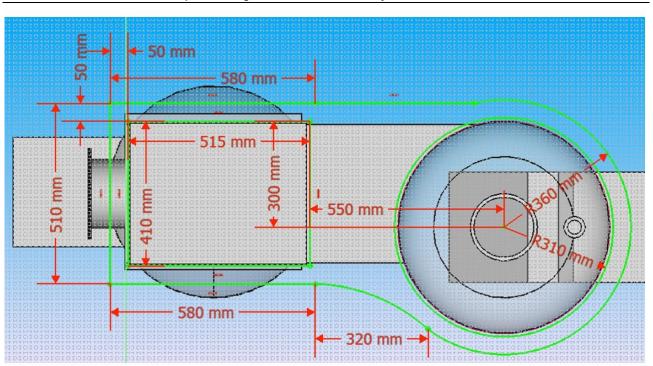


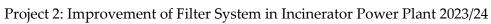


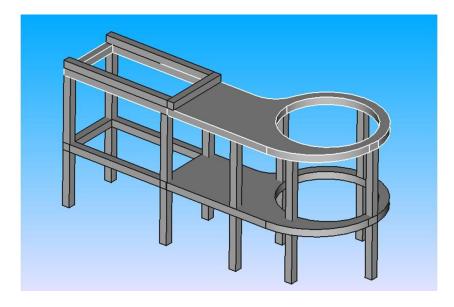


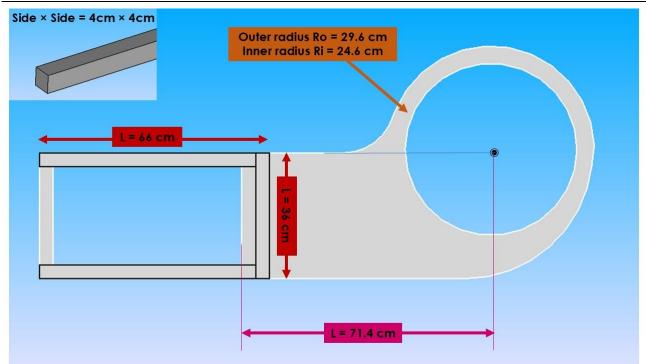

The 2 Cyclones

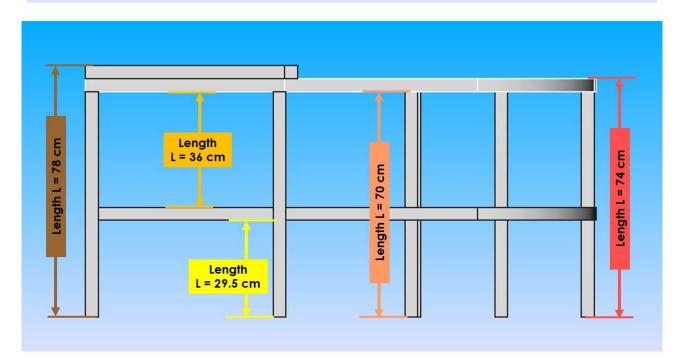


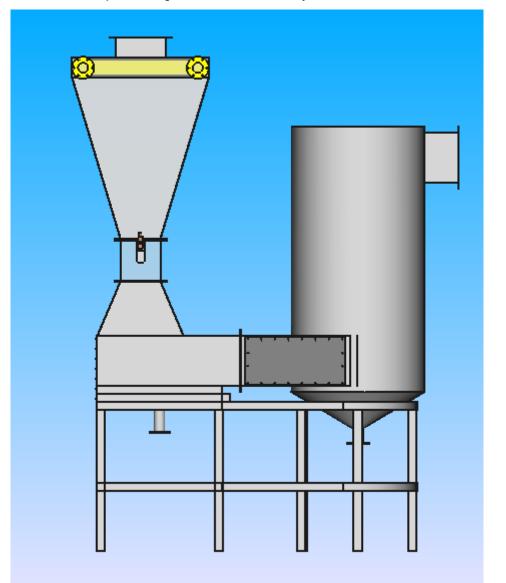

_





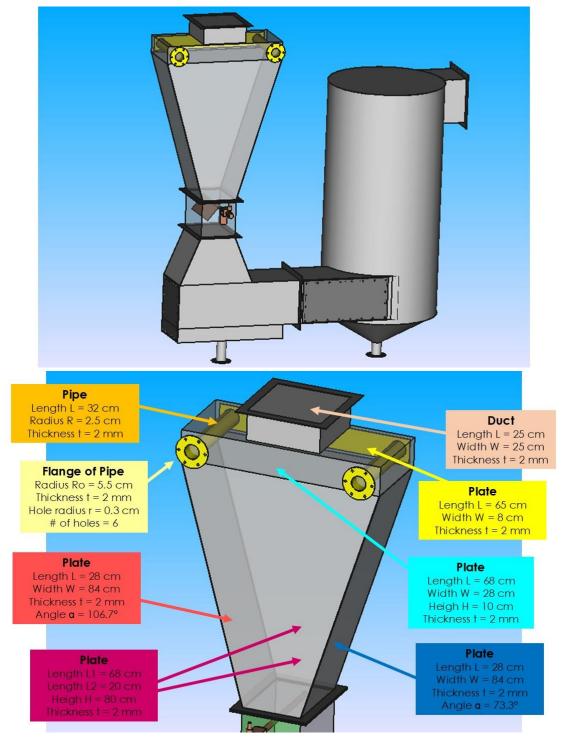


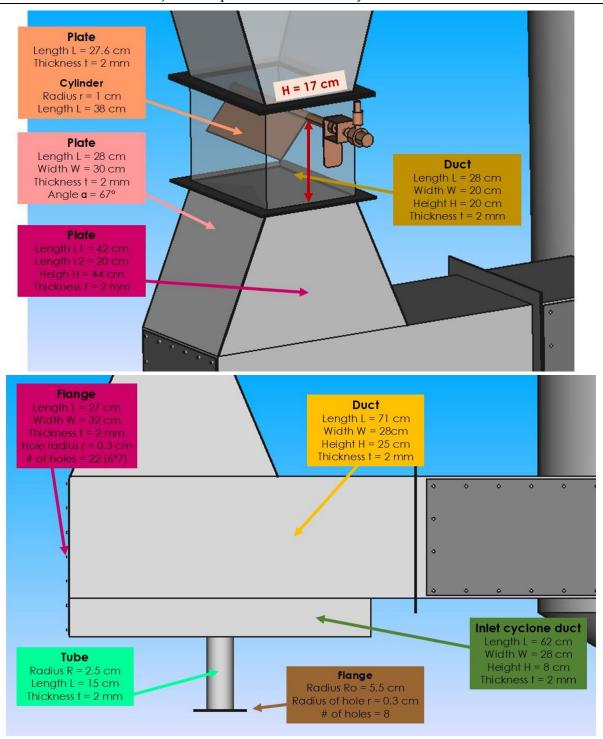


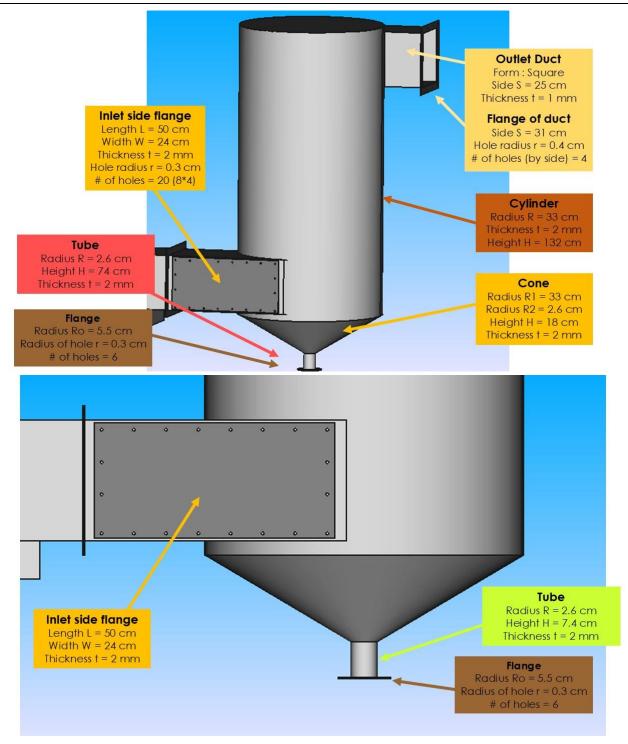


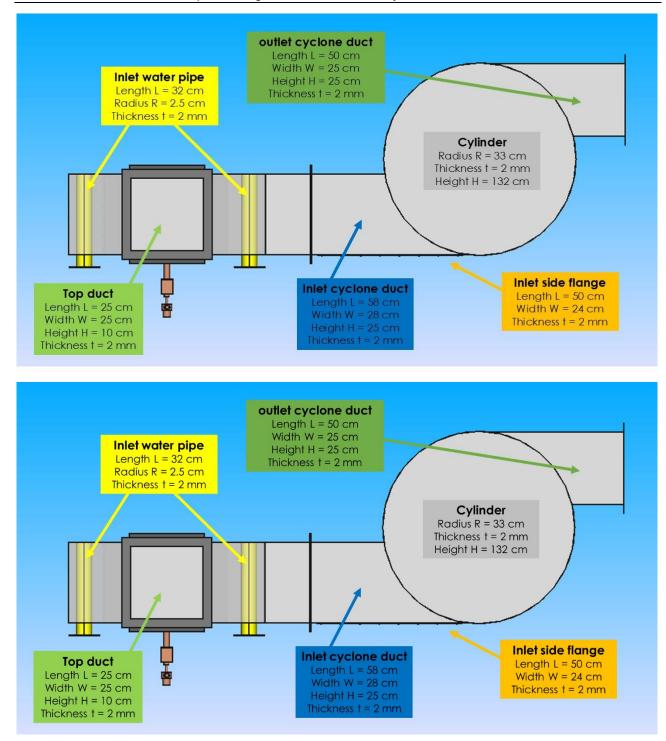
2.3.2 Design of cyclone

Separation cyclone with cooling venturi scrubber





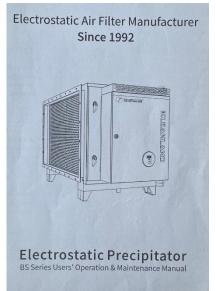

Project 2: Improvement of Filter System in Incinerator Power Plant 2023/24


2.4 Venturi scrubber

2.4.1 Sizing of cooling with separation cyclone

2.5 Atomizer nozzles for incinerator Exhaust gas cooling for Electro-Filter

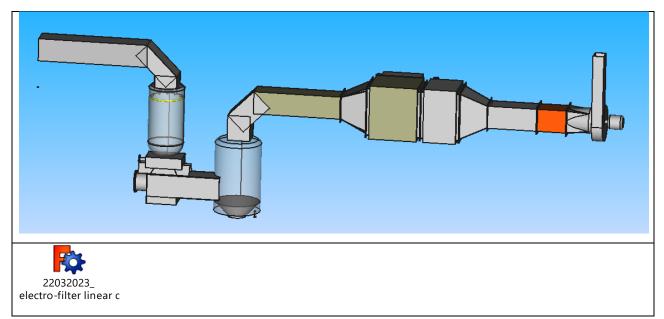
In this section, we will talk about the atomizer nozzle with 6 holes and a wide-angle spray at 60 degrees with stainless steel materials.

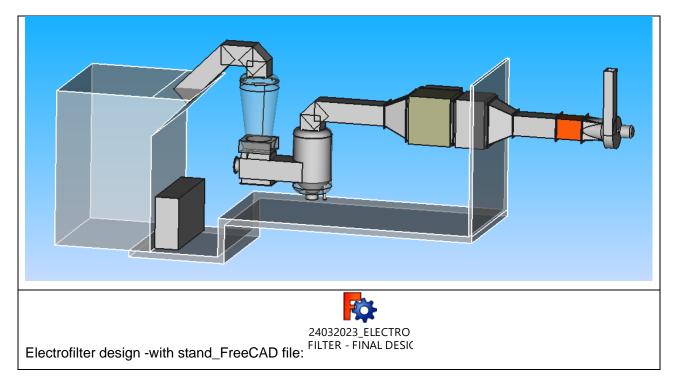


The purpose of using this nozzle is that the Electrostatic filter that is being used in the filtration system needs a temperature of less than 60 degrees Celsius to perform at its best conditions

This is the Requirements for the installation site

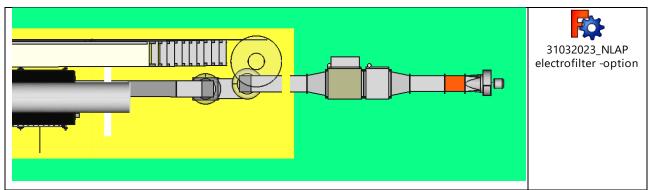
- A. Temperature: +5~+50°C
- B. Humidity: 20~90%
- C. Altitude: <1000M
- D. Nature of smoke: <60°C, non-flammable, non-explosive, non-volatile and
- E. non- corrosive.

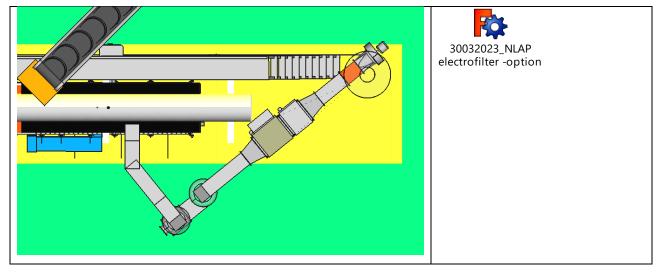

The Atomizing Nozzle uses pressured air and liquid to give the best performance, and this nozzle got the following table to get air-to-fluid ratio:



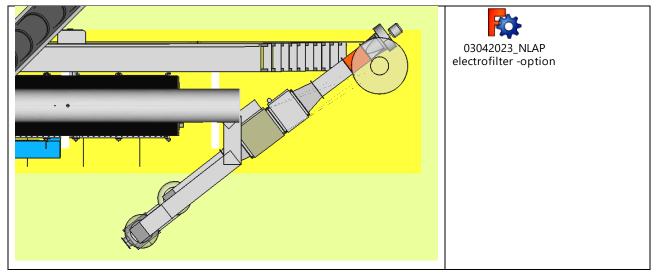
mair spray	or round sp ntained wit ying will tu eached "D	hin th n into	e dist torrei	tance	of" B e dista	,the	(Rou	und spro	aying	~	•	•		▲ 15c		Cap			ap
	angle roi formanc		_	r.			*						D		2			→	Gui	ard Ri	ıg	
							liqui	d flow (L	/min)and	d flow (L	/min]						Ĵ					
spray	spray device consists of							Water	r pressure	e (bar)									Si	ze		
device	air cap		0.7bar		. 415	1.5bar			2bar			3bar	2/2-0		4bar		in second					
model	and fluid cap	(bar)	Water (L/h)	Air (L/min)	Air pressure (bar)	(L/N)	Air (L/min)	Air pressure (bar)	(L/N)	Air (L/min)	Air pressure (bar)	Water (L/h)	Air (L/min)	Air pressure (bar)	(Ц/П)	Air (L/min)	Air (bar)	Liquid (bar)	(cm)	B (cm)	1000	(
SUK16	Liquid C. 2050 and Air Car 67-6-20-70	0.6	5.3 4.3 3.0 1.7	10.2 12.2 14.2 17.0	1.5	5.5	13.3 15.0 17.0 19.0 22 24	1.5 1.8 2.1 2.4	8.1 6.6 4.9 3.2	16.4 21 25 29	2.4 2.7 3.0 3.2 3.4 3.5	8.9 8.1 6.4 4.9 4.2 3.4	22 26 30 34 37 40	3.1 3.4 3.9 4.2 4.6 4.9	10.5 9.7 7.8 6.1 4.4 2.8	24 28 36 42 47 54	3.0	0.7 1.5 2.0 3.0 4.0	16	19	23 24 25 26 30	2
SUK26B	Liquid Cap 60100 and Air Cap 140-6-37-70°	0.85	7.0	5.0	1.7	13.2 9.8		2.0 2.1 2.2	18.5 15.1 11.7	68 76 85	2.8 3.0 3.1 3.2 3.4 3.5 3.7	25 22 18.5 15.1 12.1 9.1 6.1	84 92 101 119 130 142 65	3.9 4.1 4.2	31 28 26 23 20 13, 6 6, 8	113 122 130	1.7 2.1 3.2	0.7 1.5 2.0 3.0 4.0	19 19 20	25 25 26	31 33 33 26 28	12345
SUK26	Liquid Cap 60100 and Air Cap 140-6-37-70°	0.7 0.85 1.0	24 13.6 7.6	32 44 57	1.4 1.5 1.7 1.8	43 35 28 21	37 49 61 71	2.1 2.2 2.4 2.5	33 26 18.9 11.7	66 78 89 100	2.8 3.0 3.1 3.2 3.4 3.5	52 46 39 33	99 110 122 133	3.7	63 68 52 41	68 79 101 111 138	1.5 2.4 3.2	0.7 1.5 2.0 3.0 4.0	20 20 20	27	36 37 37 38 38 38 39	5
SUK29	Liquid Cap 60100 and Air Cap 140-6-52-70°	1.3 1.5 1.8 2.0 2.1 2.3 2.4	36 29 23 19.7 16.7 14.0 11.4	85 102 117 125 133 142 149	2.1 2.4 2.7 3.0 3.2 3.5 4.2	57 51 45 39 33 28 13.6	116 130 143 157 170 185 220	3.1 3.2 3.4 3.5 3.9 4.6 4.9	53 50 47 45 38 25 18.5	156 163 170 177 194 230 245	3.7 4.2 4.9 5.6 6.0 6.3 6.7 7.0	64 51 40 34 28 22 17.8	133 197 230 265 285 300 320 335	5.6 6.0 6.3 6.7 7.0	74 68 62 56 51	245 260 280 295 315	3.0 3.9 6.0	0.7 1.5 2.0 3.0 4.0	20 20 22 23 24	25 27 28 29 32	33 34 37 38 41	5 6 8 9
SUK30	Liquid Cap 40100 and Air Cap 120-6-35-60°	1.1 1.3 1.4 1.5 1.7 1.8 2.0	11.4 12.3 9.9 7.9 6.1 4.9 3.9 3.1	40 45 50 54 58 62 67	2.2 2.5 2.8 3.0 3.1 3.2 3.4	13.0 16.3 12.1 8.9 7.6 6.4 5.5 4.7	62 71 79 83 87 91 95	4.9 2.7 3.0 3.2 3.4 3.5 3.9 4.2	21 16.3 12.3 10.7 9.3 6.4 4.7	69 78 86 91 94 105 115	4.2 4.6 4.9 5.3 5.6 6.0 6.3	17.8 19.3 14.6 10.8 8.1 6.2 4.9 4.0	100 113 124 135 146 157 167	5.6 6.0 6.3 6.7 7.0	22 17.6 14.0 11.4 9.1	130 142 152 163 174	3.0 3.4 5.3	0.7 1.5 2.0 3.0 4.0	15 16 16 18 19	19 20 20 22 24	23 24 24 25 30	2 4 5 7 9
SUK46	Liquid Cap 100150 and Air Cap 189-6-62-70°	1.7 1.8 2.0 2.1 2.3	25 19.7 15.1 11.4 7.6	156 167 178 193 205	3.4 3.0 3.1 3.2 3.4 3.5 3.7	39 33 27 23 18.5 14.8	230 240 255 265 280 290	3.4 3.5 3.7 3.9 4.1 4.2 4.4	4.7 50 43 41 27 23 18.9 15.9	250 260 275 300 310 320 335	4.6 4.9 5.3 5.6 6.0 6.3	4.0 62 47 36 26 18.9 13.6	320 345 375 405 435 460	6.0 6.3 6.7 7.0	93 77 62 52	395 425 460 495	3.9	0.7 1.5 2.0 3.0 4.0	24 25 28 29 33	33 34 37 38 42	46 47 51 53 58	

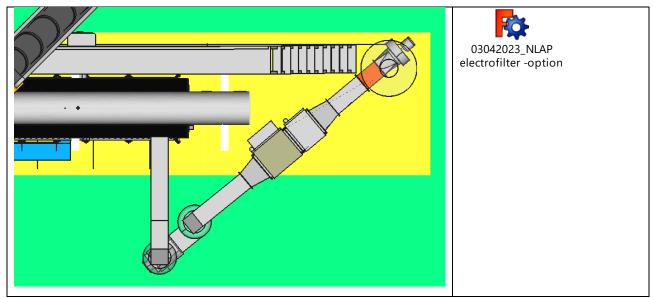
This atomizing nozzle will be installed in the scrubber section for cooling, and it might use the same air compressor and water pump for each of the four nozzles.


2.6 Electrofilter



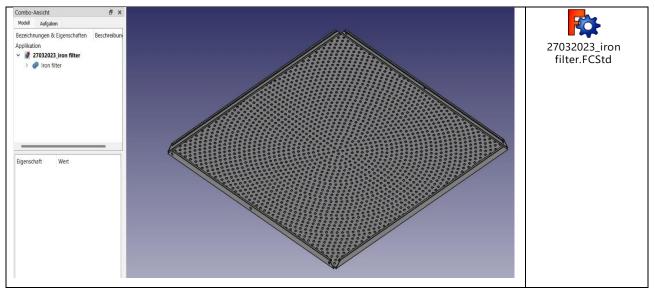
2.6.1 Options of electro filter installation


2.6.1.1 Electrofilter Option 1

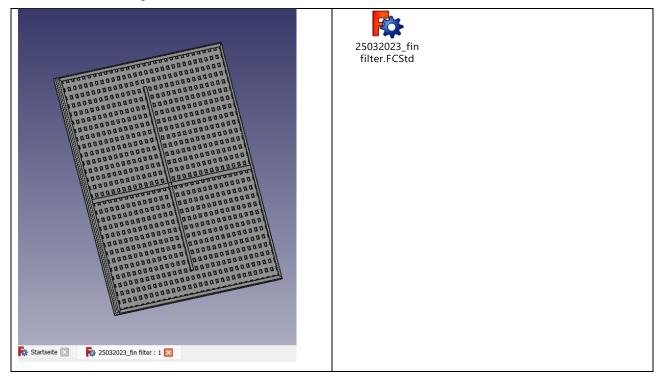

2.6.1.2 Electrofilter Option 2

2.6.1.3 Electrofilter Option 3

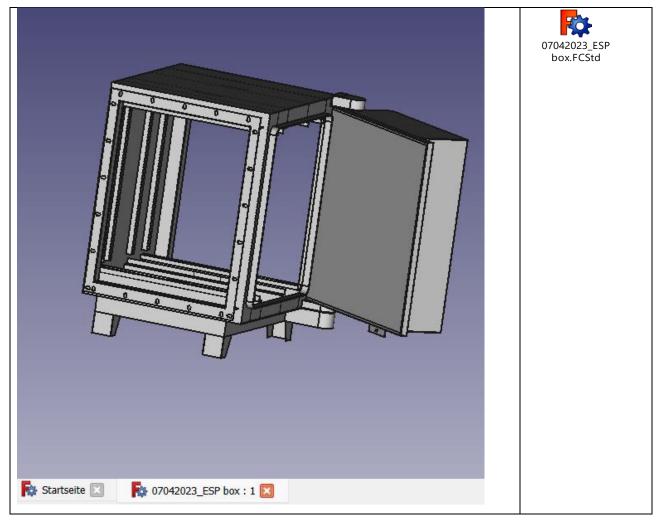
2.6.1.4 Electrofilter Option 4


2.7 Electrofilter Internal details

2.7.1 Electro design (tubes with central electrode)

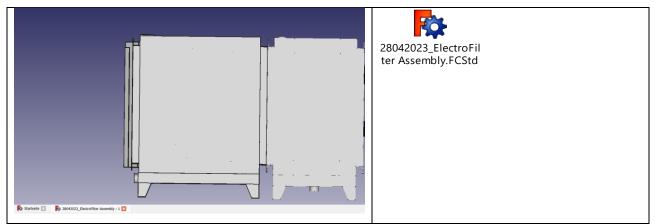

	Evendentian Ansch1 Weinzerge Malko Ferster Halle Exelectionuper & Elegendulater Status Status Status Status Exelectionuper & Elegendulater Status Status Status Status Status Exelectionuper & Elegendulater Status Status Status Status Status Status Status Exelectionuper & Elegendulater Status Status	05042023_electro.F CStd
--	--	----------------------------

2.7.2 Iron filter design

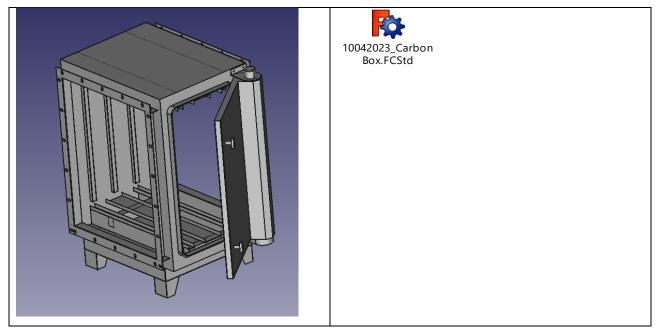


2.7.3 Fin filter design

Project 2: Improvement of Filter System in Incinerator Power Plant 2023/24


2.7.4 ESP box design

2.7.5 ESP assembly design


Date Beatchellen Ansicht Werkzeuge Makro Fenster Hilfe Catologiene Bezeichnungen & Eigenschaften Catologiene Bezeichnungen & Eigenschaften Catologiene Cato	
28042023_ES Assembly.FCS Cutors Cut	
Combo-Anacht C X Model Adapter Bezeichnunges Eigenschaften C Cuto13 C Cuto12 C Cuto13 C Cuto31 C Cu	
Model Adgeben Bezeichhungen & Eigenschaften	SP
Bezeichnungen & Eigenschaften Cut018 Cut018 Cut013 Cut0013 Cut0012 Cut000 Cut0012 Cut000 Cut0012 Cut000 Cut0012 Cut002 Cut02	Std
Eigenschaft Wert	

2.7.6 Electro-Filter Assembly design

2.8 Carbon Filter

2.8.1 Carbon filter box design

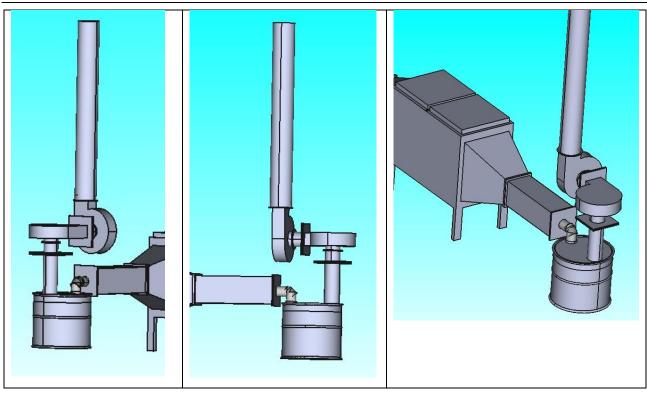
2.8.2 Carbon filter stand design

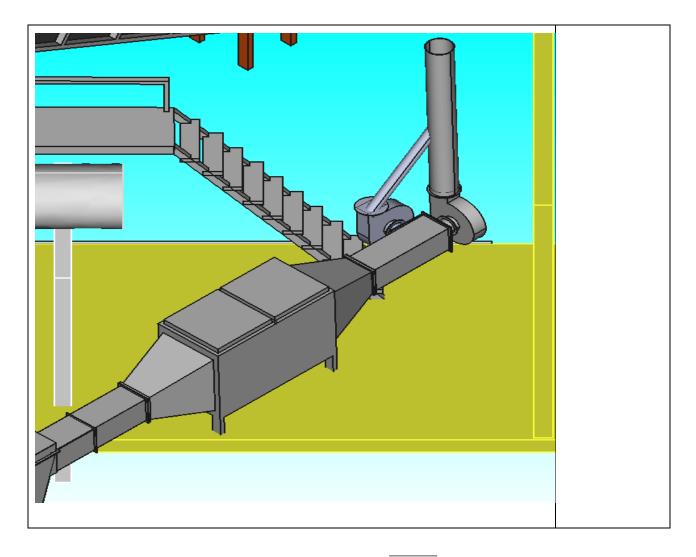
2.8.3 Carbon filter design

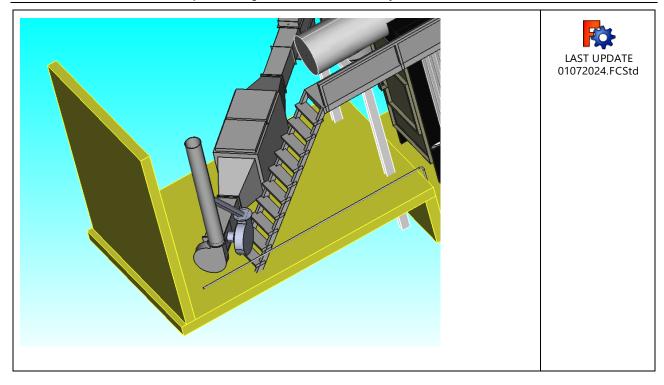
2.8.4 Carbon assembly design

2.9 NLAP-IPP Chemical Filter (Realization)

Chemical filter Testing the new Sprinklers and the pumps Video:


Chemical tanks filling and PH scale computing Video:




2.10 Barrel Water Filter

in front of flue gas outlet: <u>flue gas flows through water (like argile)</u> - 14.06.24

Barrel Water Filter



To address the challenge of filtering smoke particles from the air, we designed and implemented an innovative solution using a water-based filtration tank. The initial setup involved chaining the smoke through a tank filled with water, where the particles were effectively trapped and removed, resulting in cleaner, purified air.

This method leverages the principle of wet scrubbing, where contaminants are absorbed and neutralized by the liquid medium. Encouraged by the success of our initial prototype, which significantly reduced airborne particulates, we expanded our system by constructing an additional filtration tank.

This second tank was crafted using a repurposed oil barrel, demonstrating both cost-efficiency and resourcefulness. By integrating this new unit into the existing setup, we enhanced the overall capacity and efficiency of the filtration process. The combined system now offers a robust solution for smoke particle filtration, with each stage contributing to improved air quality through successive layers of water-based particle trapping. Below are some pictures that illustrate our filtration system and its components

Barrel Water Filter

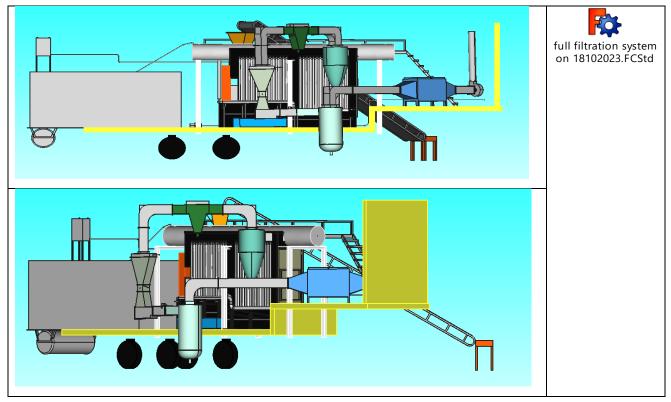
we found that it should be smaller to fit in our system

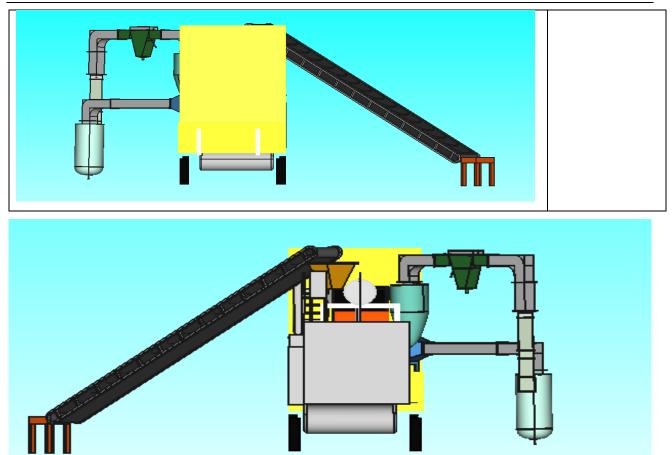
To further optimize the performance of our smoke filtration system, we installed two additional exhaust fans downstream of the oil barrel-based filtration tank.

These fans were strategically positioned to enhance the airflow through the entire system, ensuring a steady and robust flue. By increasing the air movement, the exhaust fans aid in pulling smoke

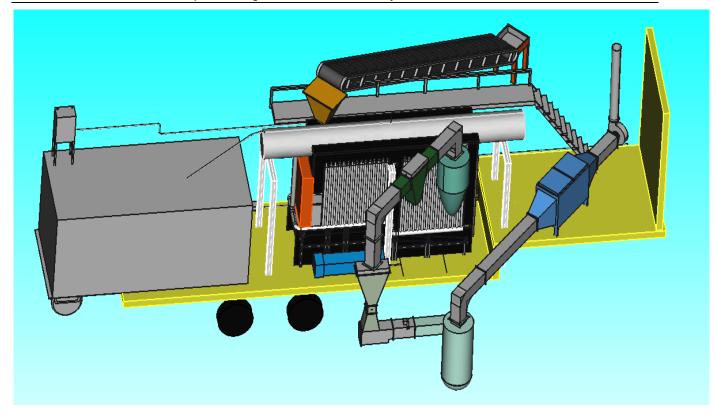
more effectively through the water in the oil barrel filtration unit, thus maximizing the contact between smoke particles and the water.

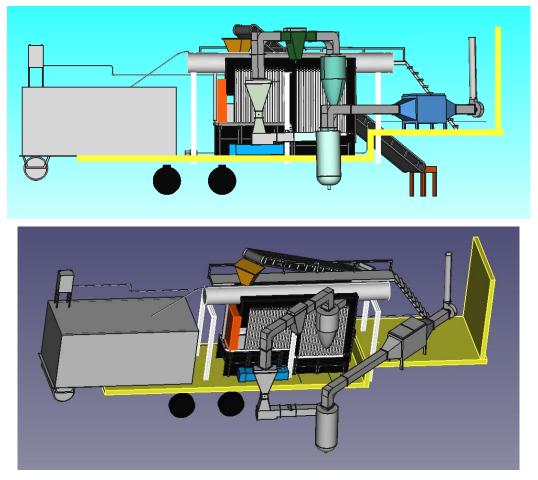
This enhanced airflow accelerates the rate at which particles are trapped and removed from the air, boosting the system's overall efficiency.

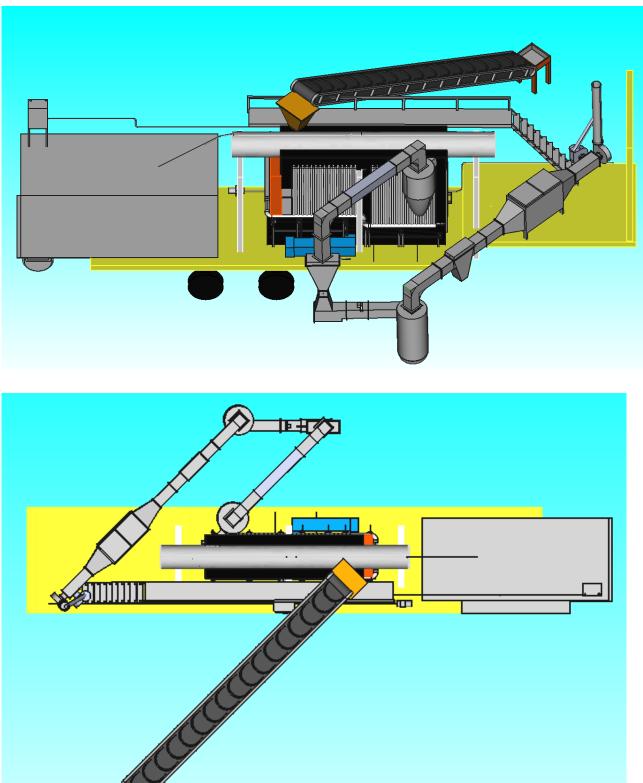

2.11 Realization of filter system on Ras Maska site 2024



Project 2: Improvement of Filter System in Incinerator Power Plant 2023/24


- 2.12 NLAP-IPP Mobile Plant at Ras Maska
- 2.12.1 NLAP-IPP Ras Maska 19.10.2023



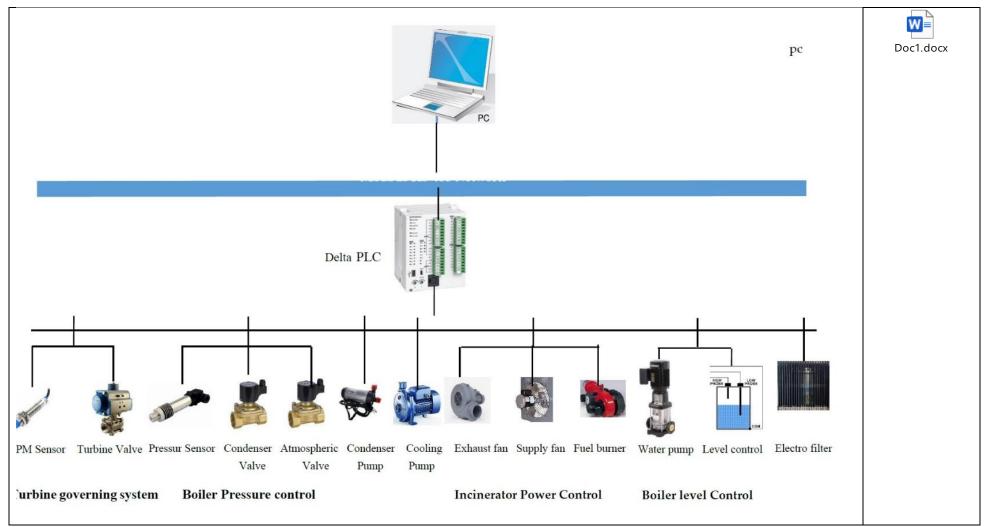

Project 2: Improvement of Filter System in Incinerator Power Plant 2023/24

2.12.2 NLAP-IPP, Ver. 21.10.23

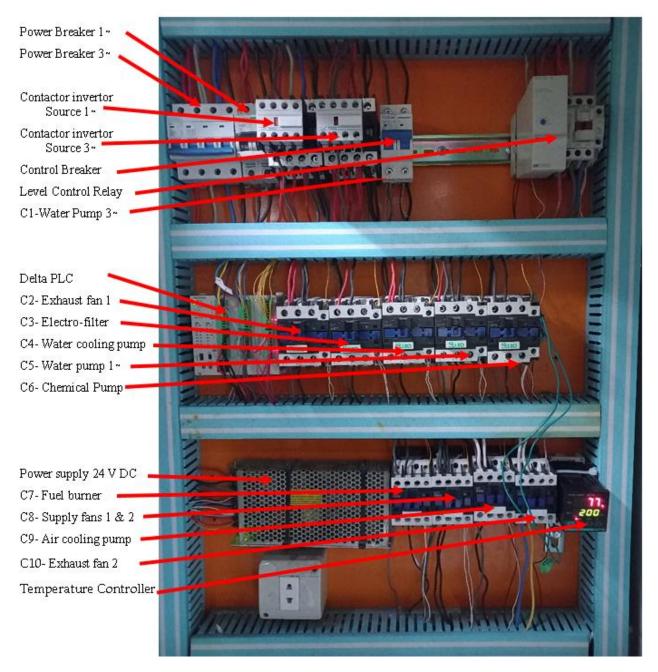
2.12.3 NLAP-IPP (last Ver. on 02.07.24)

2.13 NLAP-IPP Process Control System (Automation)

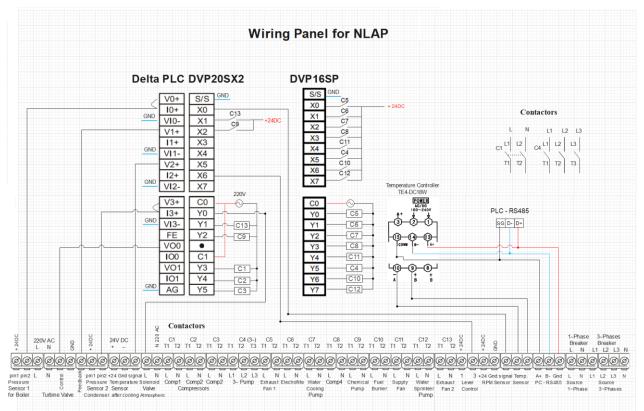
2.13.1 NLAP-IPP_PCS(Modbus address on the PLC) [xlsx file]



Point	Addresses inside GUI	Modbus-addresses	Physical Address (PLC)	Remarque
//boilerPressureControl				
BPC_BOILER_CURR_PRESSURE	4101	44102	D5	
BPC_CONDENSER_CURR_PRESSURE	4171	44172	D75	
BPC_SET_ATMOSPHERIC_VALVE_OPENING	1284	1285	Y4	
BPC_OPEN_OR_AUTOMATIC_ATMOSPHERIC_VALVE	2059	2060	M11	
BPC_AUTOMAN_SETPOINT_PRESSURE	2060	2061	M12	
BPC_SETPOINT_ATMOSPHERIC_PRESSURE	4105	44106	D9	
//turbineGoveringSystem				
TGS_CURR_TURBINE_SPEED	4107	44108	D11	
TGS_CURR_VALVE_OPENING	4128	44129	D32	
TGS_SET_VALVE_OPENING	4109	44110	D13	
TGS_AUTOMAN_VALVE	2068	2069	M20	
TGS_AUTOMAN_SETPOINT_RPM	2069	2070	M21	
TGS_SETPOINT_RPM	4106	44107	D10	
//inceneratorPowerControl				
IPC_SET_SUPPLYFAN	1300	1301	Y4, Ext	
IPC_CURR_SUPPLYFAN_STATUS	1044	11045	X4, Ext	
IPC_SET_FUELBURNER1	1302	1303	Y6,EXT	
IPC_CURR_FUELBURNER1_STATUS	1046	11047	X6,EXT	
IPC_SET_EXHAUSTFAN1	1296	1297	YO, Ext	

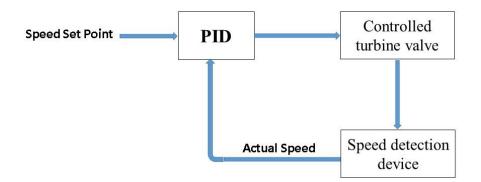

IPC_CURR_EXHAUSTFAN1_STATUS	1040	11041	X0, Ext	
IPC_SET_EXHAUSTFAN2	1281	1282	Y1	
IPC_CURR_EXHAUSTFAN2_STATUS	1025	11026	X1	
IPC_SET_Water_COOLINGPUMP	1298	1299	Y2, Ext	
IPC_CURR_Water_COOLINGPUMP_STATUS	1042	11043	X2, Ext	
//FilteringSystem				
FS_SET_ELECTROFILTER	1297	1298	Y1, Ext	
FS_CURR_ELECTROFILTER_STATUS	1041	11042	X1,EXT	
FS_CURR_TEMPERATURE1_incinerator	4146	44147	D50	
FS_CURR_TEMPERATURE_After_Chemical_FILTER	8208	8209	Temperature Controller	
FS_CURR_TEMPERATURE_After_Cooling	5208	45209	D1112	
FS_SET_Chemical_PUMP	1282	1283	Y2	
FS_CURR_Chemical_PUMP_STATUS	1026	11027	X2	
FS_SET_Air_COOLINGPUMP	1303	1304	Y7, Ext	
FS_CURR_Air_COOLINGPUMP_STATUS	1047	11048	X7, Ext	
//Boiler Level Control				
LC_CURR_LEVELCONTROL_STATUS	1030	11031	X6	
LC_SET_WATER STEAM CYCLE MAIN PUMP 3PHASE	1301	1302	Y5, Ext	
LC_CURR_WATER STEAM CYCLE MAIN PUMP 3PHASEE_STATUS	1045	11046	X5, Ext	
LC_SET_WATER PUMP 1PHASE	1299	1300	Y3, Ext	
LC_CURR_WATER PUMP 1PHASE	1043	11044	X3, Ext	

Coil/Register Numbers	Data Addresses	Туре	Table Name
1 to 9999		Read-Write	Discrete Output Coils
10001-19999	0000 to 270E	Read-Only	Discrete Input Contacts
30001-39999	0000 to 270E	Read-Only	Analog Input Registers
40001-49999	0000 to 270E	Read-Write	Analog Output Holding Registers


2.13.2 Process Control system Topology

2.13.3 Control Panel, Version 06.09.2023

2.13.4 Wiring Panel



Wiring Panel file:

2.13.5 Turbine Governing System (TGS)

Turbine control system by PID

PID	Parameter	Adjustment	by GUI

Sampling time	50	50	-	Change
Propotional gain Kp	10	10	-	Change
Integral gain KI	8	8	-	Change
Derivative gain KD	1	1	-	Change
Control mode	0	0	-	Change
Tolerable range for error	4	4	-	Change
Upper bound of out	100	0	-	Change
Lower bound of out	0	0	-	Change
Upper bound of integral	0	0	-	Change
Lower bound of integral	0	0	-	Change

Code repository :

- GUI (C#) Source Code:

- PLC Ladder Code:

2.14 Testing without Electro-filter for temperature Calculation

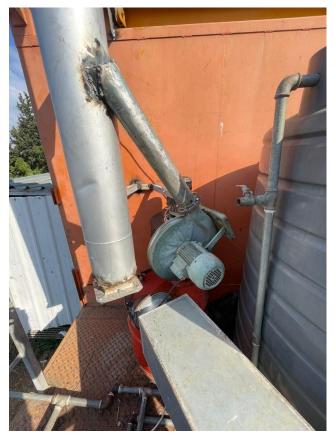
First of all, the powerplant checked for the electric parts

4 water sprinklers added to the scrubber

13-waste bags installed in the furnace for the test

fire started in the furnace

The powerplant started working and data collected of the temperature


The fire started choking due to water overflow in the scrubber

The ball valve of the cyclone opened to release the excess amount of water

chocking the flow of t

Project 2: Improvement of Filter System in Incinerator Power Plant 2023/24

2.15 Test 01.09.2023 - Ras Maska

2.15.1 Goal

The goal of the experiment is to calculate the temperature of the outlet of the cyclone's flow gases that should be less than 60 Degrees Celsius and to test the sprinklers of the scrubber to see if they are good to use in the smoke filtering process.

2.15.2 Description

The previous smoke filtering system in the power plant was replaced with a new scrubber, cyclone, and the connections between them. The system received new sprinklers to improve smoke filtration and cooling.

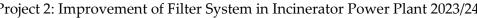
The powerplant's electric components were successfully maintained. and a temperature sensor was connected to the electro-filter intake before doing this test since the electro-filter requires a temperature of less than 60 degrees Celsius to remain safe and not malfunction.(we removed the Electro-Filter parts in this test)

2.15.3 Test Specification

- 1. Connect the incinerator to the venturi scrubber, the cyclone, and the chimney.
- 2. Checking all ducts and pipes.
- 3. Removing the electro-filter from the system.
- 4. Connecting the temperature sensor to the outlet of the cyclone.
- 5. Putting 13 bags of wood in the combustion chamber of the incinerator.
- 6. Setting fire to the combustion chamber of the incinerator.
- 7. Turning on the 2 fans placed in the combustion chamber.
- 8. Turning on the pump (P). the water started to run in the system and we opened the scrubber ball value to let the water coming out of the sprinklers, filtering the smoke and cooling it to get out of the system.
- 9. Running the incinerator with a scrubber, measuring smoke temperature after cyclone by sensor related to the GUI., it was found that it is 150 degrees without water and 106 degrees with sprinklers turned on
- 10. with the sprinklers turned on the smoke starts choking due to the water overflow in the scrubber and that closes the cyclone gasses inlet, we open the main door of the combustion chamber manually to let the smoke return to its full combustion process.
- 11. We opened the ball value of the cyclone manually to let the smoke receive to the chimney.
- 12. We closed the main door of the combustion chamber manually when the gases flowed back to normal.
- 13. We Turned off the 2 fans placed in the combustion chamber. when the process was done.
- 14. We turned off the incinerator.
- 15. We waited until the smoke stopped emitting.
- 16. We Turned off the pump (P), Closed the ball valve of the cyclone manually, disconnected the electrical connections, and opened the boiler head gate valve to let the pressurized water vapor get out of the system then we closed it again.

2.15.4 Steps

Steps	Steps description	Excepted result	Result
Precondition	The incinerator is connected to the venturi scrubber, then the cyclone, then the chimney		~


	All electrical parts of the power plant are connected (without electro-filter)		
	All ducts are checked		~
	All pipes are checked		~
	4 sprinklers are connected to the pipe in the venturi scrubber		~
	The electro-filter removed from the system		~
	The temperature sensor is connected to the outlet of the cyclone		~
	Put 13 bags of wood in the combustion chamber of the incinerator	13 bags of wood are put in the incineration	~
	Set fire to the combustion chamber of the incinerator	The wood started to burn	~
Run the		Smoke started to appear	~
incinerator with measuring	Turn on the 2 fans placed in the combustion chamber	The 2 fans are turned on	~
smoke temperature after cyclone		The wood combustion is more efficient	×
		The pump (P) is turned on	~
	Turn on the pump (P)	The sprinklers start working	~
		The water flow out of the sprinklers working properly	×

		The water doesn´t enter the cyclone	×
		Water starts to exit from the outlet of the scrubber	~
	Open the ball valve of the scrubber manually	The flow of the smoke doesn't choke in the combustion chamber	×
		The smoke passing out of the chimney	×
	The smoke is choking, open the main door of the combustion	The smoke getting out of the combustion chamber door	~
chamber manually	The fire back to normal combustion	~	
		The water flow can be extracted from the bottom of the cyclone	~
	Open the ball valve of the cyclone manually	The water has a little black color in the smoke due to the cyclone	~
		The smoke can enter the cyclone normally	~
	Read the temperature value in the outlet of the cyclone by sensor related to the GUI	The temperature is read by the GUI	~
Turn Off the incinerator	Close the main door of the combustion chamber manually	The main door of the combustion chamber is closed	~

Turn Off the 2 fans placed in the combustion chamber	The 2 fans are turned off	~
Wait until the smoke stops emitted	The smoke emission stops	>
Turn Off the pump (P)	The pump (P) is turned off	<
Close the ball valve of the cyclone manually	The ball valve of the cyclone is closed	<
Disconnect the electrical connections	All electrical connections are disconnected	<
Open the boiler gate valve manually	the superheated vapor gets out from the valve	•
Close the boiler gat manually after the pressurized vapor gets out	It is closed successfully	~

2.15.5 Pictures related to the test

Test 01.09.2023 - Ras Maska

2.15.6 Data Collected

- The temperature of the smoke at the outlet of the cyclone without water was 150 degrees Celsius.
- The temperature of the smoke at the outlet of the cyclone with sprinklers turned on was 106 degrees Celsius.
- The water flow from the sprinklers was not sufficient to cool the smoke.
- The smoke was able to enter the cyclone normally, but the water flow from the sprinklers caused the water to back up into the cyclone and choke the smoke.

2.15.7 Data Analysis

- The sprinkler holes are large.
- The fans are not enough to push the smoke out of the incinerator.
- The used water is hot to cool the smoke

2.15.8 Future Work

- New sprinklers will be used in the system.
- 2 fans will be connected to the incinerator.
- Another water tank will be used
- Water should be cooled with the cooling process that will be installed in the tank.

2.16 Filtration test (18.12.2023)

2.16.1 Goal

In this test, we adhere to the test specification (01 Test Specification of the filtration System) by inspecting each component of the filter system to ensure its functionality.

First, we double-checked the mechanical components, such as the ball valves, ducts, and piping system from the chemical filter and scrubber to the chemical and water supply tanks, to ensure that everything was properly linked.

Second, we used the GUI software to inspect the electrical connections for each item, such as pumps, air supply fans, and exhaust fans. Each device was checked for functionality for 10 seconds

Third, we discovered that the garbage bags had become wet as a result of the rain; therefore, instead of the waste bags, we used bags filled with wood.

Fourth, we examined the manual flame igniter and discovered that it was not working properly due to a malfunction in its electric parts, and the trailer of the powerplant was also not steady and was inclined, preventing the tank from pushing the Diesel to the flame igniter.

Fifth, we used the GUI software to open the exhaust fans and the air supply fans, then we manually started the fire through the main gate, and when the fire started, we closed the main gate.

Sixth, we begin collecting data for the temperature at the incinerator outlet, the temperature between the chemical filter and the scrubber, and finally the temperature in the electro-filter inlet.

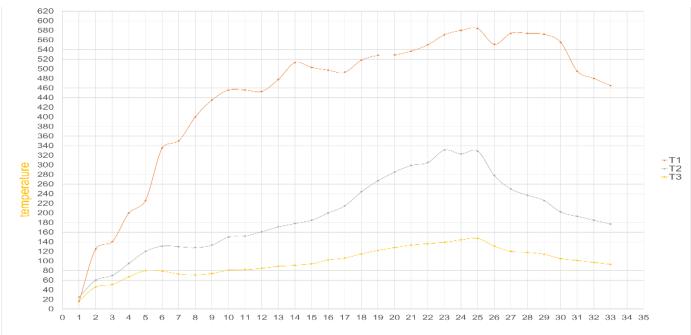
Seventh, we collected data on T1, T2, and T3 sensors when P1 and P2 were closed when P1 and P2 were opened when P2 was closed, and finally when both P1 and P2 were opened together again.

Eighth, we used the GUI software to close the pumps P1 and P2, the exhaust fans E1 and E2, and the air supply fans AF1 and AF2, while manually closing the ball valves BV1, BV2, BV3, BV4, and BV5. to put out the fire, and we double-checked that all systems were turned off.

2.16.2 Table of System Test

Step	Step description	Expected result	re	sult	result description						
	Precondition		×	~	Why?						
check out the system	System is off	All system is off		>							
	Initial Condition										
	check the mechanical filtration connections: Ducts, BV1, BV2, BV3, BV4, BV5, P1, P2, E1 and E2.	All Mechanical connections are good		>							
check out steps	Check the electrical filtration connections: wires. T1, T2, T3, P1, P2, E1, and E2 (By the GUI Software) for 10 seconds each.	All Electrical connections are good and the temperature between 20 and 30°C		>							
	Check the Air Supply fans AF1 and AF2 for 10 seconds (By the GUI Software).	The air fan Supply working well		>							

	check the flame igniter manually for the incinerator	The flame igniter working well	×		the flame igniter didn't work					
putting waste bags	put the waste bags inside the incinerator	no obstacle	×		we use wood instead of the wet waste bags					
add Diesel	add Diesel inside the diesel-tank presented above the turbine room	no obstacle	×		the power plant trailer is inclined and the diesel not moving in the pipes					
Turn on E1 and E2	for 10 Seconds Turn on the Exhaust fans presented above Cyclone #1 and below the chimney (By the GUI Software).	The exhaust fan working		~						
Turn on P1 and P2	for 10 Seconds Turn on the liquid pumps for the chemical filter and the Scrubber (By the GUI Software).	The liquid pumps working		>						
open BV1, BV2, BV3, BV4 and BV5	open the ball valves for the chemical filter, scrubber, cyclone #2, the Water tank, and the chemical tank. Manually	no obstacle		~						


	Starting Test												
check out T1, T2 and T3	Check the temperature at its initial condition before starting (by the GUI Software).	The temperature must be between 20 and 30°C		>		T_1	16	Π2	25	Τ ₃	17		
Turn on	Turn on the exhaust fans (E1, E2) and the air supply fan (AF1, AF2) of the incinerator (By the GUI Software).	air starts flowing out of the chimney		~									
E1, E2, AF1 and AF2	Start the fire using the Flame igniter to the waste bags (manually).	Igniter starts fire	×		the fire started manually and igniter doesn't work								
	Close the main incinerator gate	It close well		~									
check out T1,	Check out the T1 Sensor to get the maximum Temperature	The max. temperature above 400°C		~		T_1	125	140	200	226			
T2 and T3	Check out T2 Sensor to see the Effectiveness of the Chemical filter chamber and the Cyclone #1	no obstacle		>		Τ ₂	60	70	95	120			

	Check out T3 Sensor to see the effectiveness of the Cyclone #2	no obstacle		~		T_3	46	51	67	80						
open P1 and P2	Turn on the liquid pump for the chemical filter to start filtration and the scrubber to start cooling	the pumps start working well		~												
	Check out T1 Sensor to get the max temperature	temperature increasing or stay steady		~		T_1	335	350	400	435	456	456	453	478	513	503
check out T1, T2 and T3	Check out the T2 Sensor to see the Effectiveness of the Chemical Filter and Cyclone #1 cooling	temperature decrease		~		Τ ₂	131	130	128	133	150	152	161	171	178	185
	Check out the T3 Sensor to see the effectiveness of the system, especially the scrubber cooling	temperature decrease below 60°C	×		the temperature is between 74°C and 94°C	Τ ₃	79	73	71	74	81	82	85	68	16	94
open the Chemi cal tanks	check out the filtration Cycle	the color of the water starts to change		~												
close P2 pump	close the chemical liquid pump to check the effectiveness of the	the pump P2 close normally		~												

cooling process by the scrubber temperature Check out the T1 Sensor 528 529 537 518 550 571 580 497 493 584 <u>1</u> to get the max increasing or \checkmark Temperature staying steady check the temperature 244 299 331 323 267 285 305 329 200 215 T_2 Check out T2 Sensor \checkmark out T1, starts to rise up T2 and T3 Check out the T3 Sensor difference in the to see the effectiveness of the scrubber cooling temperature the temperature 102 106 115 122 128 133 136 139 144 147 لے × compared to the initial compared to the is increasing process without both initial data Pumps open open the chemical the pump P2 P2 \checkmark liquid pump open normally pump the temperature check started to Check out the T1 Sensor temperature out T1, 572 555 495 decrease 551 574 574 480 465 X to get the max increasing or T2 and because the Temperature staying steady T3 wood bags are mostly finished

	Check out T2 Sensor	the temperature starts to decrease	~	Τ2	278	250	237	226	202	193	185	177	
	Check out the T3 Sensor to see the effectiveness of the filters cooling compared to the condition when P2 was closed	difference in the temperature compared to the above condition	~	Τ ₃	131	120	118	114	105	101	97	93	
close P1 and P2	disconnect the water and chemical from the filters		~										
close BV1, BV2, BV3, BV4 and BV5	close the ball valves to close the filtration system	the system kills the fire	~										
close E1 and E2	close the exhaust fan (E1, E2)		~										
Close AF1 and AF2	close the Air supply fan (AF1, AF2)		~										

	Postcondition								
check out the system	System is off	all system is off	>						

2.16.3 Graph of the Temperature Sensors [Temperature in degree Celsius]

Guide:

From 0 to 1, the Table system was in rest.

From 1 to 5, Pumps P1 and P2 were closed.

From 5 to 15, Pumps P1 and P2 were opened.

From 15 to 25, pump P2 was closed and P1 was opened.

From 25 to 33, P2 was opened again when P1 was already opened.

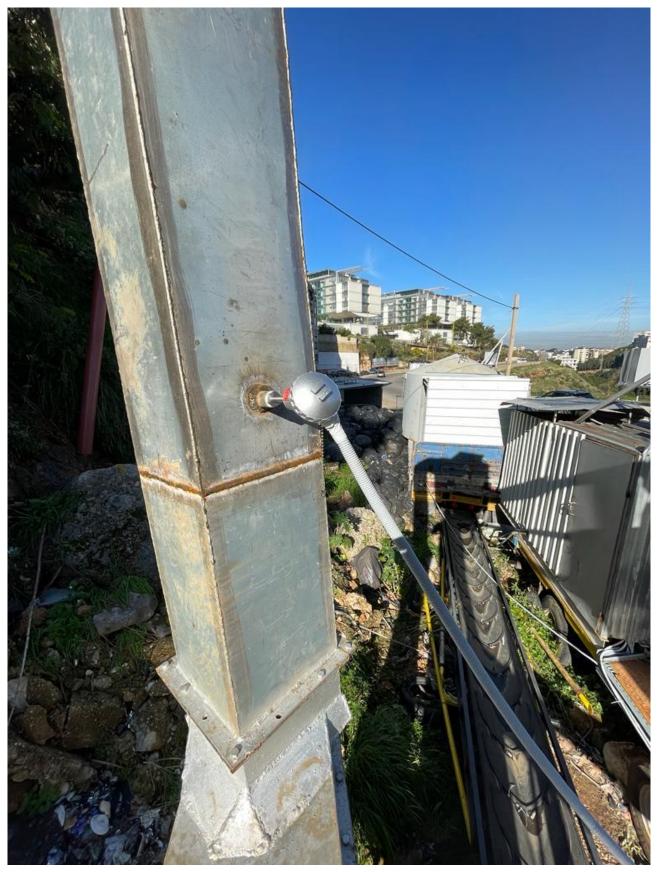
2.16.4 Test Analysis

- The flame igniter had difficulty since the trailer became inclined due to rain and sank backward to the ground, preventing the fuel from feeding the flame igniter.
- Both pumps P1 and P2 assisted the flue gas in lowering the temperature when it reached values between 74 and 94 degrees Celsius; it was not enough, but it did a nice job in comparison to the previous test results.
- The chemical filter performed well in the filtration process and in cooling the flue gases, but this was not permanent because the drainage of the chemical filter was connected to the main hole of the chemical, so it was fed again, causing its temperature to rise to 60 degrees Celsius, reducing the cooling process of the flue gases.
- The new sprinklers did a better job of chilling the flue gas with less water and chemical supplies than the old standard method.
- The cleaning procedure was improved by the addition of cyclone number one.
- Adding an extra temperature sensor to the filtering cycle improves data collection accuracy.
- Connecting the GUI software in the room close to the engine trailer rather than the far-distant center improves data transmission speed.

2.16.5 What should we do next?

- Repairing the flame igniter and connecting it to the graphical user interface software.
- Maintain the trailer's stability on the ground.
- Increase the cooling process with the chemical filter and get a bigger water tank.
- Re-cool the flue gas with the scrubber drainage water.
- Including additional methods to get the flue gas to the required temperature.
- Using fewer trash bags instead of 12 bags to avoid a dramatic spike in temperature.

2.16.6 Pictures related to test on 18.12.23


Filter System pic

Filter System Pic

Temperature Sensor T1 Pic

Temperature Sensor T2 Pic

Filtration test (18.12.2023)

Filter System pic

Project 2: Improvement of Filter System in Incinerator Power Plant 2023/24

Exhaust fan E1 pic

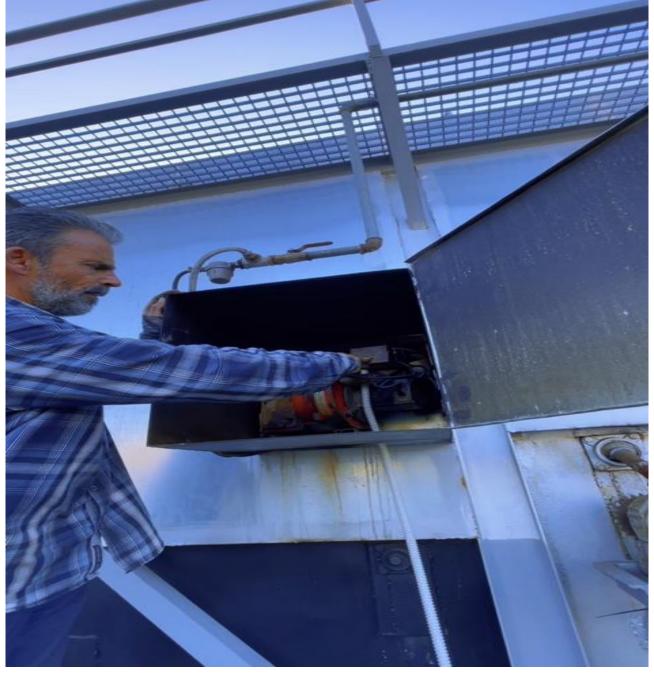
Filtration test (18.12.2023)

Exhaust fan E2 pic

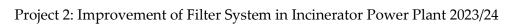
Project 2: Improvement of Filter System in Incinerator Power Plant 2023/24

Water pump P1 pic

Filtration test (18.12.2023)


Chemical pump P2 pic

Project 2: Improvement of Filter System in Incinerator Power Plant 2023/24



Air supply fan AF1 pic

Filtration test (18.12.2023)


Flame igniter chamber pic

Incinerator chamber pic

Filtration test (18.12.2023)

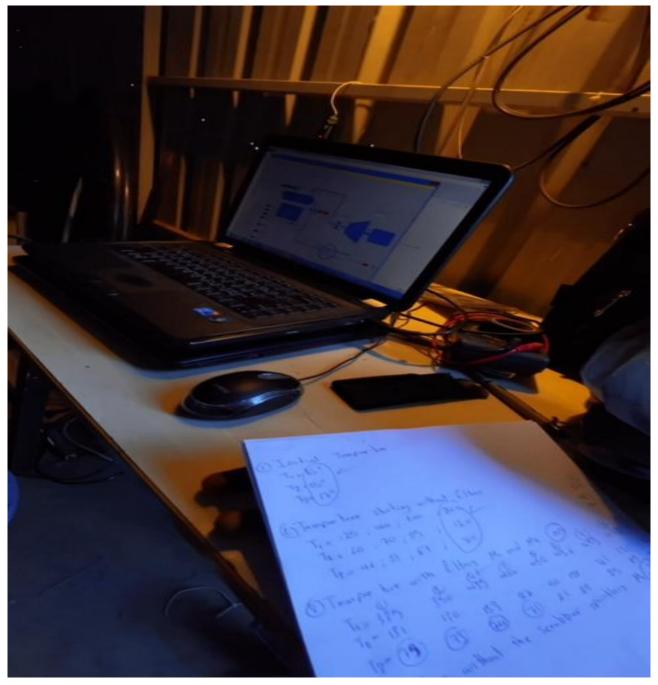
Incinerator chamber main gate pic

Project 2: Improvement of Filter System in Incinerator Power Plant 2023/24

chemical filter tank process pic

Filtration test (18.12.2023)

The drainage of the water by the scrubber cooler pic

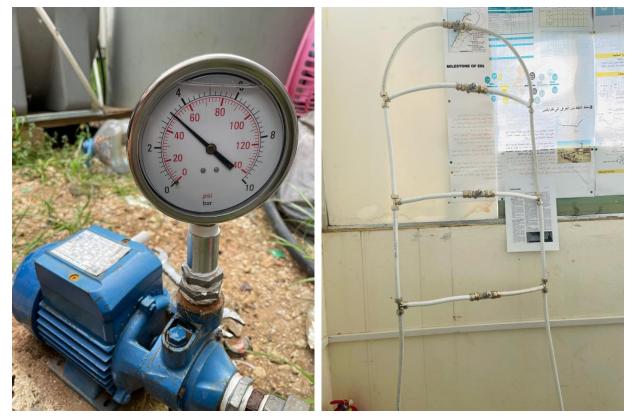

Filtration test (18.12.2023)

Flue gas getting out through the chimney pic

Test.Atomizing Nozzle Air to Fluid ratio (27.04.2024)

GUI software control and the data collected by it pic

The filtration system of flue gas of the powerplant [mp4 file]:



2.17 Test.Atomizing Nozzle Air to Fluid ratio (27.04.2024)

In this testing, we tried 4 nozzles (Type: Round 60-degree angle with 6 holes). this test used a 1/2-HP pump and 1.5-HP air compressor in a 40-liter tank.

when the test started, we found that the four nozzles needed more Air-compressor power to maintain constant air pressure. when the 1.5 HP tank couldn't give us the best performance and the pressure started to decrease when the wanted air pressure was up to 4.2 bar and it should stay constant.

The water pump gave us good pressure for all four nozzles, as shown in the following picture:

about 3.5 bar water pressure, so the air pressure should be about 3.5 bar too. These are pictures of the video experiment:

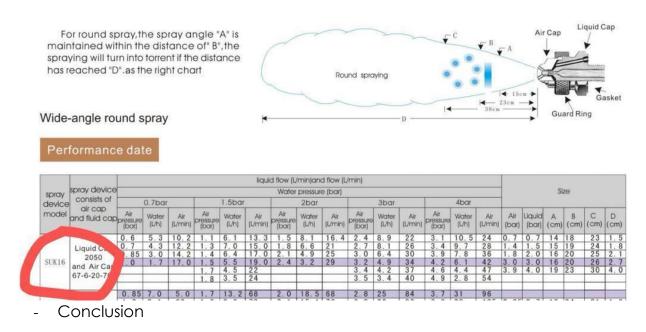
Test.Atomizing Nozzle Air to Fluid ratio (08.05.2024)

This is the video that shows what happened in the experiment:

2.18 Test. Atomizing Nozzle Air to Fluid ratio (08.05.2024)

- Compression Time Test with 1.5HP-40L-Compressor

T average = 3 minutes and 22seconds


- (1.5 HP-40L compressor) + (Pressure Regulator at 3.45 bar)
 Compressor Pressure at ball valve = 6 bar
 Compressor Pressure at ball valve = 1 bar
 The regulator gives 0 pressure because it is open to space
- (1.5 HP-40L-Compressor) + (Pressure Regulator at 3.45 bar) + (4-Nozzle)
 Compressor Pressure at ball value = 3 bar
 Compressor Pressure at ball value = 1 bar
 The regulator gives 0 pressure because it is connected to 4 nozzles
- (1.5 HP-40L-Compressor) + (Pressure Regulator at 3.45 bar) + (4-Nozzle) + (water Pump ¹/₂ HP)

Compressor Pressure at ball valve = 2.5 bar Compressor Pressure at ball valve = 1 bar

- The regulator gives 0 pressure because it is connected to 4 nozzles
- (1.5 HP-40L-Compressor) + (Pressure Regulator at 3.45 bar) + (1-Nozzle)
 Compressor Pressure at ball valve = 4.1 bar / Regulator = 3.45 bar
 Compressor Pressure at ball valve = 1 bar / Regulator = 3.45 bar
- (1.5 HP-40L-Compressor) + (Pressure Regulator at 3.45 bar) + (1-Nozzle) + (water Pump ¹/₂ HP)

Compressor Pressure at ball valve = 3.5 bar / Regulator = 3.45 bar Compressor Pressure at ball valve = 3.25 bar / Regulator = 3.25 bar

Note: By using interpolation, we could find the air pressure for each nozzle at a value of 3.45 for a water pump of $\frac{1}{2}$ HP of 3.5 bar pressure. The following diagram shows the values taken:

We found that every single Nozzle needs a compressor of 1.5 HP to function at best performance with a 45-degree open valve.

2.19 Flue Gas into Water test (12.06.2024)

Smoke Filtration using a water Tank

The test was done and it gave us great results for filtering the smoke, especially the big particles. The test keeps going for 2 minutes, and then the flexible duct melts.

2.20 Flow gas into Barrel water Filter Test (24.6.2024)

The water Barrel test showed minimal filtration of the smoke in the exhaust gases.

However, the flow rate of the smoke decreased. Due to the small amount of water in the barrel, the smoke passed through with little to no change after a few minutes of the test.

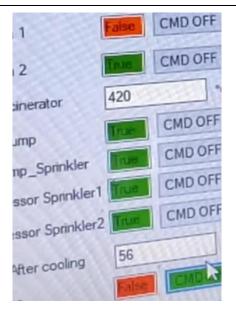
- Video of the test:

- Picture of the test:

Flow gas into Barrel water Filter Test (24.6.2024)

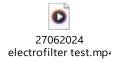
2.21 Filtration test on 27.06.2024

On this date, we conducted a filtration test, marking the first installation of the electro filter. This installation was necessitated by the recent integration of a cooling system into the scrubber. Additionally, we retained the sprinklers of the chemical filter.


To enhance the cooling process, we implemented an extra step of cooling the water tanks using ice molds. This measure was taken to achieve optimal temperatures during the cooling process managed by the pressurized sprinklers in both the scrubber and the chemical filter.

Filtration test on 27.06.2024

The cooling system effectively reduces the temperature from 42 to 56°C.


At this reduced temperature, the electro filter operated flawlessly, achieving a filtration efficiency of approximately 98%, effectively purifying the smoke.

Before turning on the electro filter

After turning on the electro filter

Here is a video that shows the full process:

2.22 Filtration test (02.07.2024)

Here is the Video explaining everything during this test:

We are pleased with the positive results we have achieved in this experiment. However, we face challenges regarding the amount of waste and high temperatures, which negatively affect the electrostatic filter, reducing its filtration efficiency from 100% to 70%.

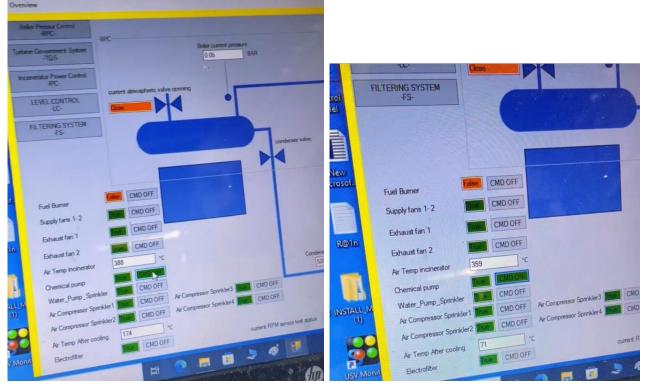
Additionally, the cooling system using sprinklers works excellently for a limited period. However, after this period, the cooling process stops due to the compressor's high temperature, caused by the weather conditions and environmental factors that increase the compressor's temperature.

The plant can operate in smaller quantities continuously with this system. However, if we aim to incinerate larger amounts of waste, we must improve the heat reduction techniques or replace the electrostatic filter with a larger system capable of withstanding high temperatures and operating efficiently under these conditions.

By taking these steps, we can achieve better efficiency and ensure the plant's continuous operation in handling larger quantities of waste effectively.

Here are pictures related:

Filtration test (02.07.2024)



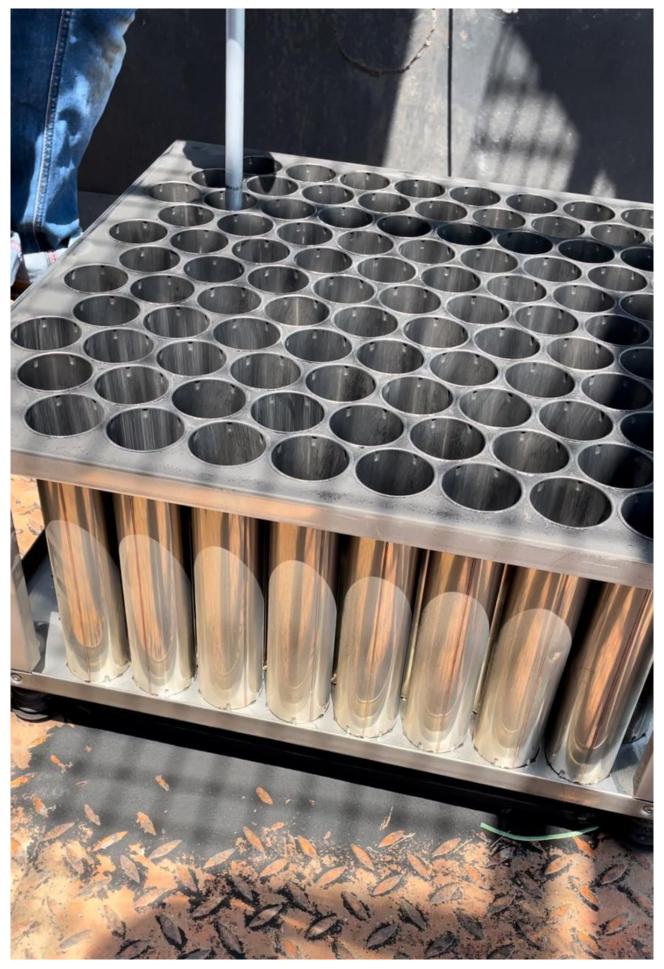
With Electrofilter

Filtration test (02.07.2024)

With cooling system on

Without electro-filter

2.23 Cleaning Electro-Filter (8.7.24)


Today (8.7.24), we cleaned the electric filter using its dedicated tools and followed the instructions.

Here are some pictures of the cleaning process:

To download the Video:

Cleaning Electro-Filter (8.7.24)

Project 2: Improvement of Filter System in Incinerator Power Plant 2023/24

Filtration test

2.24 Filtration test

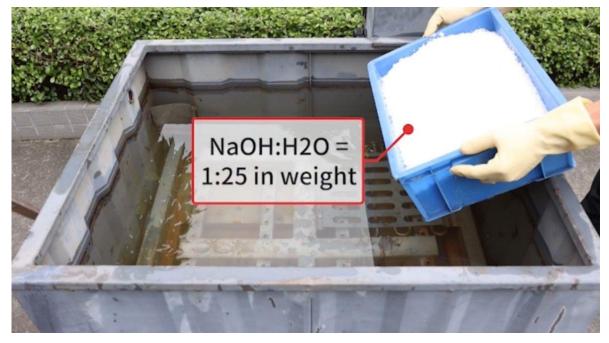
In this test, we added 45 kg of waste inside the incinerator and made the test,

Unfortunately, the Electro-Filter didn't work due to the Troubleshooting Diagnostic code C03 (Short Fault) and C08 (Sparking) caused by our cleaning the filters and we didn't follow the instructions in the data sheets, which caused the Electro-Filter to stop working

Here is the Video of the test:

Here are some pictures related to:

Filtration test


C03 (Short Fault)

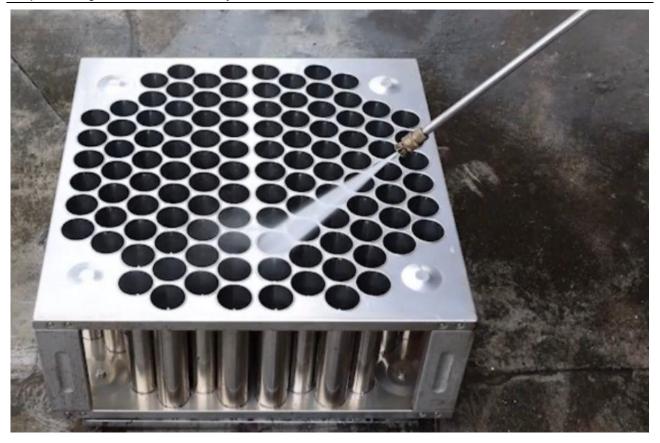
C08 (Sparking)

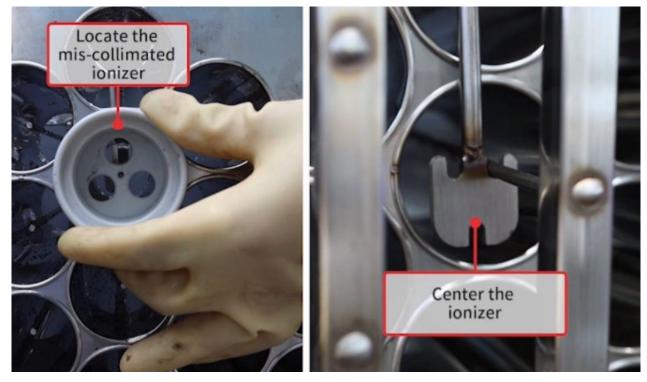
2.25 The right way to clean the Filters

First of all, add NaOH: H2O in ratio of 1:25 in weight to a water container of 75°C water or above

Mix the Mixture Well

Put the filter inside the container for 20 minutes to let the caustic soda do its job


The right way to clean the Filters


Use the wash brush to clean the filters tubes if too much oil

Wash filter cells with a pressure water gun

Adjust the cathode needle to the central position by needle adjuster

Cleaning Electro-Filter using KLEAN LAND Technique (11.07.2024)

2.26 Cleaning Electro-Filter using KLEAN LAND Technique (11.07.2024)

2.26.1.1 Materials Needed

- NaOH (Sodium Hydroxide)
- Water
- Container capable of holding hot water (preferably a repurposed diesel tank)
- Heating resistor to maintain water temperature
- Wash brush
- Pressure water gun
- Needle adjuster

2.26.1.2 Preparation

- Prepare the cleaning solution
 - Mix NaOH and water in a ratio of 1:25 by weight. For example, if you use 1 kg of NaOH, you will need 25 kg (or liters) of water.
 - Ensure the water temperature is 75°C or higher for optimal effectiveness. Ideally, the temperature should be around 80°C.
- Prepare the cleaning container:
 - Use a diesel tank for this purpose. First, cut off the top of the tank to create an open container.
 - Clean the tank thoroughly to remove any residual diesel or contaminants.
 - $_{\odot}\,$ Install a heating resistor in the tank to maintain the water temperature at 80 °C.

2.26.1.3 Cleaning Process (Leaching)

• Soaking the filter:

- Place the electro-filter inside the container.
- Let the filter soak in the solution for 20 minutes. This allows the caustic soda (NaOH) to break down and loosen any accumulated dirt and oil.

• Brushing the filter:

• Use a wash brush to clean the filter tubes, especially if there is excessive oil buildup.

• Rinsing the Filter:

• After soaking and brushing, rinse the filter cells using a pressure water gun. This will remove any remaining cleaning solution and dislodged debris.

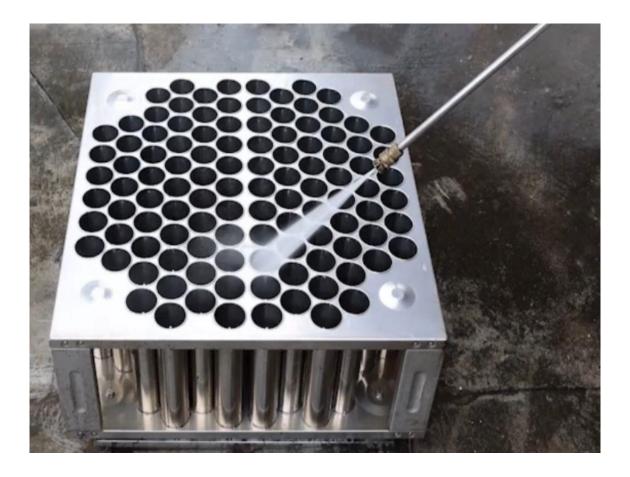
• Adjusting the Cathode Needle:

• Use a needle adjuster to position the cathode needle centrally. Proper adjustment is crucial for the optimal performance of the electro-filter.

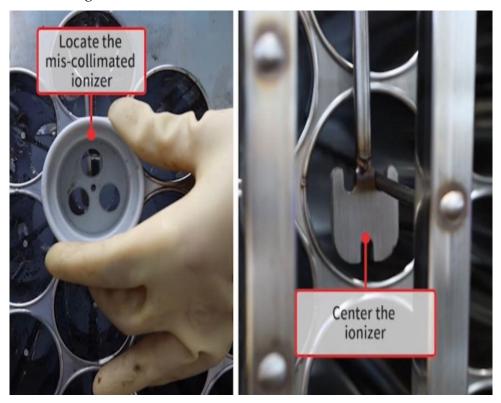
Following these steps, the electro-filter will be thoroughly cleaned and maintained using the KLEAN LAND technique. This ensures its efficiency and longevity in capturing pollutants and maintaining air quality.

• Mixing the Solution:

- Pour the NaOH and water mixture into the prepared container.
- Stir the mixture well to ensure an even distribution of the NaOH.



Cleaning Electro-Filter using KLEAN LAND Technique (11.07.2024)



Here is how our cleaning of the Electro-Filter was done

- 2.27 Here is how our cleaning of the Electro-Filter was done
- 2.27.1 First, we brought a Plastic tank

2.27.2 Second, we cut its top

2.27.3 Third, we clean it

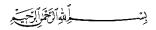


2.27.4 Fourth, we bought a resistor to get the water to 80 degrees, which is best for NaOH solution

2.27.5 Fifth, we filled the tank with water

Here is how our cleaning of the Electro-Filter was done

Here is how our cleaning of the Electro-Filter was done



Here is how our cleaning of the Electro-Filter was done

NLAP-WEDC REPORT 2024 – Part 3 (Reengineering and Manufactoring of Electrofilter)

With contribution of:

Amro ZAWIT

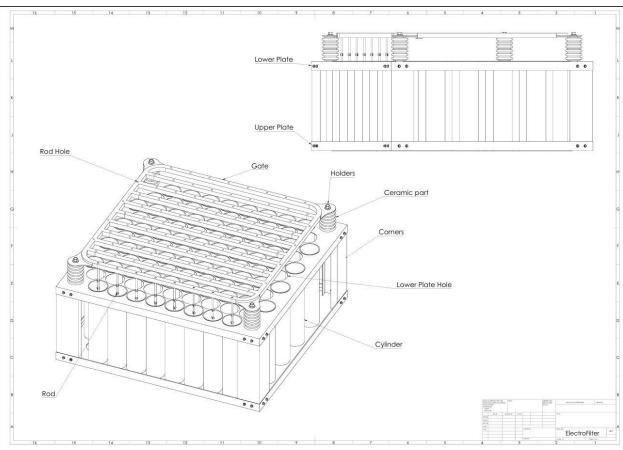
Ali DIB

Maryam EL REZ

Last Update: 11.03.2025 23:55

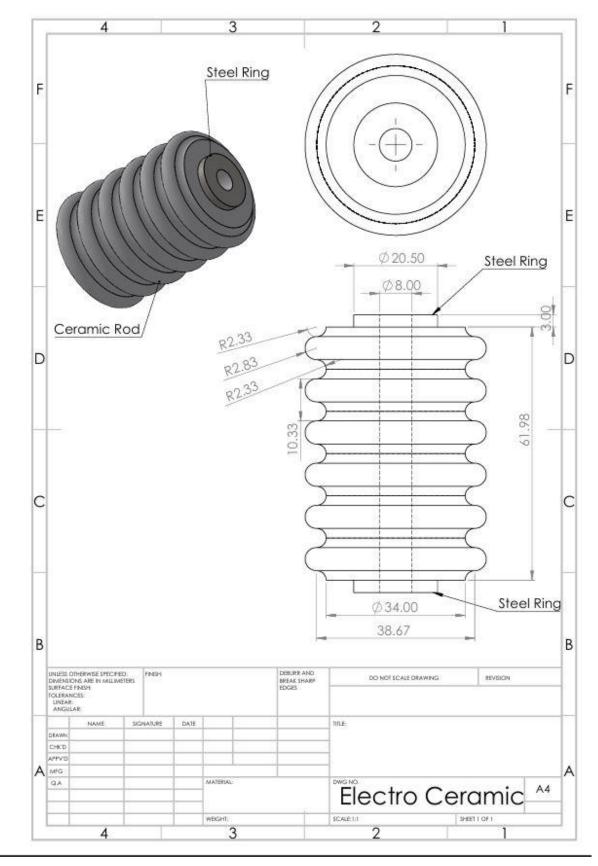
Table of Contents

3	Project 3: Electrofilter			
3.1	Position of Electrofilter			
3.2	Detaili	Detailing and Pricing of Each Part of the Electro Filter		
	3.2.1	The Electro Filter		
	3.2.2	Ceramics		
	3.2.3	Rods5		
	3.2.4	Cylinders		
	3.2.5	Upper Plate7		
	3.2.6	Lower Plate		
	3.2.7	Gate9		
	3.2.8	Corners		
	3.2.9	CAD Files		
3.3	Realiza	ation of Electrofilter (2024) - Film11		
3.4	Electrofilter design			
	3.4.1	Autocad 2D11		
	3.4.2	FreeCAD		
	3.4.3	Pdf drawing files		
	3.4.4	Sketch SW		
	3.4.5	Step files		
	3.4.6	SW files		
	3.4.7	How to build the electro filter		
3.5	Manuf	acturing of the Electro-filter		

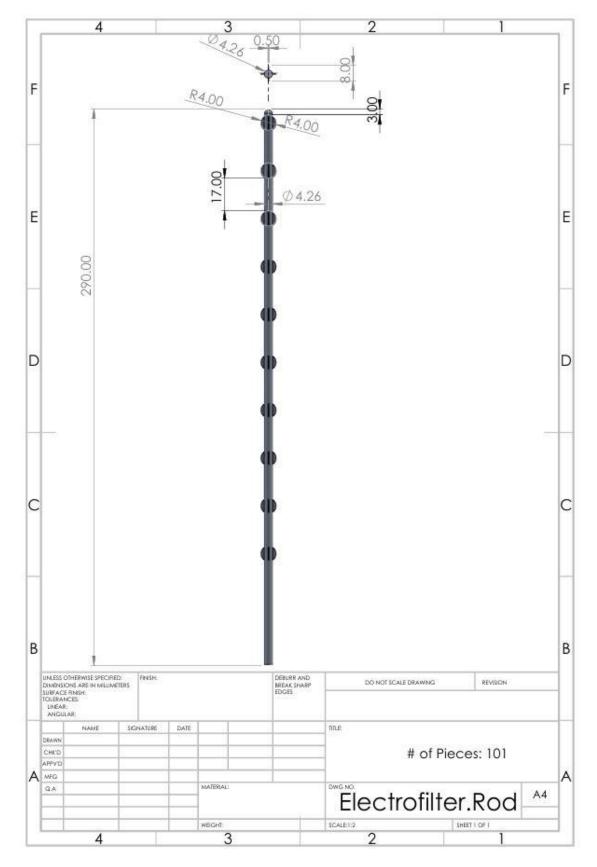

3 Project 3: Electrofilter

3.1 Position of Electrofilter

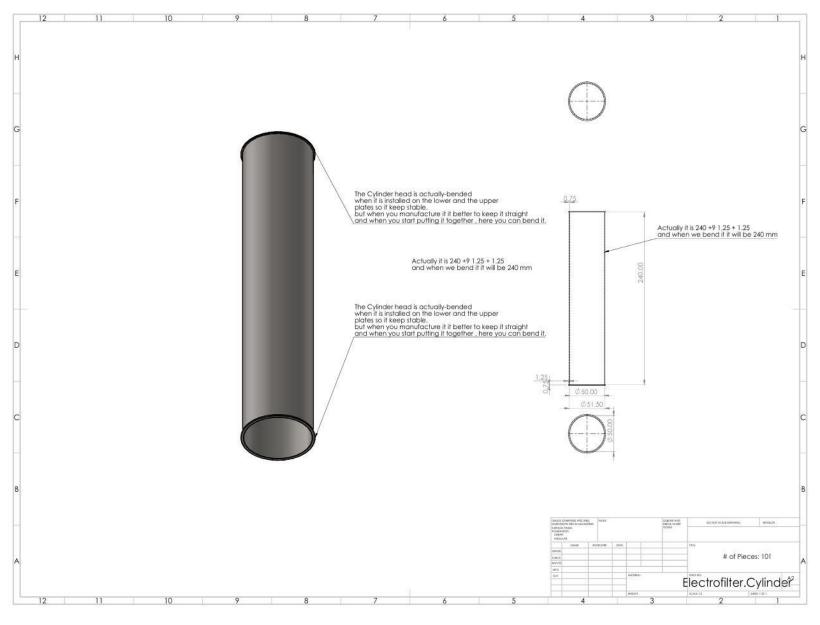
This project aims to locally remanufacture the electro-filter and test its efficiency.


3.2 Detailing and Pricing of Each Part of the Electro Filter

The Electro Filter comprises Different Parts: Electro-Filter, Pre-Filters, Activated Carbon Filters, the outside body for all components, and finally the Control Panel.

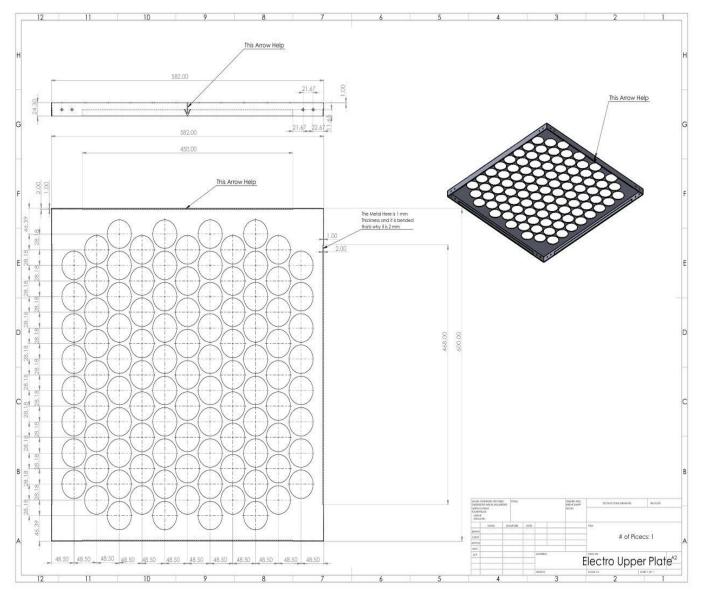

3.2.1 The Electro Filter

3.2.2 Ceramics

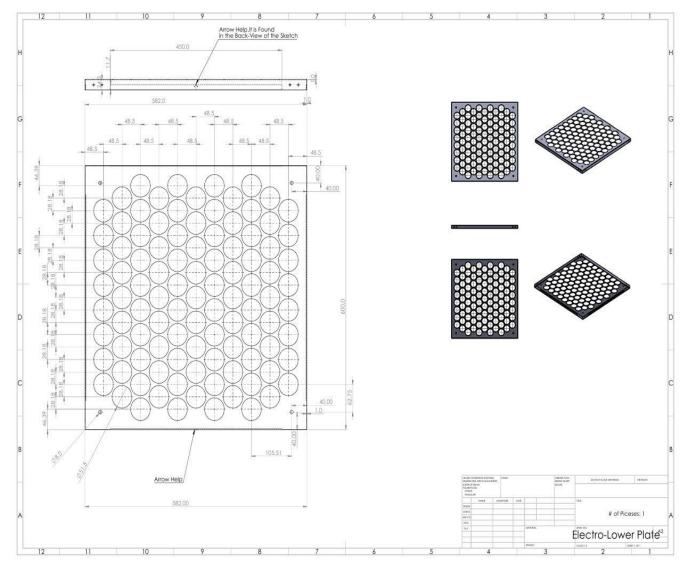


We Got 4 Ceramics

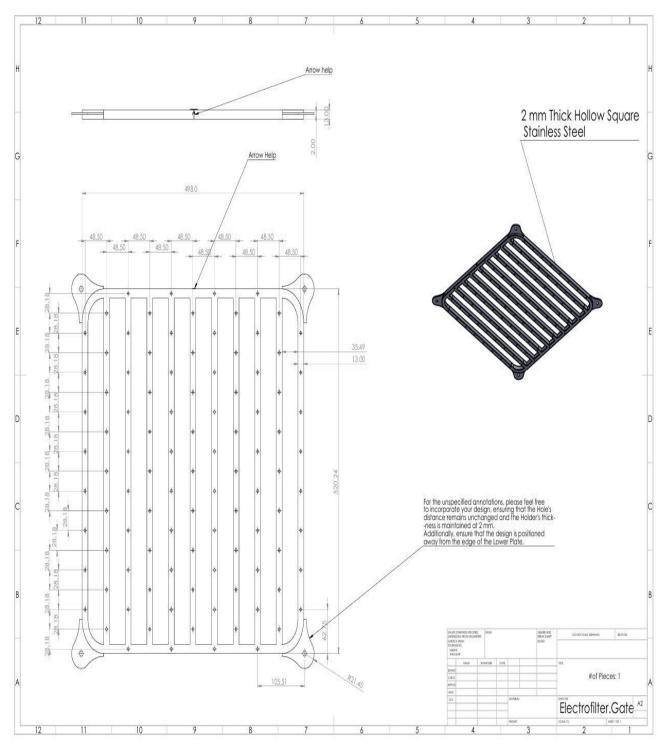
3.2.3 Rods



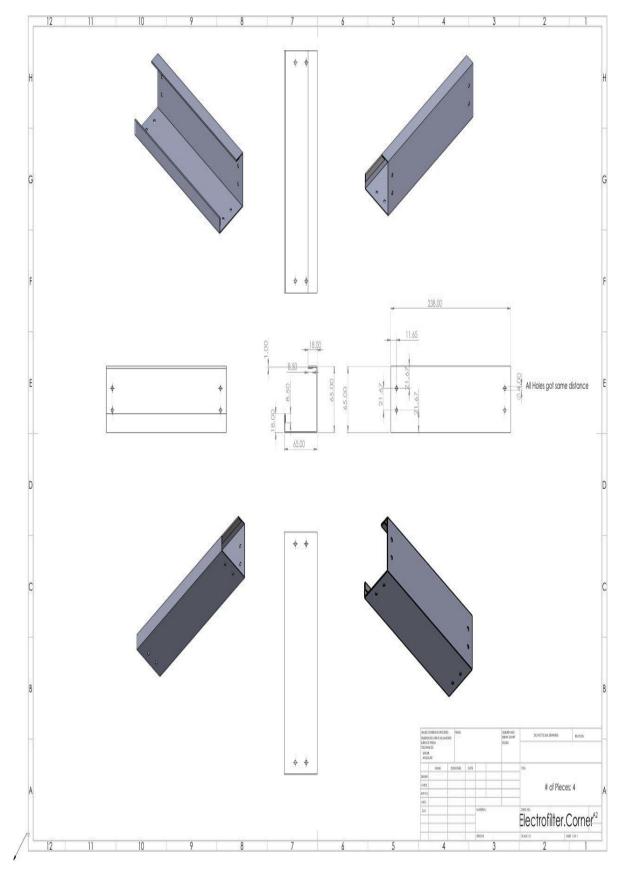
We got 101 Cylinders


3.2.5 Upper Plate

We have 1 Upper Plate


Project 3: Electrofilter

3.2.6 Lower Plate


We got 1 Lower Plate

3.2.7 Gate

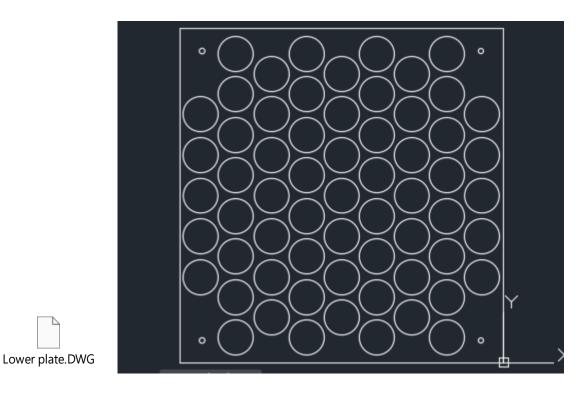
We got 1 Gate

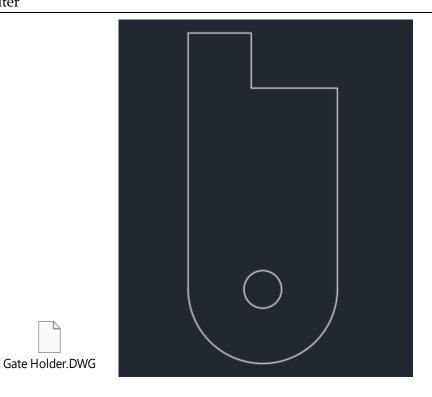
3.2.8 Corners

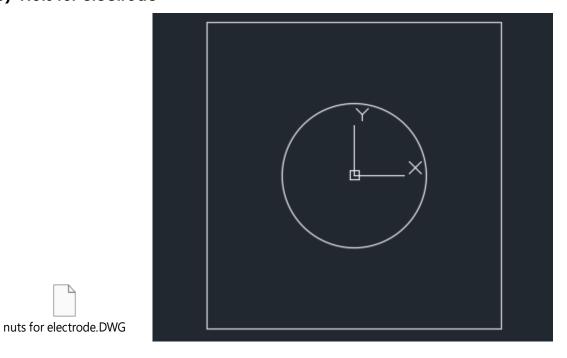
We Got 4 Corners

- 3.2.9 CAD Files
 - FreeCad.Files.26092024

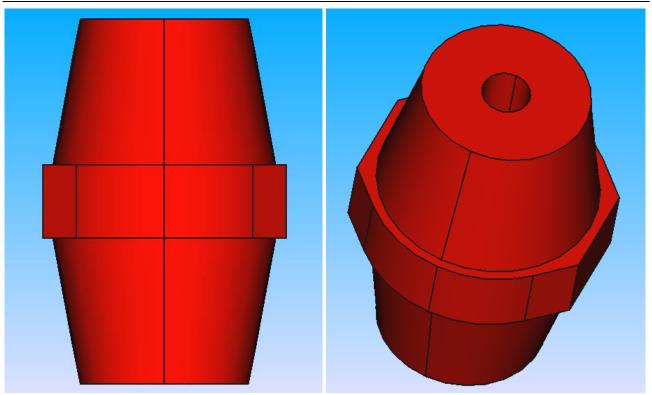
• Step.Files.26092024



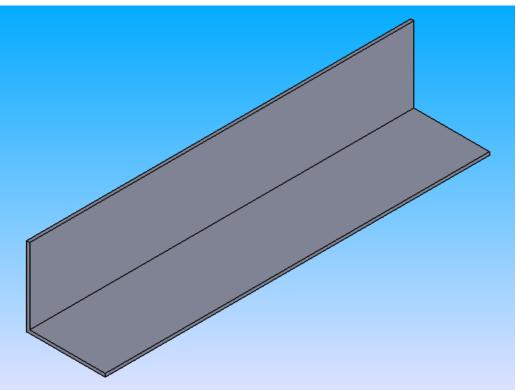

3.3 Realization of Electrofilter (2024) - Film

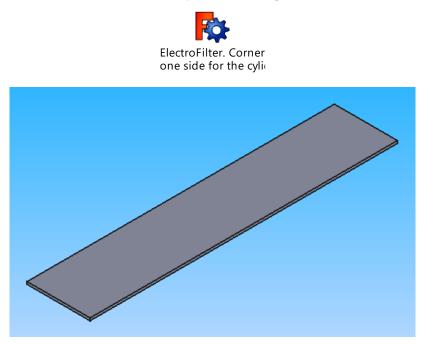

3.4 Electrofilter design

- 3.4.1 Autocad 2D
 - 1) Lower plate

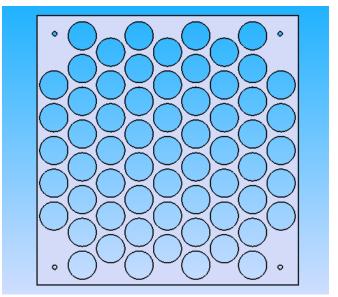

3) Nuts for electrode

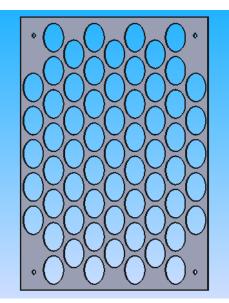
3.4.2 FreeCAD


1) ElectroFilter. BUS-BAR insulators code.SM-76

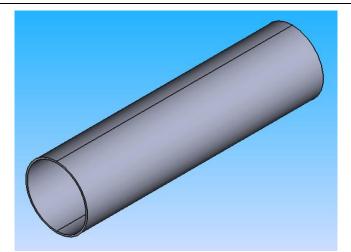


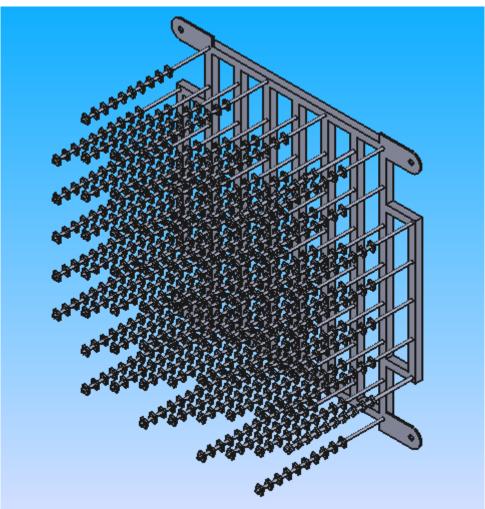
2) ElectroFilter. Corener fore cylinder holder plate

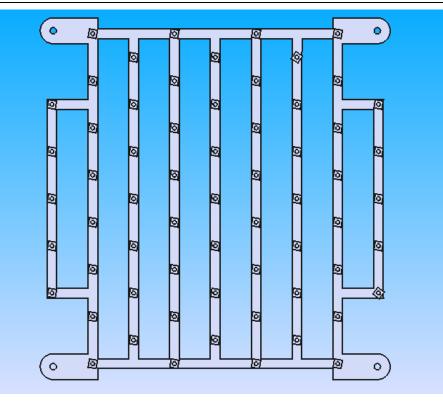


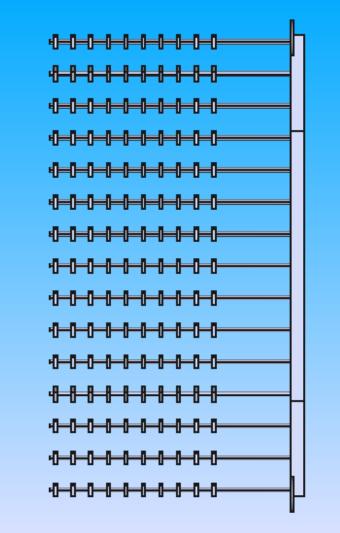

3) ElectroFilter. Corner one side for the cylider holder plate

4) ElectroFilter. cylinder Holder plate

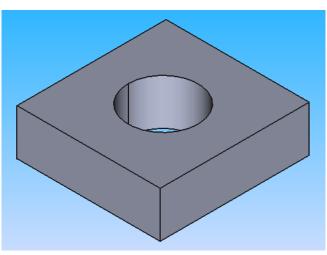


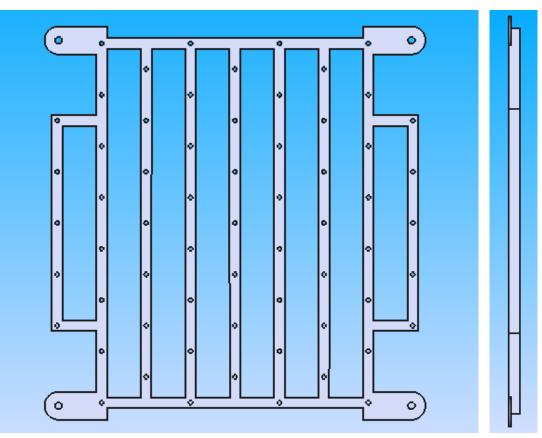

5) ElectroFilter. Cylinder

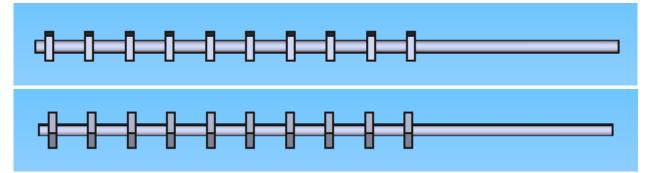


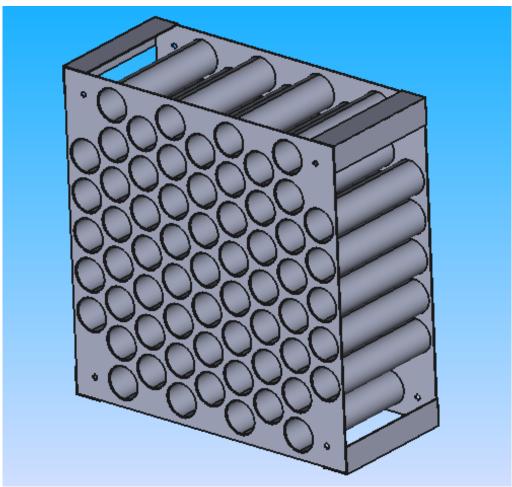


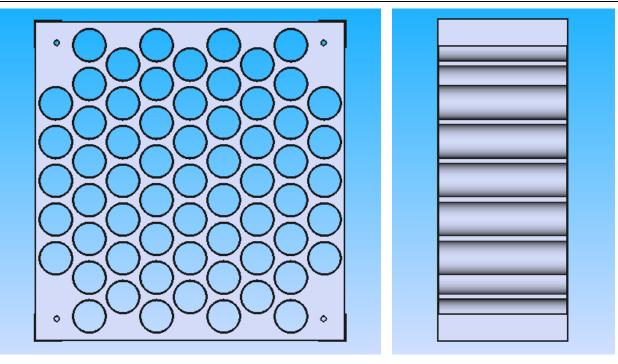
6) ElectroFilter. first part



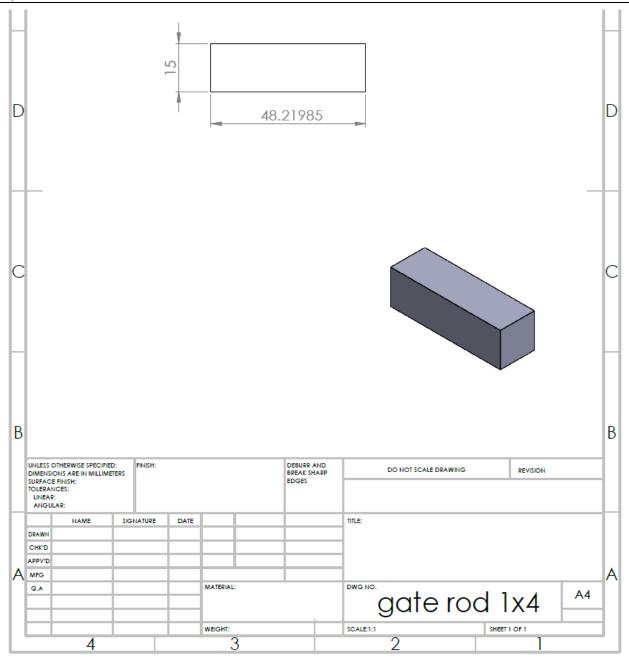

7) ElectroFilter. Nuts

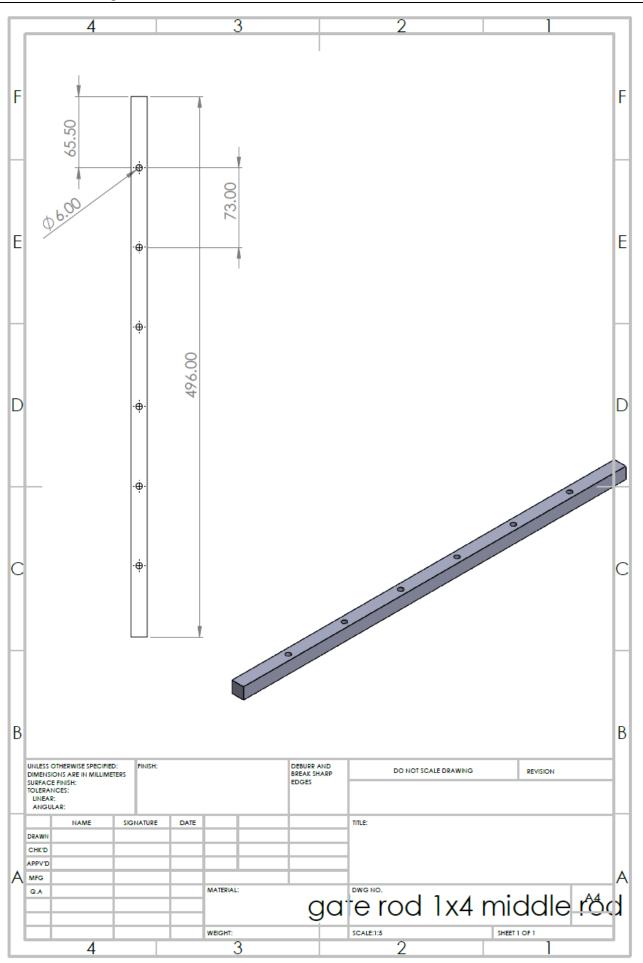

8) ElectroFilter. Rode Holder Gate


9) ElectroFilter. Rods with nuts

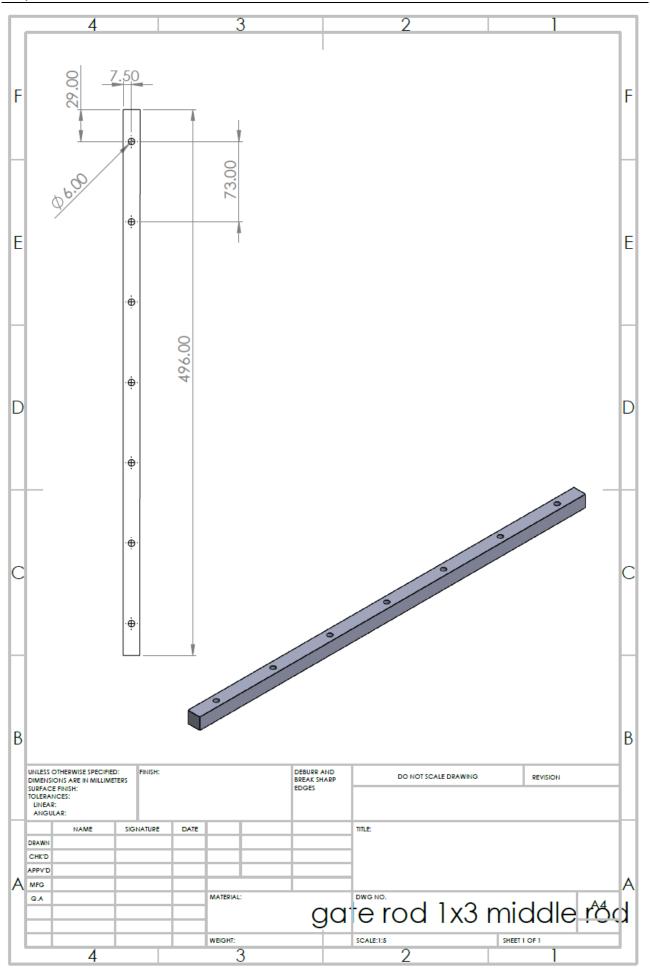


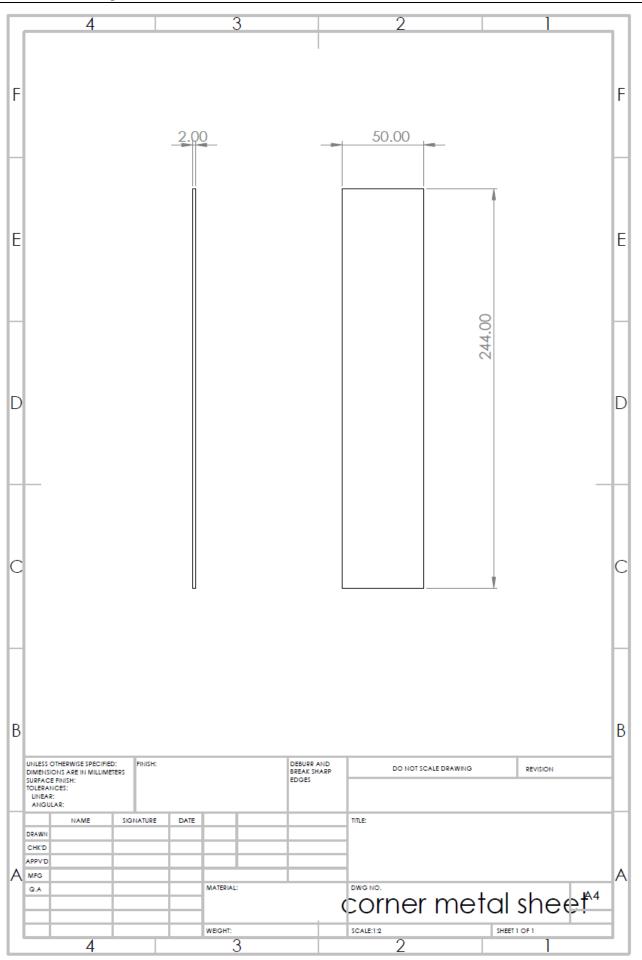
10) ElectroFilter. Second part

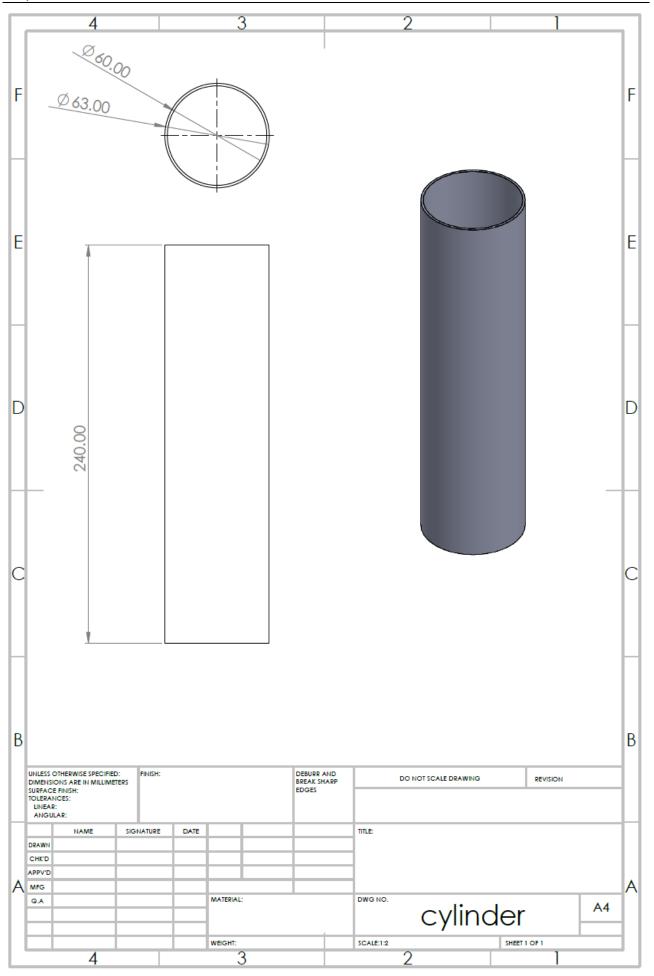


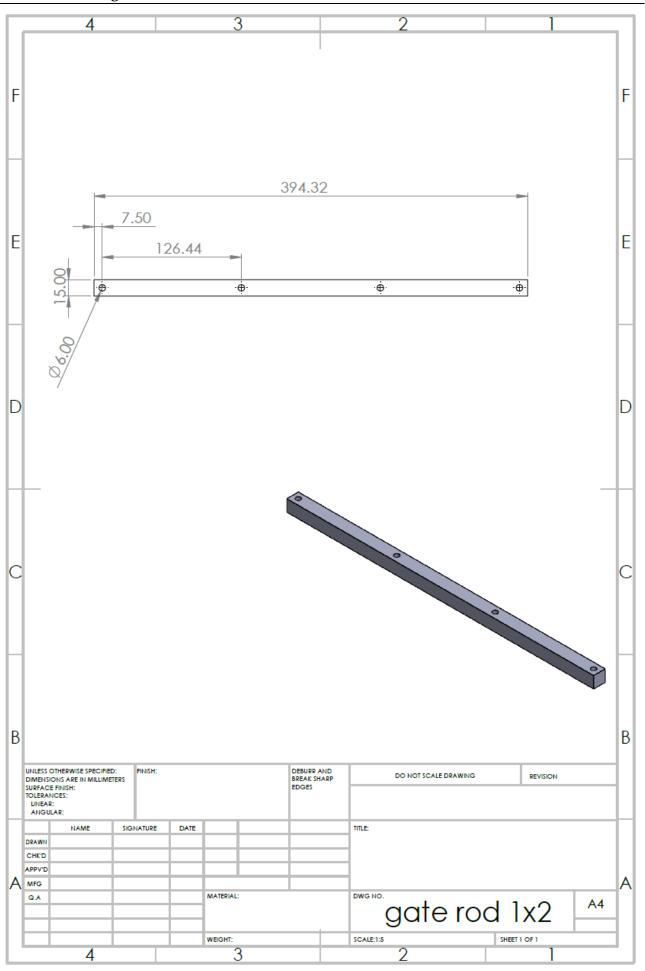

3.4.3 Pdf drawing files

A.gate rod 1x4.pdf	B.gate rod 1x4 middle rod.pdf	C.gate rod 1x3 middle rod.pdf	corner metal sheet.pdf	cylinder.pdf
D.gate rod 1x2.pdf	E.Gate Holder.pdf	electrode with nuts.pdf	F.gate rod sides 1x2.pdf	final plate parts name.pdf
final plate.pdf	nuts for electrode.pdf	plate holder.pdf	rode Electrode.pdf	SM-76 BUS-BAR INSULATORS.pdf

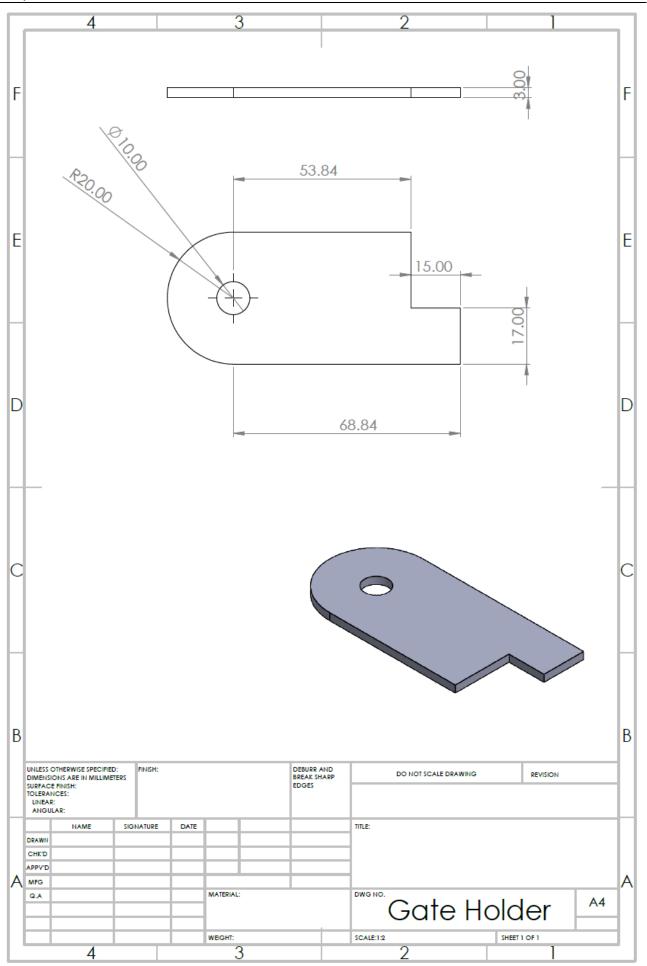

Project 3: Electrofilter


Electrofilter design

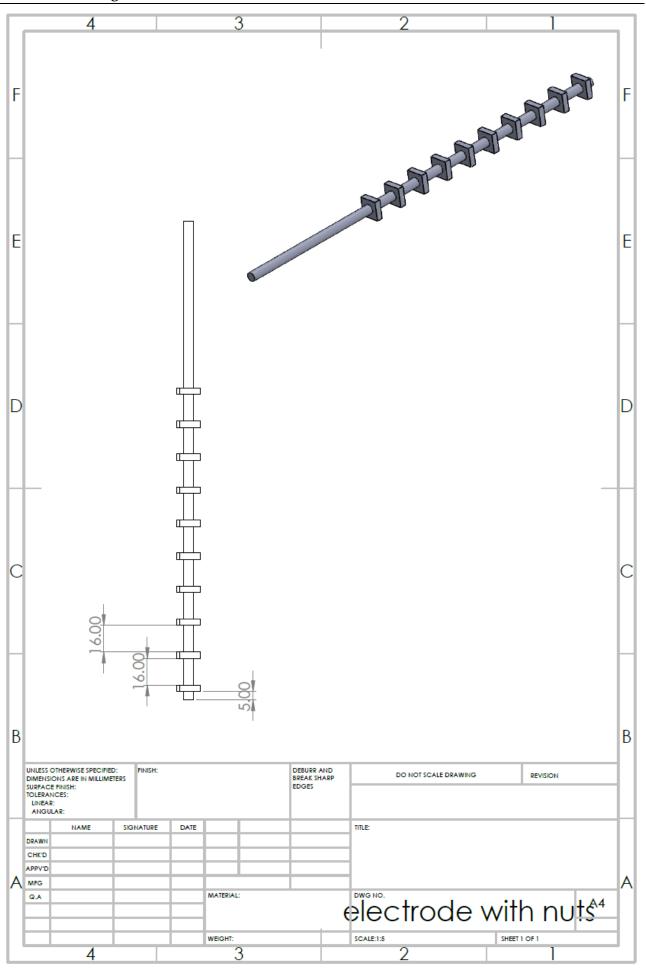

Project 3: Electrofilter

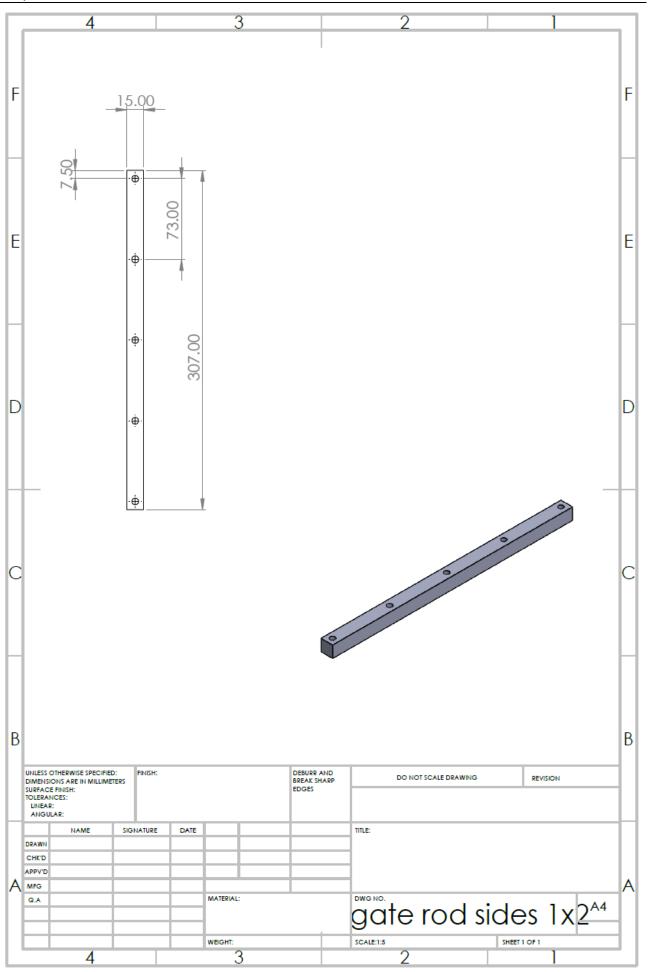


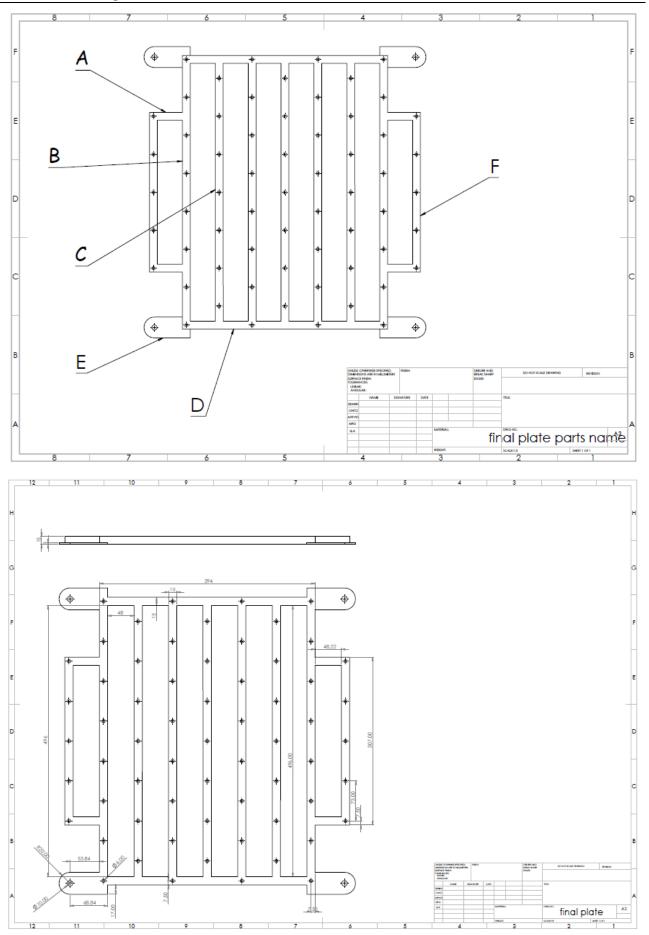
Electrofilter design

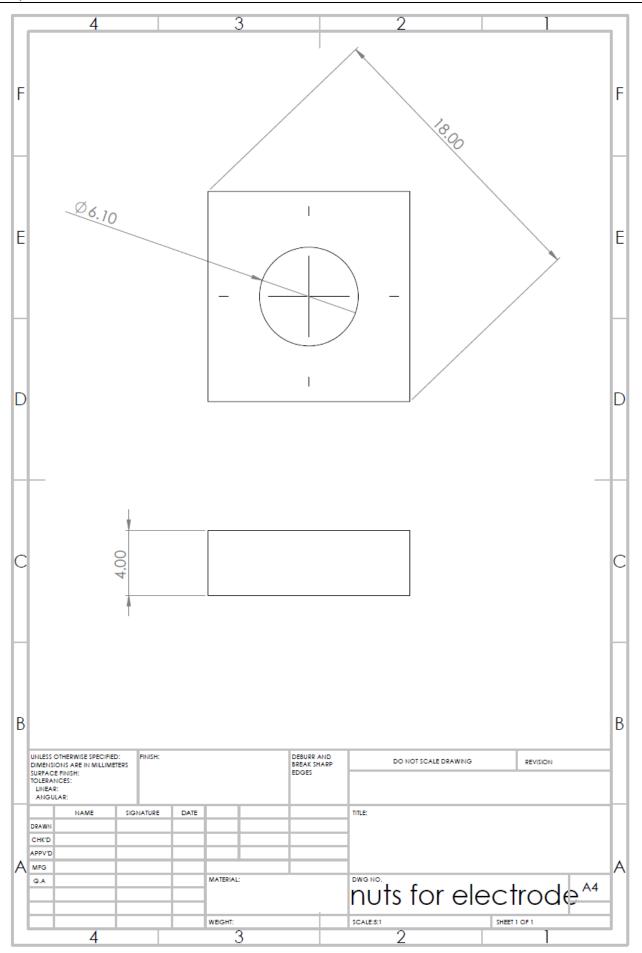


Project 3: Electrofilter

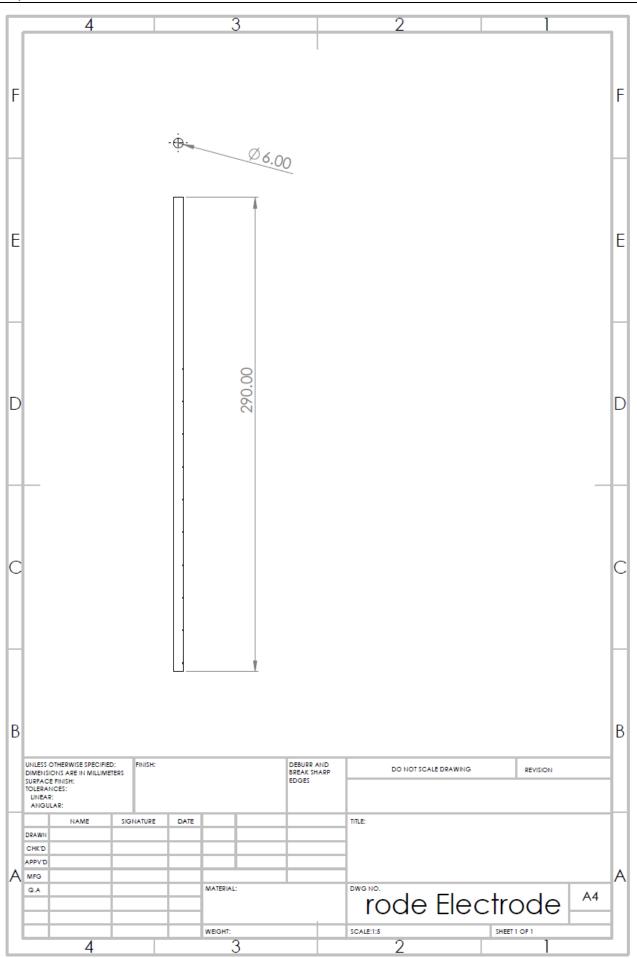


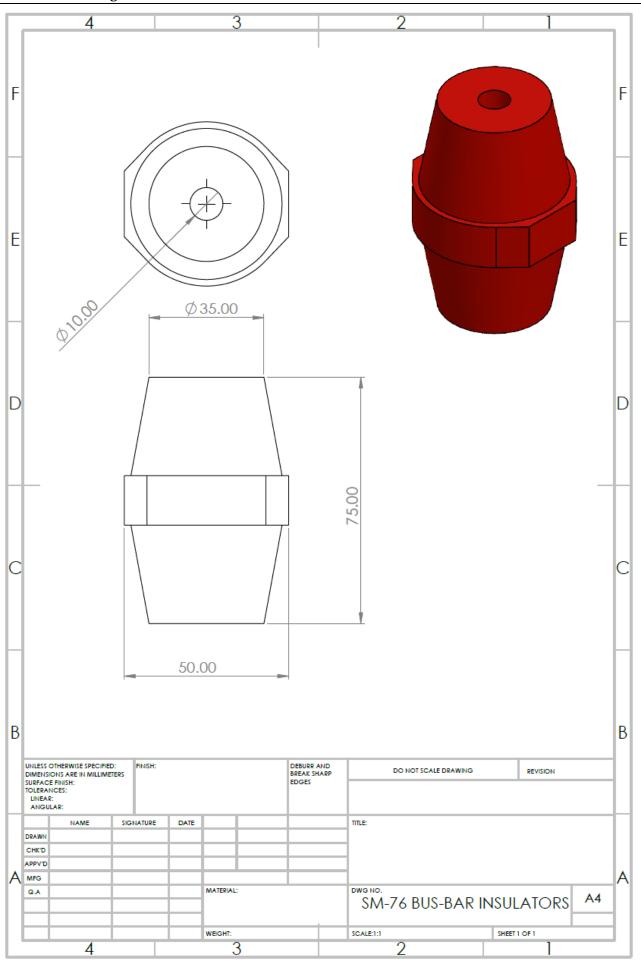

Project 3: Electrofilter




Electrofilter design

Project 3: Electrofilter

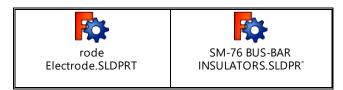




Project 3: Electrofilter

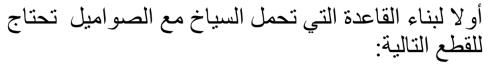
Electrofilter design

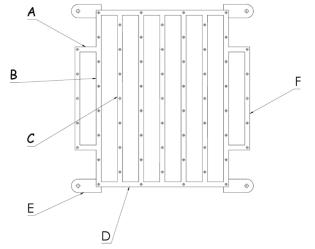
3.4.4 Sketch SW

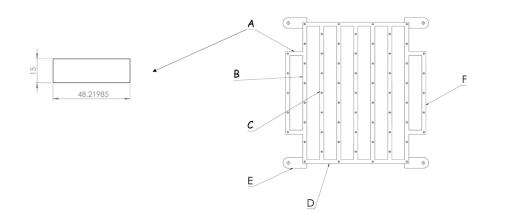

corner metal sheet.SLDDRW			final plate parts name.SLDDRW	final plate.SLDDRW
Gate	gate rod	gate rod 1x3 middle	gate rod 1x4 middle	gate rod
Holder.SLDDRW	1x2.SLDDRW	rod.SLDDRW	rod.SLDDRW	1x4.SLDDRW
gate rod sides	nuts for	plate	rode	SM-76 BUS-BAR
1x2.SLDDRW	electrode.SLDDRW	holder.SLDDRW	Electrode.SLDDRW	INSULATORS.SLDDR

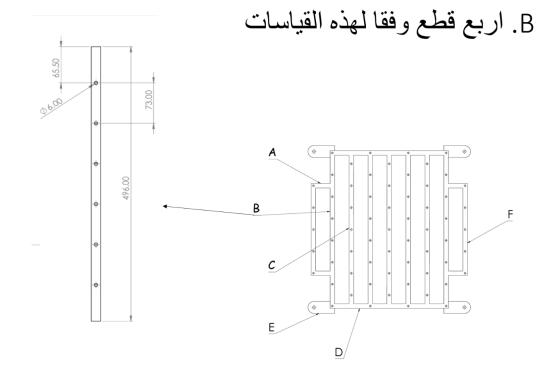
3.4.5 Step files

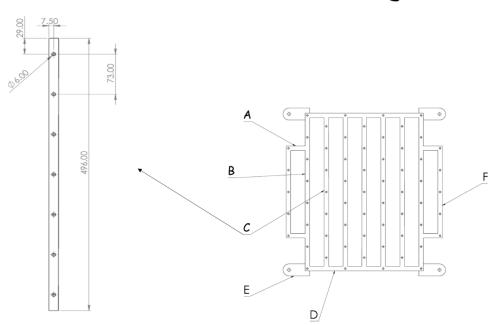
corner metal sheet.STEP	corner.STEP	cylinder.STEP	Electro filter first part.STEP	electrode with base.STEP
electrode with	final plate.STEP	new02 Lower	nuts for	SM-76 BUS-BAR
nuts.STEP		plate.STEP	electrode.STEP	INSULATORS.STEP


3.4.6 SW files

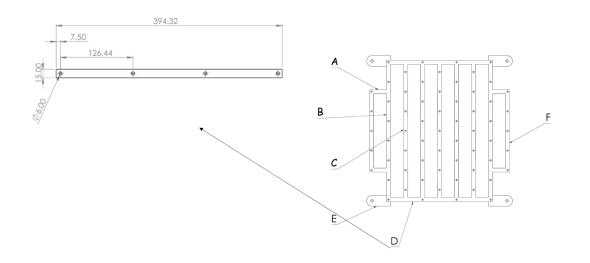

copy.SLDPRT	corner metal sheet.SLDPRT	corner.SLDPRT	cylinder.SLDPRT
Electro filter first	Electro filter first	electro	electrode with
part.SLDASM	part.SLDPRT	filter.SLDASM	base.SLDASM
electrode with	electrode with	electrode with	final plate.SLDPRT
base.SLDPRT	nuts.SLDASM	nuts.SLDPRT	
Gate	gate rod	gate rod 1x3 middle	gate rod 1x4 middle
Holder.SLDPRT	1x2.SLDPRT	rod.SLDPRT	rod.SLDPRT
gate rod	gate rod sides	new02 Lower	nuts for
1x4.SLDPRT	1x2.SLDPRT	plate.SLDPRT	electrode.SLDPRT

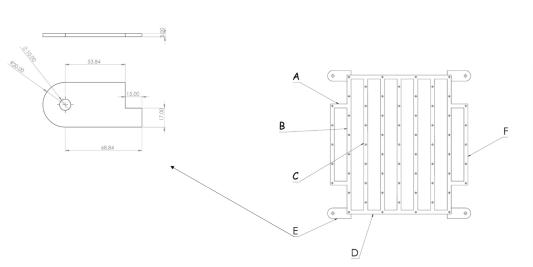

3.4.7 How to build the electro filter

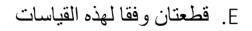


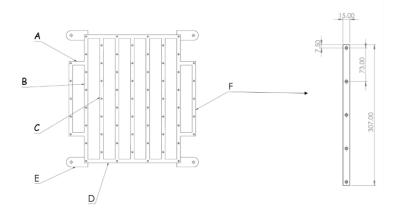


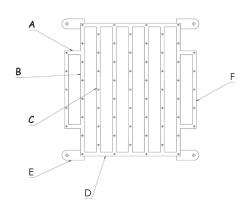
A. اربع قطع وفقا لهذه القياسات لذلك تحتاج الى قضيب مفرغ mm 15x15 بقياس 304 Stainless steel بطول 6



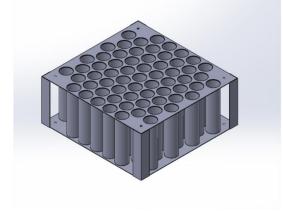


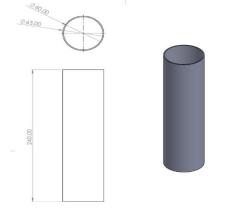

C. ثلاث قطع وفقا لهذه القياسات


D. قطعتان وفقا لهذه القياسات

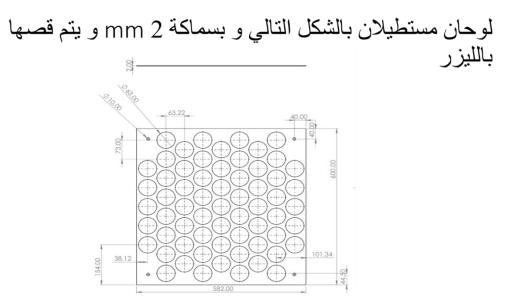


E. اربع قطع وفقا لهذه القياسات عن طريق قصبها بالليزر بسماكة mm 3

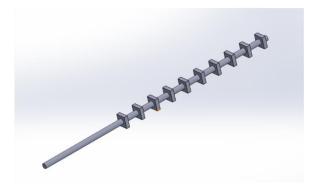



و اخيرا يتم جمعها و تلحيمها باستخدام ال Argon

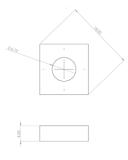
ثانيا لبناء الشكل الثاني مع الأسطوانات هناك 3 قطع نحتاجها و يتم تلحيمها باستخدام ال Argon

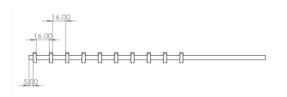


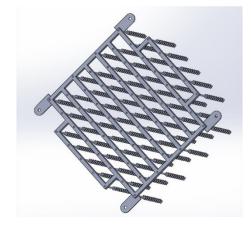
الأسطوانات بالقياسات التالية و بعدد 63 أسطوانة 304 Stainless steel

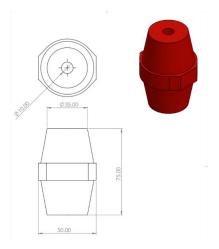


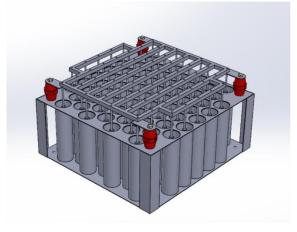
زوايا بعدد 4 زوايا او 8 حبات مستطيلة كالتالي بسماكة 2 mm و يتم قصمها بالليزر


ثالثا لبناء 63 سيخ مع الصواميل نحتاج الاتي :

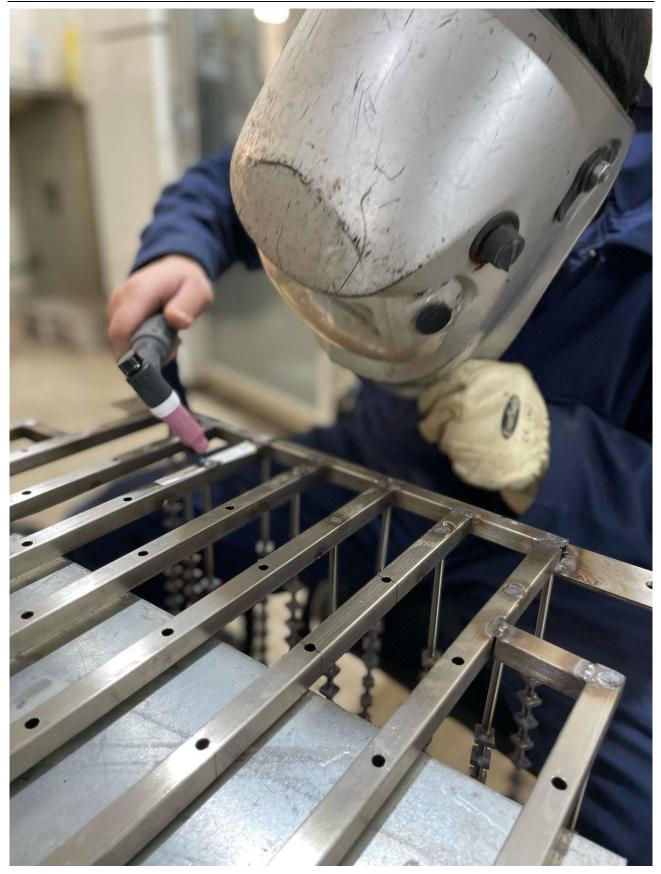

نحتاج الى 63 قضيب بسماكة 6 mm بالقياس التالي


نحتاج الى 630 صامولة بسماكة 9 mm بالقياسات التالي لكل قضيب 10 حبات


نقوم بتلحيم الصواميل على القضيب بالمسافات التالية باستخدام ال

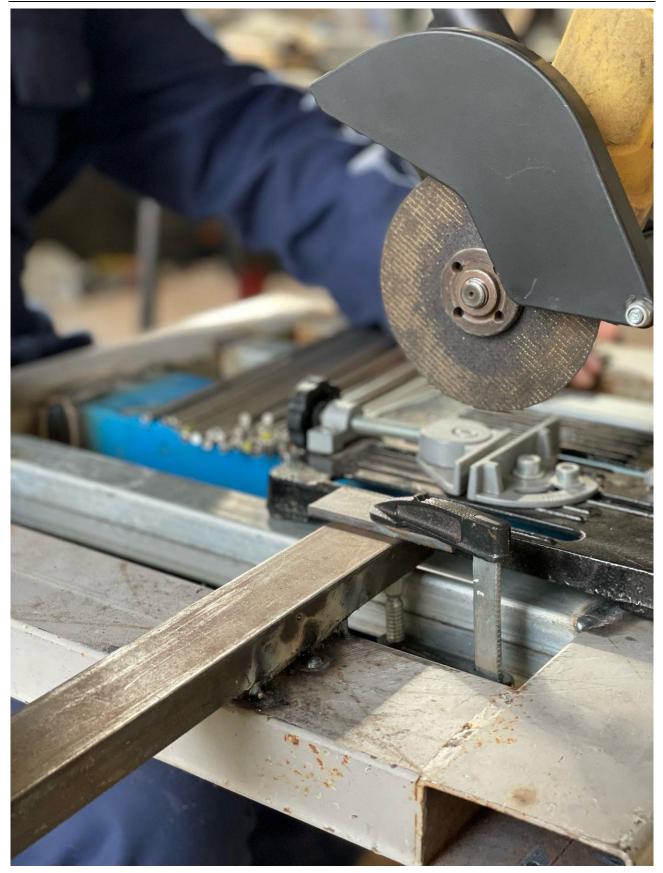

نقوم بتلحيم السياخ على القاعدة باستخدام ال Argon

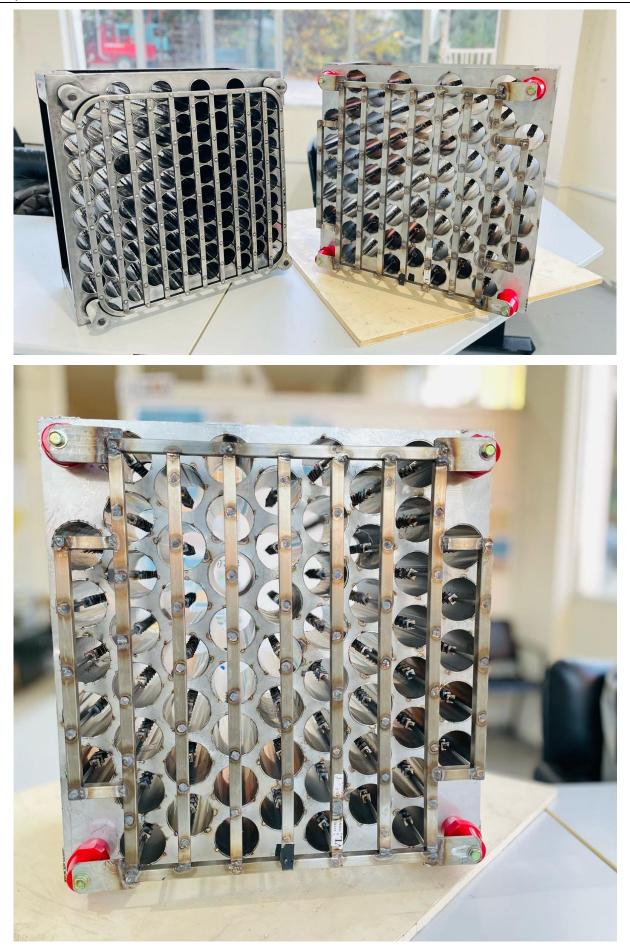
نحتاج ال شراء اربع قطع من عازل البس بار او BUS-BAR Insulator نوعيته SM-76 و بالقياسات التالية


أخيرا نقوم بجمع الأجواء ببعضها و يكون ال الفلتر جاهز للتشغيل و لكن يجب تثبيت ال سياخ في منتصف الأسطوانة لنتائج افضل

3.5 Manufacturing of the Electro-filter




Project 3: Electrofilter



Project 3: Electrofilter

Project 3: Electrofilter

Videos concerning the electro-filter manufacturing process:

ېتى____

AECENAR Association for Economical and Technological Cooperation in the Euro-Asian and North-African Region www.aecenar.com

NLAP-WEDC REPORT 2024 – Part 4: Biogas, Gas Turbine, Liquid-Liquid Separation Solvent Production, Ashes Recycling

With contribution of: Maryam EL REZ Abdullah KASSEM Ali DIB Amro ZAWIT

Last Update: 12.03.2025 16:23

Table of Contents

4	Proje	Project 4: Biogas project7		
4.1	Positi	osition of biogas project		
4.2 Placement of digester on mobile platform			7	
	4.2.1	Place in Ras Maska for Mobile Biogas Generation and Gas Turbine Testrig	7	
	4.2.2	Moving of Biogas Generation Device on Mobile Plant 30.05.23	7	
	4.2.3	Situation on 31.5.23	8	
	4.2.4	Shredder	12	
4.3	Test s	pecifications/Operational Steps of Biogas Generation	12	
	4.3.1	Operation steps of Digester	12	
	4.3.2	Gas extraction	12	
	4.3.3	Digester leakage's test	14	
	4.3.4	Enhancing Methane Storage Through Gas Compression	15	
	4.3.5	Enhancing Methane Storage Through Gas Compression With Filtration System.	18	
4.4	Ras M	aska Biogas Prototype Reactor - Mechanical Realization	22	
4.5	Realiz	ation of biogas storage parts	23	
	4.5.1	The H ₂ S filter tank	23	
	4.5.2	The CO ₂ filter storage	23	
4.6	Bioga	s PCS implementation	25	
4.7	Bioga	s tests	31	
	4.7.1	Test 4 -16012024: Enhancing Methane Storage through Gas Compression	31	
	4.7.2	Test 5 -18012024: Enhancing Methane Storage through Gas Compression with		
		Filtration System Part 2	34	
4.8	Whať	s next	37	
5	Proje	t 5: Gas Turbine for Methane gas	38	
5.1	Positi	on of Gas turbine project	38	
5.2	Fuel b	urner PCS realization	38	
	5.2.1	The process control system for the Fuel Burner	38	
	5.2.2	Control Panel	39	
	5.2.3	Control Panel Wiring Diagram	40	
	5.2.4	Instruments	40	
	5.2.5	PLC Modbus addresses - Communication points	42	

	5.2.6	PLC Modbus addresses:	43
	5.2.7	Graphical User Interface	44
	5.2.8	Graphical User Interface code (C#) and PLC Code	44
5.3	Fuel B	urner System test specification	44
5.4	Fuel B	urner system test	46
	5.4.1	Fuel Burner on Test Rig with Nozzle 23.03.23	46
	5.4.2	Gas Turbine at the side of the Nozzle (29.03.23)	47
5.5	Biogas	Turbine System Stochiometric Calculation and System Test	47
5.6	Gas tu	rbine, Version 2	50
	5.6.1	Housing turbine	50
	5.6.2	Blade turbo	51
	5.6.3	Nozzle design - premium design	52
	5.6.4	GTM Assembly - premium design	54
	5.6.5	Nozzle design - Final design	57
	5.6.6	Fuel Burner connections	64
5.7	Fuel b	urner flow chart	64
5.8	Comb	ustion of Ethanol with H2O2	65
	5.8.1	Design of Liquid Ethanol Combustion with Liquid Hydrogen peroxide unit usin	g the
		FuelBurner	
	5.8.2	FuelBurner Requirements	65
	5.8.3	FuelBurner Test specifications	65
	5.8.4	PCS Ethanol combustion	67
	5.8.5	Graphical User Interface code (C#) and PLC Code	68
5.9	Fuel B	urner Test using Air-compressor on 12.2.2024	68
	5.9.1	What is the goal of this test?	68
	5.9.2	What has been changed compared to the previous test?	68
	5.9.3	What are the results?	71
	5.9.4	What is the next test about?	74
5.10	Fuel B	urner test using Butane/Oxygen on 20.02.2024	75
	5.10.1	Test conditions	75
	5.10.2	Analysis	75
	5.10.3	System Test	75
	5.10.4	Pictures Related:	78

5.11	Biogas	5 Turbine test using Butane/Oxygen on 29.03.2024	81
	5.11.1	Test Description	81
	5.11.2	System Test	81
	5.11.3	Scheme of the System by GUI	
	5.11.4	Pictures Related	
5.12	Biogas	Turbine test using Butane/Oxygen with Turbocharger on 02.04.2024	90
	5.12.1	Test Description	90
	5.12.2	System Test	90
	5.12.3	Scheme of the System by GUI	93
	5.12.4	Pictures Related	94
5.13	What'	s next	95
6	Projec	t 6: NTA Production	97
6.1	NTA p	production poster	97
6.2	Protoc	ol NTA production	98
	6.2.1	Introduction	98
	6.2.2	Materials and Equipment	98
	6.2.3	Procedure	98
6.3	Requi	rements NTA pilot plant	99
	6.3.1	System requirements	99
	6.3.2	Physical requirements	99
	6.3.3	Chemical Requirements	
	6.3.4	Mechanical Requirements	
	6.3.5	Electrical requirements:	
6.4	NTA I	Pilot Plant	
	6.4.1	System design / System concept (NTA Pilot Plant)	
	6.4.2	Mechanical design (NTA pilot plant)	
6.5	Test sp	pecification NTA pilot plant	
	6.5.1	Prepare the Autoclave hastelloy B	
	6.5.2	Safety precaution	
	6.5.3	NTA Production Operation Method	
6.6	001: N	ITRILOTRIACETIC ACID PRODUCTION SYSTEM TEST	
	6.6.1	Reaction phase 1	
	6.6.2	Reaction phase 2	

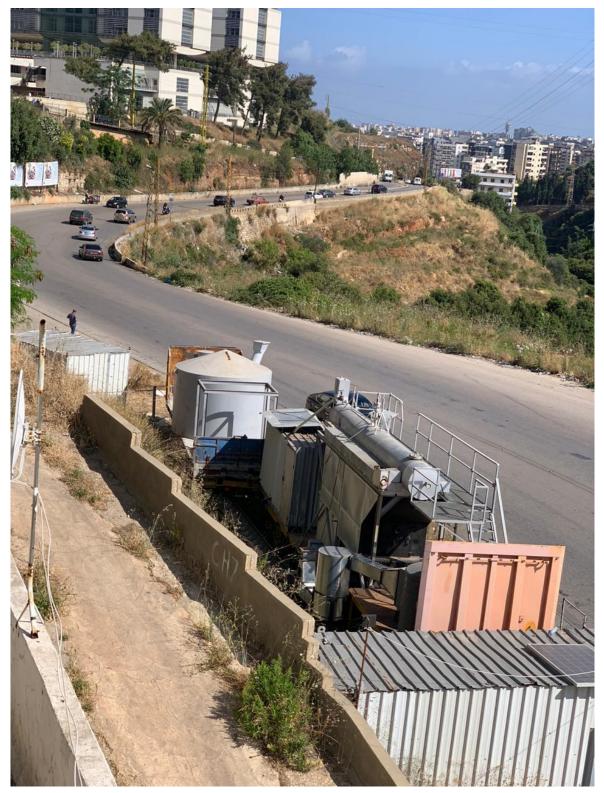
	6.6.3 Filtration		107
	6.6.4	Acidification	107
	6.6.5	NTA Isolation	108
6.7	What's	next	108
7	Project 7: Ashes Recycling Project10		
7.1	System	n Test only with water in February 2025	109
	7.1.1	Ashes recycling - test specification	109
	7.1.2	Ashes recycling - test documentation (test date: 12.02.2025)	110
7.2	Whats next?		111

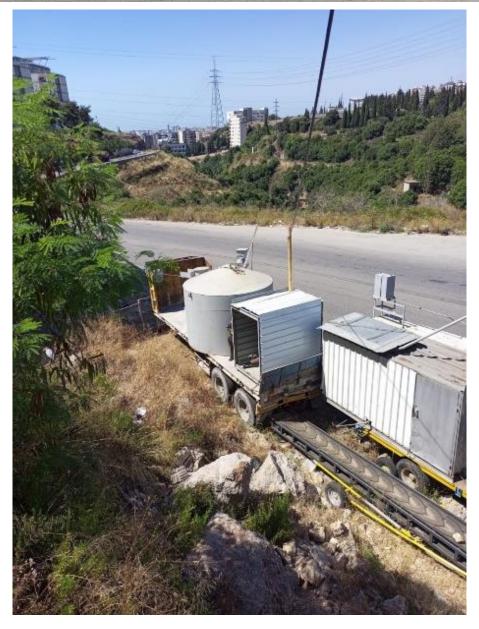
4 Project 4: Biogas project

4.1 Position of biogas project

This project was proposed to produce methane gas for later use in the burner. In 2023 - 2024, the focus was on implementing and operating the project.

4.2 Placement of digester on mobile platform


4.2.1 Place in Ras Maska for Mobile Biogas Generation and Gas Turbine Testrig


4.2.2 Moving of Biogas Generation Device on Mobile Plant 30.05.23

4.2.3 Situation on 31.5.23

Placement of digester on mobile platform

4.2.4 Shredder

- 4.3 Test specifications/Operational Steps of Biogas Generation
- 4.3.1 Operation steps of Digester

- مرحلة جمع النفايات
 مرحلة الفرز والفرم
 مرحلة التخمير

4.3.2 Gas extraction

Steps	Steps description	Excepted result
	The pump is turned off	
D 1111	By the GUI the "Pressure Sensor" read 1 atm	
Precondition	The water was under level	
	Both digester inlet and outlet were opened (atmospheric pressure)	

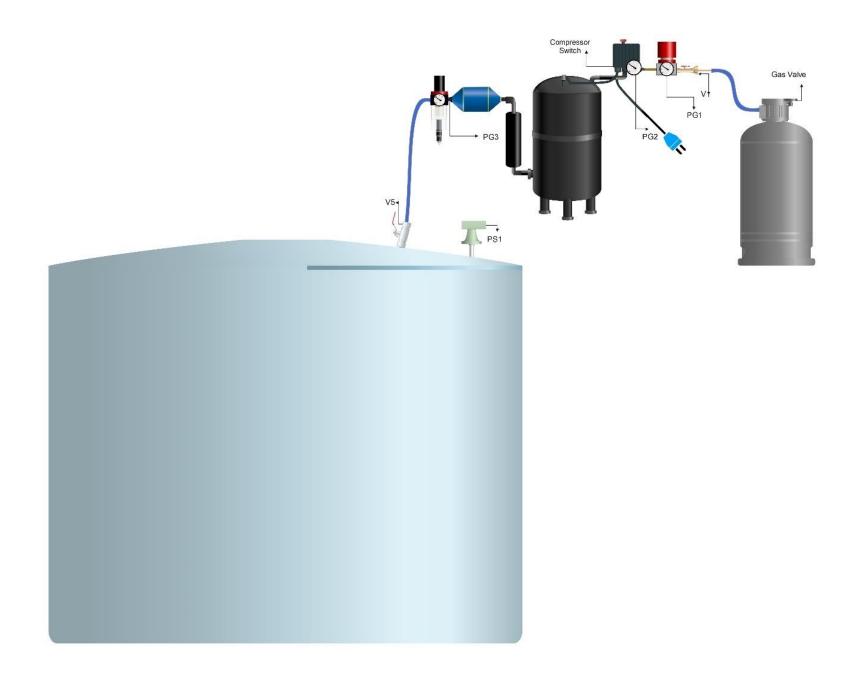
Gas extraction	Connect the balloon beside the pressure gauge	Balloon is connected
process 1	Open the ball valve of the pressure	Gas is captured
	gauge	Inflation of balloon
	18.5-liter galloon bought	
	Connect a pipe internally to the main inlet of the galloon	The pipe is connected
	Attach the balloon to the inner entrance of the tube	The balloon is attached
Creation a storage tank through the	Connect a ball valve to the outer end of the pipe	The ball valve is connected
vacuum	Create a hole in the bottom of the galloon	The galloon is perforated at the bottom
	Connect the gas inlet connexion to the bottom hole of the galloon	The inlet gas connexion is connected
	Connect a vacuum pump to the gas inlet connexion	The vacuum pump is connected
	Connect the galloon to the pressure gauge inlet using Tee valve	The galloon is connected
	Open both ball valves of the pressure gauge and galloon	The ball valves are opened
Gas extraction process 2 _ By	Turn on the vacuum pump	The vacuum pump is turned on
vacuum tank		Gas was captured
	Close both ball valves of the pressure gauge and galloon	The ball valves are closed
	Disconnect the galloon from the digester	The galloon is disconnected
Combustion	Open the vacuum connection at the bottom of the galloon	The vacuum connection is opened
process	Open the ball valve of the galloon	The ball valve is opened

	intil the balloon is deflated
N	Aethane gas existed

4.3.3 Digester leakage's test

Steps	Steps description	Excepted result
	Pump is turned off	
Precondition	The pressure of digester is 1 atm (digital pressure gauge reading)	
rrecondition	The water was under level	
	Both digester inlet and outlet was opened (atmospheric pressure)	
	Connect the air compressor to the pressure gauge, from the top of the digester, through a tee connection	The air compressor is connected
	Open the ball valve at the top of the digester	The ball valve is opened
	Turn on the air compressor	The air compressor is turned on
Digester		Water comes out of the outlet of the digestive mixture
leakage test		Air bubbles appear on the inlet and outlet surfaces of the digester
	Turn off the air compressor	The air compressor is turned off
	Close the ball valve at the top of digester	The ball valve is closed
	Separate the air compressor from the digester	The air compressor is separated from the digester

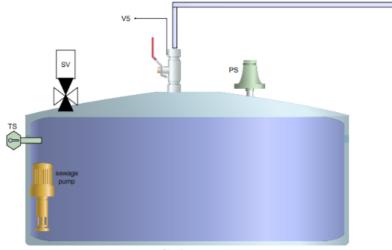
4.3.4 Enhancing Methane Storage Through Gas Compression


Step	Step description	Expected Result			
	Precondition				
System is off	all Valves are closed	System is off			
	Connection				
Connecting gas entrance	Connect the PEX tube to the compression machine inlet (manually)	Connected			
connecting check valve	Connect the check valve to the machine outlet (manually)	connected			
Connecting the system to the gas storage tank	Connect the pipe in the machine outlet to the methane gas storage (manually)	connected			
Leakage check	start the compressor and open Valves V1 and V5 and Gas Tank main Valve to check the leakage in the system (with Soap)	no leak			
	close the compressor and close the Valves V1 and V5 and Gas Tank main Valve	no obstacles			

4.3.4.1 Operational Steps

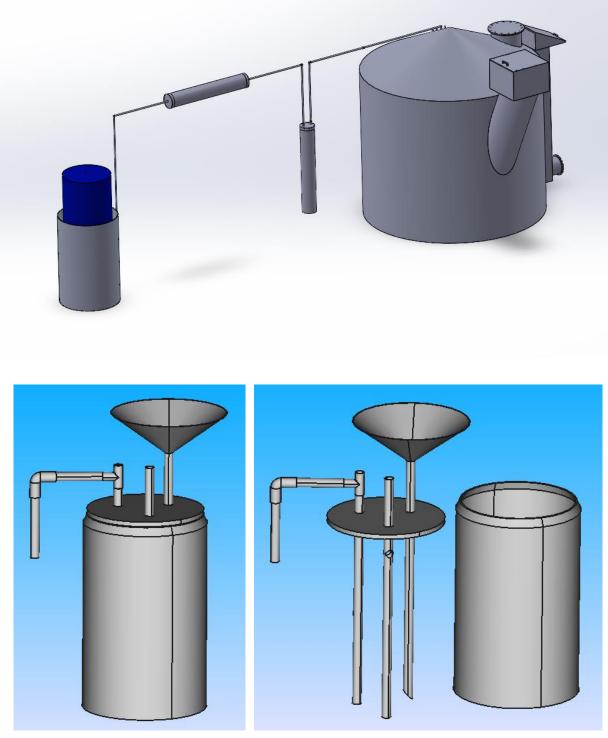
Test Starts			
Open gas tank	open the gas tank main valve (manually)	opened	
open V1	open the Valve (V1) (manually)	no obstacles	
open V5	Open Valve V5 of the Biogas (manually)	no obstacles	
start the Switch of the compressor	start the switch of the compressor (by GUI)	compression started (and compression ended by the Compressor switch when it reaches 8 bar (on PG2) or when the pressure at the biogas reaches atmospheric pressure (by PG4))	
Close the red emergency switch of the compressor	Close the red switch of the compressor (manually) in case of emergency when neither the switch turned off automatically nor the GUI gives the order to close the system cycle	Compressor turned off	
close V5	close the Valve V5 of the Biogas (manually)	no obstacles	
close V1	close the Valve (V1) (manually)	no obstacles	
Post condition			
System is off	all Valves are closed	System is off	

4.3.5 Enhancing Methane Storage Through Gas Compression With Filtration System


Step	Step description	Expected Result		
Precondition				
System is off	all Valves are closed	System is off		
	Connection			
Connecting gas entrance	Connect the PEX tube to the compression machine inlet (manually)	Connected		
connecting check valve	Connect the check valve to the machine outlet (manually)	connected		
Connecting the system to the gas storage tank	Connect the pipe in the machine outlet to the methane gas storage (manually)	connected		
Leakage check	start the compressor and open Valves V1 and V2 and Gas Tank main Valve to check the leakage in the system (with Soap)	no leak		
	close the compressor and close the Valves V1 and V2 and Gas Tank main Valve	no obstacles		


Test Starts			
0pen gas tank	open the gas tank main valve (manually)	opened	
open V1	open the Valve (V1) (manually)	no obstacles	
open V2 , V3, V4, V5	Open Valve V2 , V3, V4, V5 of the Biogas (manually)	gas inlet should be equal gas outlet	
start the Switch of the compressor	start the switch of the compressor (by GUI)	compression started (and compression ended by the Compressor switch when it reaches 8 bar (on PG2) or when the pressure at the biogas reaches atmospheric pressure (by PS))	

Close the red emergency switch of the compressor	Close the red switch of the compressor (manually) in case of emergency when neither the switch turned off automatically nor the GUI gives the order to close the system cycle	Compressor turned off
close V2 , V3, V4, V5	close the Valve V2 , V3, V4, V5 of the Biogas (manually)	no obstacles
close V1	close the Valve (V1) (manually)	no obstacles
Post condition		
System is off	all Valves are closed	System is off



Bio Gas Tank

CO2 filter

4.4 Ras Maska Biogas Prototype Reactor - Mechanical Realization

Biogas SolidWorks file :

4.5 Realization of biogas storage parts

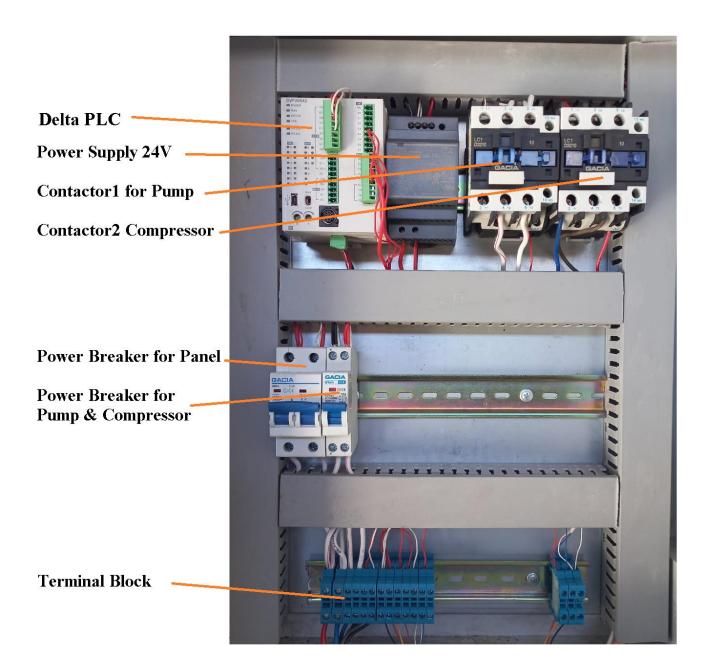
4.5.1 The H₂S filter tank

It is made of pipe that contains iron wool and 240 activated charcoal pills

4.5.2 The CO₂ filter storage

It is made of water and one pipe immersed in water and another pipe connected to the surface for pure methane gas with the H₂S

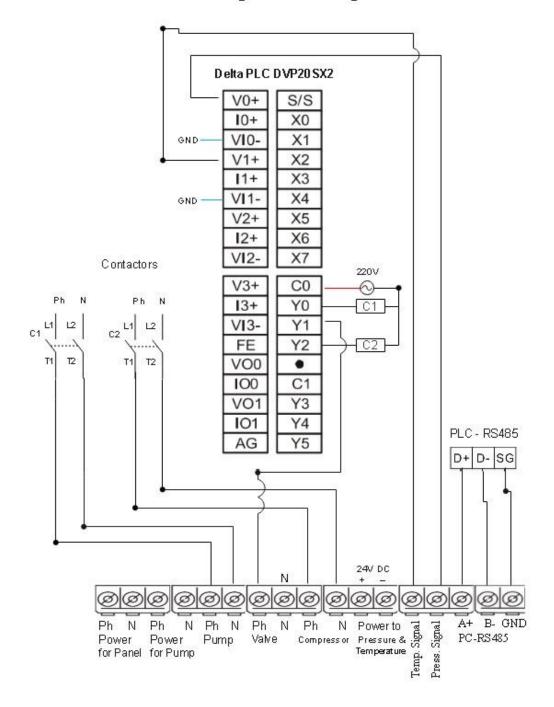
Carbon Dioxide (CO2) Filter Storage Liquid Preparation Video:


Filling of tank to clean from CO2	Filling of calc with water		Opening Valve
بتعينه غزان	التكلس الذي يساعد		بعدها بفتح السلام المترى المنتجه
		لقد قدنا بداره	

D

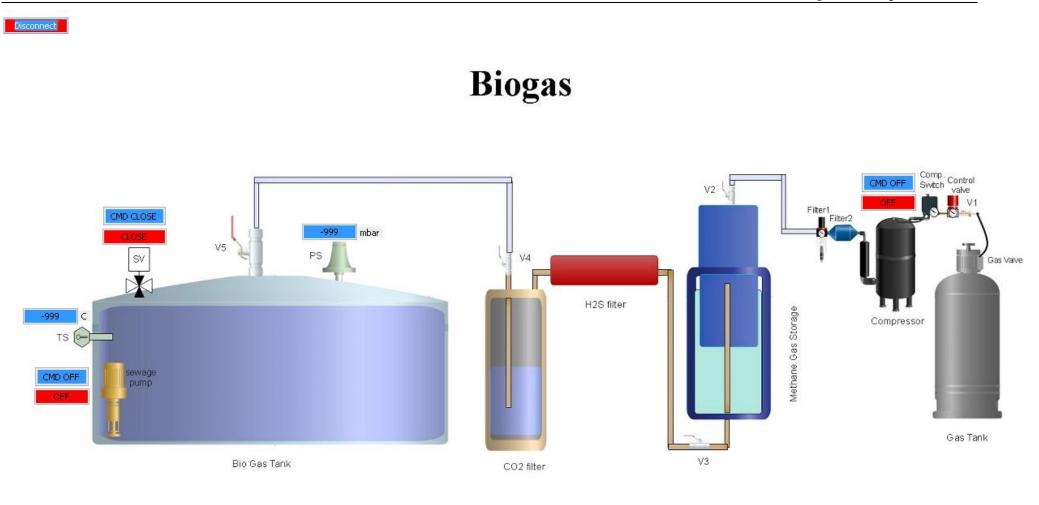
WhatsApp Video 2023-12-13 at 11.49.

4.6 Biogas PCS implementation


4.6.1.1 Control Panel

4.6.1.2 Instruments

4.6.1.3 Wiring Control Panel


Wiring Panel for Biogas

4.6.1.4 Graphical User Interface code (C#) and PLC Code

	D
NLAP-Biogas_Fuel-B	NLAP_Biogas_Fuel-B
urner_PCS_GUI_0104	urner_PCS_PLC-code

4.6.1.5 Graphical User Interface (GUI)

4.6.1.6 PLC_Modbus_addresses

	Addresses inside (GUI)	Modbus addresses (PLC)	Physical Address (PLC)	Remarque
<u>Biogas</u>				
BG Presure Sensore	<u>4097</u>	<u>4098</u>	<u>D1</u>	
BG Temperature Sensor	<u>4098</u>	<u>4099</u>	<u>D2</u>	
BG Pump Status	<u>1280</u>	<u>1281</u>	<u>Y0</u>	
BG ON/OFF Pump	<u>1280</u>	<u>1281</u>	<u>Y0</u>	
BG Valve Status	<u>1281</u>	<u>1282</u>	<u>Y1</u>	
BG ON/OFF Valve	<u>1281</u>	<u>1282</u>	<u>Y1</u>	
BG Compressor Status	<u>1282</u>	<u>1283</u>	<u>Y2</u>	
BG ON/OFF Compressor	<u>2048</u>	<u>2049</u>	<u>M0</u>	
<u>Fuel Burner</u>				
FB_Temperature_Sensor	<u>4106</u>	<u>4107</u>	<u>D10</u>	
FB_Valve1_Status	<u>1283</u>	<u>1284</u>	<u>Y3</u>	Valve 1 for gas (Butane/Methane)
FB_ON/OFF_Valve1	<u>2069</u>	<u>2070</u>	<u>M21</u>	
FB_Valve2_Status	<u>1284</u>	<u>1285</u>	<u>Y4</u>	Valve 2 for Oxygen/Air
FB_ON/OFF_Valve2	<u>2070</u>	<u>2071</u>	<u>M22</u>	
FB_Valve3_Status	<u>1282</u>	<u>1283</u>	<u>Y5</u>	Valve 3_gas for lighter
FB_ON/OFF_Valve3	<u>2048</u>	<u>2049</u>	<u>Y2</u>	
FB_Valve4_Status	<u>1285</u>	<u>1286</u>	<u>M0</u>	Valve 4 _ gas for Burner
FB_ON/OFF_Valve4	<u>1285</u>	<u>1286</u>	<u>Y5</u>	
FB Lighter Status	<u>1285</u>	<u>1286</u>	<u>Y5</u>	
FB ON/OFF Lighter	<u>1285</u>	<u>1286</u>	<u>Y5</u>	
FB ON/OFF Valves 1 2	<u>2068</u>	<u>2069</u>	<u>M20</u>	_
Coil/Register Numbers	<u>Data Addresses</u>	<u>Type</u>	Table Name	
<u>1 to 9999</u>		<u>Read-Write</u>	Discrete Output Coils	
<u>10001-19999</u>	<u>0000 to 270E</u>	<u>Read-Only</u>	Discrete Input Contacts	
<u>30001-39999</u>	<u>0000 to 270E</u>	<u>Read-Only</u>	Analog Input Registers	
<u>40001-49999</u>	<u>0000 to 270E</u>	<u>Read-Write</u>	Analog Output Holding Registers	

4.7 Biogas tests

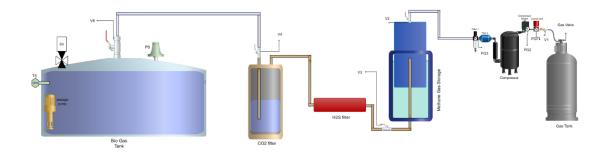
Step	Step description	Expected Result	Result	Result Discription
	Precondition		×	✓
System is off	all Valves are closed	System is off		V
		Connection		
Connecting gas entrance	Connect the PEX tube to the compression machine inlet (manually)	Connected	,	/
connecting check valve	Connect the check valve to the machine outlet (manually)	connected		/
Connecting the system to the gas storage tank	Connect the pipe in the machine outlet to the methane gas storage (manually)	connected	V	
Leakage check	start the compressor and open Valves V1 and V5 and Gas Tank main Valve to check the leakage in the system (with Soap)	no leak	×	there was leakage in the pipe ,and was fixed immediatlly.

4.7.1 Test 4 -16012024: Enhancing Methane Storage through Gas Compression

	close the compressor and close the Valves V1 and V5 and Gas Tank main Valve	no obstacles	V
		Test Starts	
0pen gas tank	open the gas tank main valve (manually)	opened	\checkmark
open V1	open the Valve (V1) (manually)	no obstacles	V
open V5	Open Valve V5 of the Biogas (manually)	no obstacles	V
start the Switch of the compressor	start the switch of the compressor (by GUI)	compression started (and compression ended by the Compressor switch when it reaches 8 bar (on PG2) or when the pressure at the biogas reaches atmospheric pressure (by PG4))	✓

Biogas tests

Close the red emergency switch of the compressor	Close the red switch of the compressor (manually) in case of emergency when neither the switch turned off automatically nor the GUI gives the order to close the system cycle	Compressor turned off	√
close V5	close the Valve V5 of the Biogas (manually)	no obstacles	V
close V1	close the Valve (V1) (manually)	no obstacles	√
	Post co	ndition	
System is off	all Valves are closed	System is off	√
			Switch - PCZ


4.7.2 Test 5 -18012024: Enhancing Methane Storage through Gas Compression with Filtration System Part 2

Step	Step description	Expected Result	Result		Result Description
	Precondition		×	~	
System is off	all Valves are closed	System is off		~	
		Connection			
Connecting gas entrance	Connect the PEX tube to the compression machine inlet (manually)	Connected		V	
connecting check valve	Connect the check valve to the machine outlet (manually)	connected		V	
Connecting the system to the gas storage tank	Connect the pipe in the machine outlet to the methane gas storage (manually)	connected		~	

Leakage check	start the compressor and open Valves V1 and V2 and Gas Tank main Valve to check the leakage in the system (with Soap)	no leak	√
	close the compressor and close the Valves V1 and V2 and Gas Tank main Valve	no obstacles	√
		Test Starts	
Open gas tank	open the gas tank main valve (manually)	Test Starts opened	√
	tank main valve		√

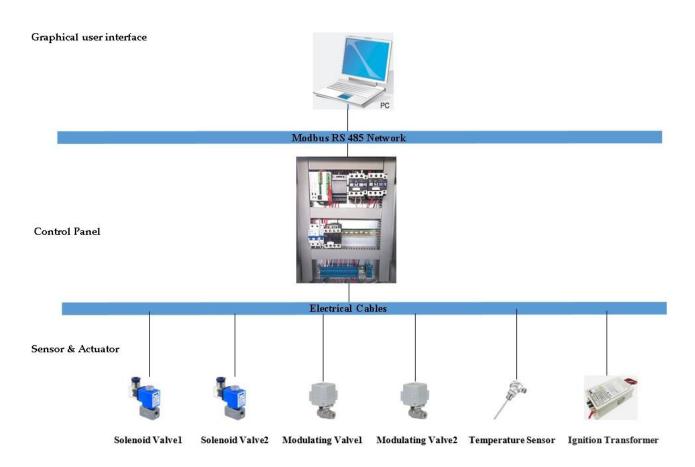
start the Switch of the compressor	start the switch of the compressor (by GUI)	compression started (and compression ended by the Compressor switch when it reaches 8 bar (on PG2) or when the pressure at the biogas reaches atmospheric pressure (by PS))	√	switch reached 8 bar pressure and system turned off
Close the red emergency switch of the compressor	Close the red switch of the compressor (manually) in case of emergency when neither the switch turned off automatically nor the GUI gives the order to close the system cycle	Compressor turned off	×	we didn't use it

close V2 , V3, V4, V5	close the Valve V2 , V3, V4, V5 of the Biogas (manually)	no obstacles	√
close V1	close the Valve (V1) (manually)	no obstacles	√
	l	Post condition	
System is off	all Valves are closed	System is off	√

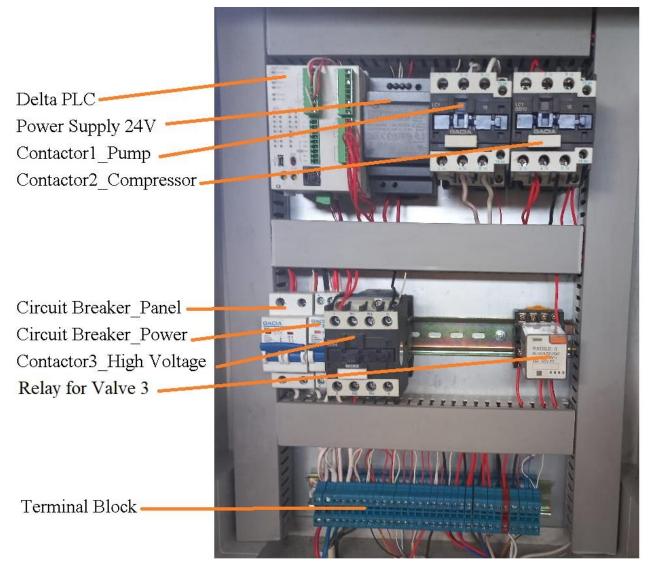
Full video of the biogas Process:

4.8 What's next

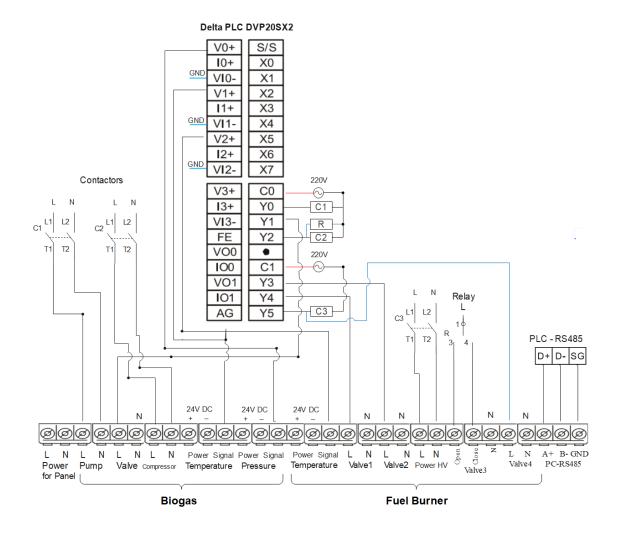
The first objective of the project has been achieved, after that the focus should be on the efficiency of the project to obtain accurate scientific data.


5 Project 5: Gas Turbine for Methane gas

5.1 Position of Gas turbine project


This project is divided into two parts: the fuel burner and the gas turbine. Work has been done on the fuel burner section in the past years, this year the stand was manufactured for the burner only. While the focus was on the gas turbine, the project was studied theoretically, and a preliminary design of the gas turbine was developed.

5.2 Fuel burner PCS realization


5.2.1 The process control system for the Fuel Burner

5.2.2 Control Panel

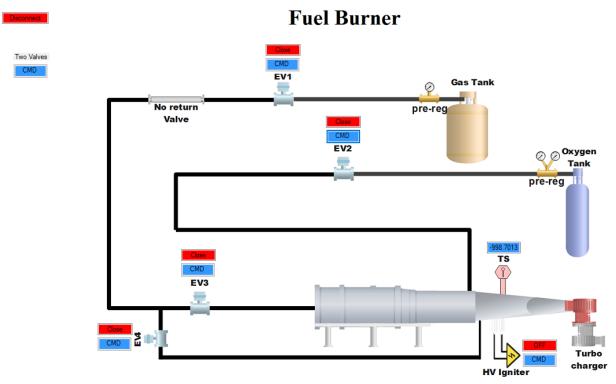
5.2.3 Control Panel Wiring Diagram

Wiring Panel for Biogas & Fuel Burner

Panel Wiring Diagram:

5.2.4 Instruments

5.2.5 PLC Modbus addresses - Communication points


	addresses inside (GUI)	Modbus-addresses (PLC)	Physical Address (PLC)
Fuel Burner			
FB_Temperature_Sensor	4106	4107	D10
FB_Valve1_Status	1283	1284	Y3
FB_ON/OFF_Valve1	2069	2070	M21
FB_Valve1_Status	1284	1285	Y4
FB_ON/OFF_Valve1	2070	2071	M22
FB_Lighter_Status	1285	1286	Y5
FB_ON/OFF_Lighter	1285	1286	Y5
FB_ON/OFF_Valves 1_2	2068	2069	M20

5.2.6 PLC Modbus addresses:

	Addresses inside (GUI)	Modbus addresses (PLC)	Physical Address (PLC)	Remark
Biogas				
BG_Presure Sensore	4097	4098	D1	
BG_Temperature_Sensor	4098	4099	D2	
BG_Pump_Status	1280	1281	YO	
BG_ON/OFF_Pump	1280	1281	YO	
BG_Valve_Status	1281	1282	Y1	
BG_ON/OFF_Valve	1281	1282	Y1	
BG_Compressor_Status	1282	1283	Y2	
BG_ON/OFF_Compressor	2048	2049	M0	
Fuel Burner				
FB_Temperature_Sensor	4106	4107	D10	
				Valve 1 for gas
FB_Valve1_Status	1283	1284	Y3	(Butane/Methane)
FB_ON/OFF_Valve1	2069	2070	M21	
FB_Valve2_Status	1284	1285	Y4	Valve 2 for Oxygen/Air
FB_ON/OFF_Valve2	2070	2071	M22	
FB_Valve3_Status	1282	1283	Y5	Valve 3_ gas for lighter
FB_ON/OFF_Valve3	2048	2049	Y2	
FB_Valve4_Status	1285	1286	M0	Valve 4 _ gas for Burner
FB_ON/OFF_Valve4	1285	1286	Y5	
FB_Lighter_Status	1285	1286	Y5	
FB_ON/OFF_Lighter	1285	1286	Y5	
FB_ON/OFF_Valves 1_2	2068	2069	M20	

Coil/Register Numbers	Data Addresses	Туре	Table Name
1 to 9999		Read-Write	Discrete Output Coils
10001-19999	0000 to 270E	Read-Only	Discrete Input Contacts
30001-39999	0000 to 270E	Read-Only	Analog Input Registers
40001-49999	0000 to 270E	Read-Write	Analog Output Holding Registers

5.2.7 Graphical User Interface

5.2.8 Graphical User Interface code (C#) and PLC Code

	D
NLAP-Biogas_Fuel-B	NLAP_Biogas_Fuel-B
urner_PCS_GUI_0104	urner_PCS_PLC-code

5.3 Fuel Burner System test specification

Test 00001: Test of Ethanol liquid combustion with liquid Hydrogen peroxide using the Fuel burner

Step	Step description	Expected result
Drocondition	The system is Off	All valves are closed
Precondition	The system is Off	All pumps are turned Off
Turn On the transformer (T)	Connect electricity to the transformer (T)	Spark is On
Open the Automatic controller valve of Ethanol (BV1)	Click "Turn On" on BV_1 button from the GUI	BV1 is open
Turn On the ethanol pump (P1)	Click "Turn On" on	P_1 is turned On
	Click "Turn On" on P1 button from the GUI	The spark is appeared, and will turns into a flame

Control the flame without oxidant	Adjust the orifice degree to control the ethanol flow rate from the GUI	The flame will be more stable
Open the Automatic controller valve of Hydrogen peroxide (BV ₂)	Click "Turn On" on BV_2 button from the GUI	BV_2 is open
Turn On the Hydrogen peroxide pump (P2)	Click "Turn On" on P_2 button from the GUI	P_2 is turned On
		The flame will be more strong
Control the flame with oxidant	Adjust the orifice degree to control the hydrogen peroxide flow rate from the GUI	The flame will become stronger and more stable
Turn Off the system	Turn Off the Hydrogen peroxide pump ₍ P ₂₎	P ₂ is turned Off
	Close the Automatic controller valve of Hydrogen peroxide (BV2)	BV ₂ is closed
	Turn Off the ethanol pump (P1)	P1 is turned Off
	Close the Automatic	BV1 is closed
	controller valve of Ethanol (BV1)	The flame disappears with time
	Turn Off the transformer	The transformer (T) is turned Off
	(T)	The spark is disappeared

5.4 Fuel Burner system test

5.4.1 Fuel Burner on Test Rig with Nozzle 23.03.23

5.4.2 Gas Turbine at the side of the Nozzle (29.03.23)

5.5 Biogas Turbine System Stochiometric Calculation and System Test

Balanced equation for complete combustion of butane:

 $2 \text{ C4H10} + 13 \text{ O2} \rightarrow 8 \text{ CO2} + 10 \text{ H2O}$

- The mole ratio of butane to oxygen = 2:13
- The density of butane = 0.579 g/mL
- Mass of 5 mL of butane = Volume x density = 5 mL x 0.579 g/mL = 2.895 g
- Molar mass of butane = 12*4 + 1*10 = 58 g/mol
- Moles in 2.895 g of butane, C4H10 = 2.895 g/(58 g/mol) = 0.05 mol
- 1. As per the reaction equation, the mole ratio of butane to oxygen is 2: 13.
- Moles of oxygen that react with 0.05 mol of butane =
 - = 0.05 mol x 13/2 = 0.325 mol
- Molar mass of oxygen, O2 = 16*2 = 32 g/mol
- Mass of 0.325 mol of oxygen = (32 g/mol) x 0.325 g = <u>10.4 g for 2.895 g of Butane to make</u> complete Combustion in atmospheric pressure
- 2. Mole ratio of butane used to water (H2O) formed = 2:10 = 1:5
- Moles of water formed =
- Moles of butane used $x = 0.05 \mod x = 0.25 \liminf x = 0.25$
- of molecules in 0.25 mol of water = Avogadro number x 0.25 = 6.022 x 10^23 x 0.25 = 1.506 x 10^23
- Percentage of oxygen in air = 23%
- Mass of air needed for 23 g of oxygen = 100 g
- Mass of air needed for 10.4 g of oxygen = 10.4 g x (100 g/23 g) = 49.2 g (answer 3)

ANSWERS:

- (1) Mass of oxygen needed for combustion = 10.4 g
- (2) Number of molecules of water produced = 1.506×10^{23}
- (3) Mass or air needed = 49.2 g

PV= P1 = for Butane P2 = For Oxygen

Therefore, If P1 is 3 bar, then But the butane gas is not ideal. So non-ideal gases are often modeled by the Van der Waals equation: p1 = 3 bar a = 13.36 b = 0.1168 n1 = 0.05 mole n2 = 0.325 mole R = 8.125 J/mole.k T = 298 k

$$D_{\infty} \left(P_{1} + \frac{\alpha n_{1}^{2}}{V_{2}^{2}}\right) \left(V_{-n_{1}b}\right) = n_{1}RT$$

$$(D_{\infty} \left(P_{1} + \frac{\alpha n_{1}^{2}}{V_{2}^{2}}\right) \left(V_{-n_{1}b}\right) = n_{1}RT$$

$$(D_{\infty} V) = \frac{m_{1}RT}{P_{2}}$$

$$(D_{\infty} V) = \frac{m_{1}RT}{P_{2}}$$

$$(D_{\infty} V) = \frac{m_{1}RT}{P_{2}} \left(\frac{n_{2}RT}{P_{2}}\right) \left(\frac{m_{2}RT}{P_{2}} - m_{1}b\right) = m_{1}RT$$

$$(D_{\infty} V) = \frac{m_{1}RT}{P_{2}} \left(\frac{n_{2}RT}{P_{2}}\right) \left(\frac{m_{2}RT}{P_{2}} - m_{1}b\right) = m_{1}RT$$

$$(D_{\infty} \left(P_{1} + \frac{\alpha n_{1}^{2}}{(m_{2}RT)^{2}}\right) \left(\frac{m_{2}RT}{P_{2}} - m_{1}b\right) = m_{1}RT$$

$$(D_{\infty} \left(P_{1} + \frac{\alpha n_{1}^{2}}{(m_{2}RT)^{2}}\right) \left(\frac{m_{2}RT}{P_{2}} - m_{1}b\right) = m_{1}RT$$

$$(D_{\infty} \left(P_{1} + \frac{\alpha n_{1}^{2}}{(m_{2}RT)^{2}}\right) \left(\frac{m_{2}RT}{P_{2}} - m_{1}b\right) = m_{1}RT$$

$$(D_{\infty} \left(P_{1} + \frac{\alpha n_{1}^{2}}{(m_{2}RT)^{2}}\right) \left(\frac{m_{2}RT}{P_{2}} - m_{1}b\right) = m_{1}RT$$

$$(D_{\infty} \left(P_{1} + \frac{\alpha n_{1}^{2}}{(m_{1}RT)^{2}}\right) \left(\frac{m_{2}RT}{P_{2}} - m_{1}b\right) = m_{1}RT$$

$$(D_{\infty} \left(P_{1} + \frac{\alpha n_{1}^{2}}{(m_{1}RT)^{2}}\right) \left(\frac{m_{2}RT}{P_{2}} - m_{1}b\right) = m_{1}RT$$

$$(D_{\infty} \left(P_{1} + \frac{\alpha n_{1}^{2}}{(m_{1}RT)^{2}}\right) \left(\frac{m_{2}RT}{P_{2}} - m_{1}b\right) = m_{1}RT$$

$$(D_{\infty} \left(P_{1} + \frac{\alpha n_{1}^{2}}{(m_{1}RT)^{2}}\right) \left(\frac{m_{2}RT}{P_{2}} - m_{1}b\right) = m_{1}RT$$

$$(D_{\infty} \left(P_{1} + \frac{\alpha n_{1}^{2}}{(m_{1}RT)^{2}}\right) \left(\frac{m_{2}RT}{P_{2}} - m_{1}b\right) = m_{1}RT$$

$$(D_{\infty} \left(P_{1} + \frac{\alpha n_{1}^{2}}{(m_{1}RT)^{2}}\right) \left(\frac{m_{2}RT}{P_{2}} - m_{1}b\right) = m_{1}RT$$

$$(D_{\infty} \left(P_{1} + \frac{\alpha n_{1}^{2}}{(m_{1}RT)^{2}}\right) \left(\frac{m_{2}RT}{P_{2}} - m_{1}b\right) = m_{1}RT$$

$$(D_{\infty} \left(P_{1} + \frac{\alpha n_{1}^{2}}{(m_{1}RT)^{2}}\right) \left(\frac{m_{2}RT}{P_{2}} - m_{1}b\right) = m_{1}RT$$

$$(D_{\infty} \left(P_{1} + \frac{\alpha n_{1}^{2}}{(m_{1}RT)^{2}}\right) \left(\frac{m_{1}RT}{P_{2}} - m_{1}b\right) = m_{1}RT$$

$$(D_{\infty} \left(P_{1} + \frac{\alpha n_{1}}{(m_{1}RT)^{2}}\right) \left(\frac{m_{1}RT}{P_{2}} - m_{1}b\right) = m_{1}RT$$

$$(D_{\infty} \left(P_{1} + \frac{m_{1}RT}{P_{2}} - m_{1}b\right) = m_{1}RT$$

$$(D_{\infty} \left(P_{1$$

Then =128798.8608 Pa, or 1.29 bar of oxygen for 3 bar of butane.

Mass Flow Rate = Mass/ Δt

Where:

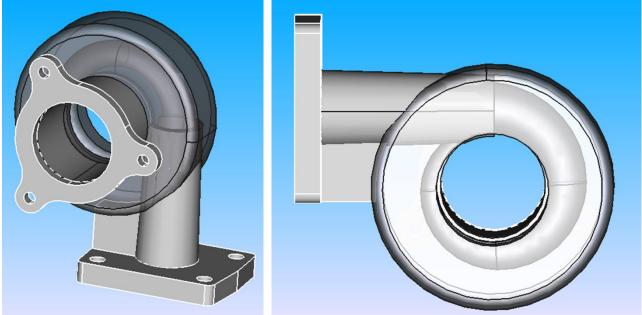
- Mass is the mass of the gas (in kg),
- Δt is the time interval (in seconds).

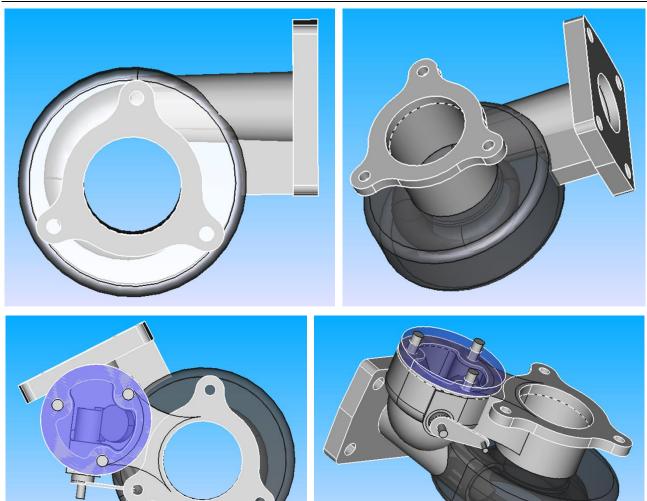
Since we're assuming a time interval of 1 second, the mass flow rate will be equal to the mass of the gas.

For butane (C4H10), the mass flow rate is 2.906 g per second, which needs to be converted to kilograms (since 1 g = 0.001 kg): Mass Flow Rate of Butane=2.906 g/1 s×0.001 kg/g Mass Flow Rate of Butane = 2.906×10^{-3} kg/s

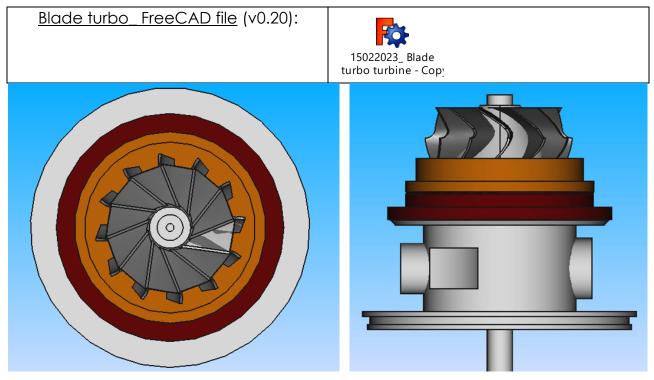
For oxygen (O2), the mass flow rate is 10.4 g per second, which also needs to be converted to kilograms: Mass Flow Rate of Oxygen = $10.4 \text{ g/s} \times 0.001 \text{ kg/g}$ Mass Flow Rate of Oxygen = $10.4 \times 10^{-3} \text{ kg/s}$

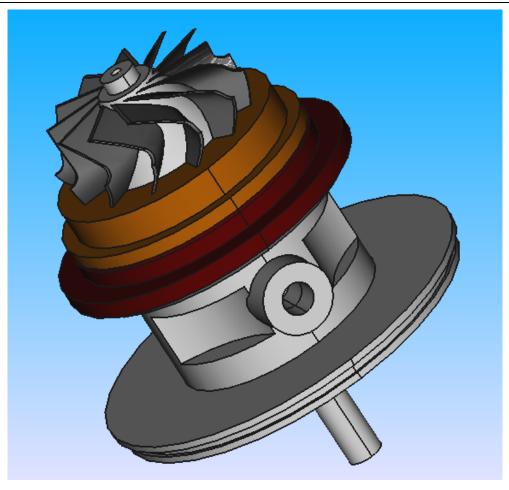
So, the mass flow rate of butane is 2.906×10^{-3} kg/s.


and the mass flow rate of oxygen is 10.4×10^{-3} kg/s.

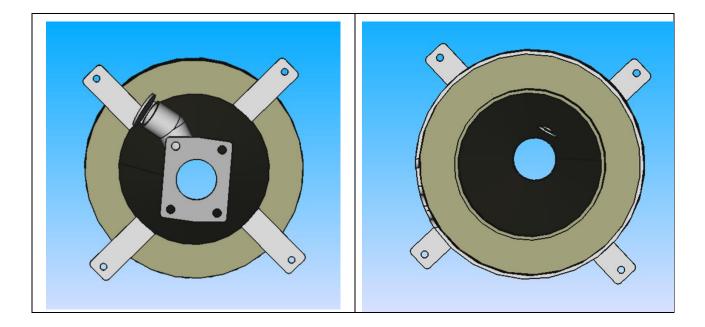

These values represent the mass flow rate at which each gas enters the combustion chamber at a volume of 0.025 m^3 and at T=25° C and the pressure of the Combustion Chamber is equal to the atmospheric pressure

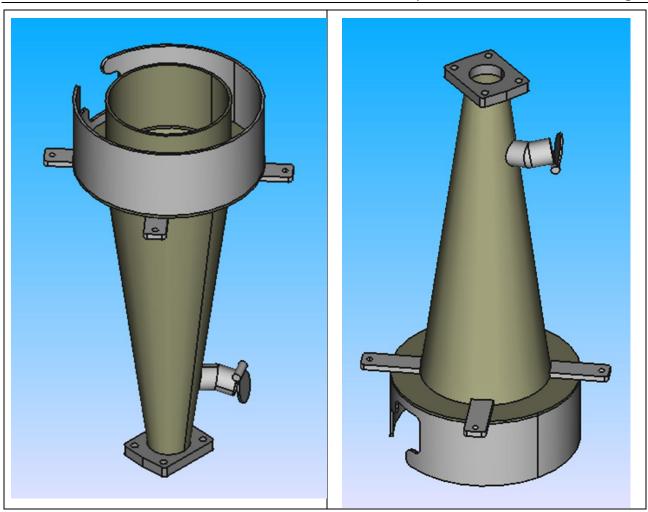
5.6 Gas turbine, Version 2

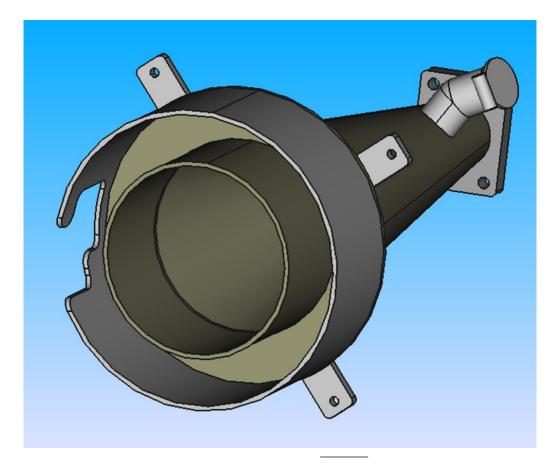

5.6.1 Housing turbine


 Housing turbo turbine_FreeCAD
 Image: Comparison of the second second

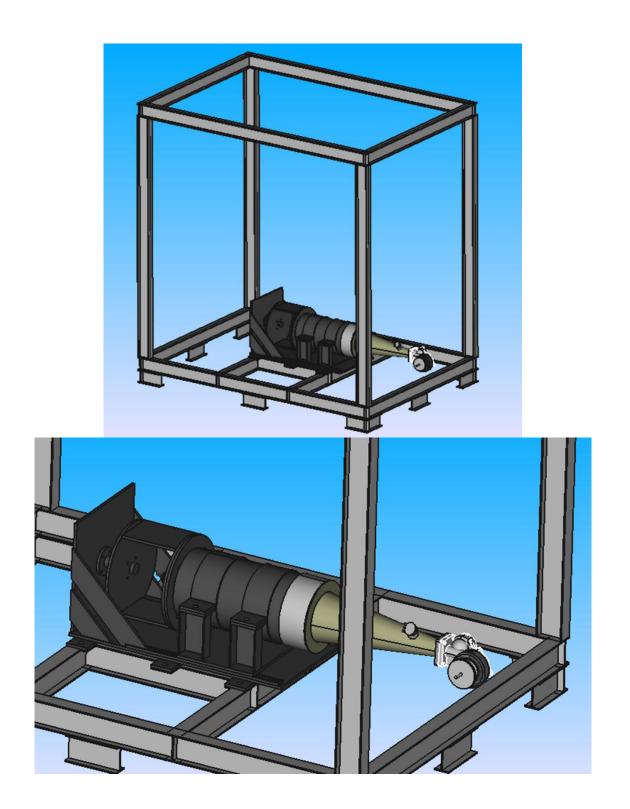
5.6.2 Blade_turbo

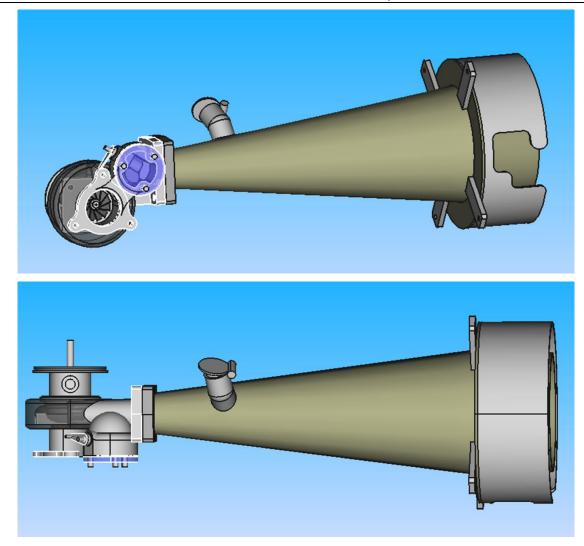


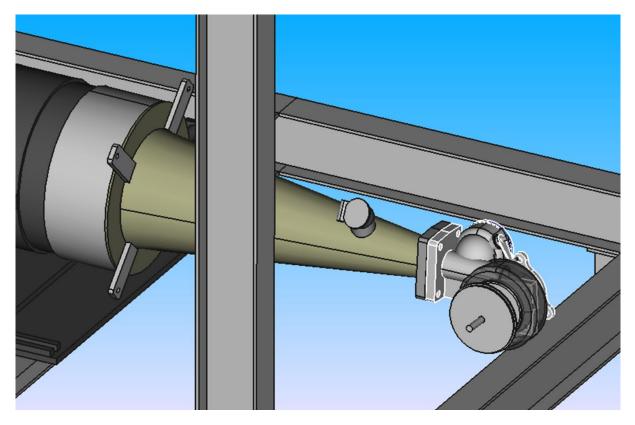


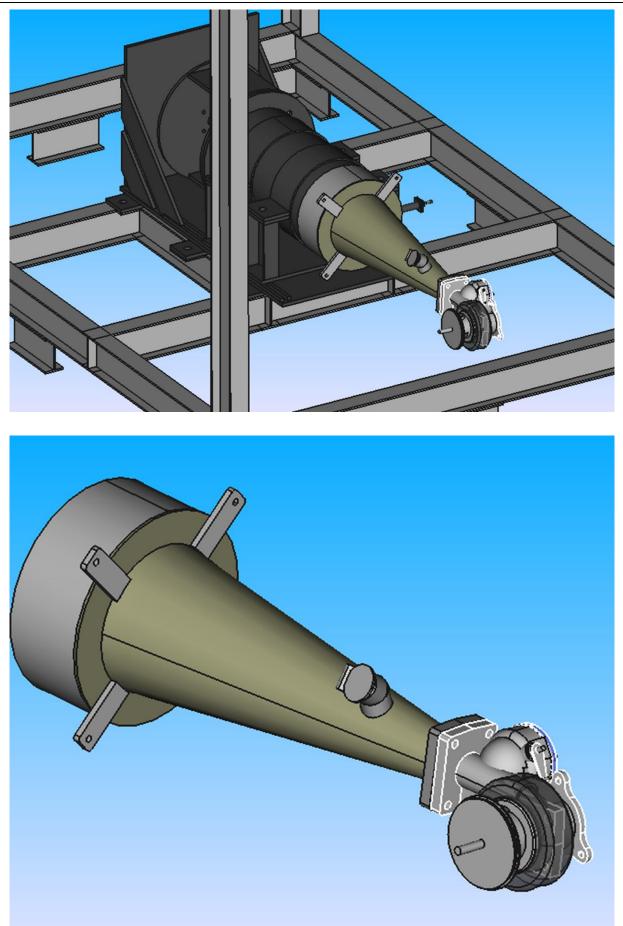

5.6.3 Nozzle design - premium design

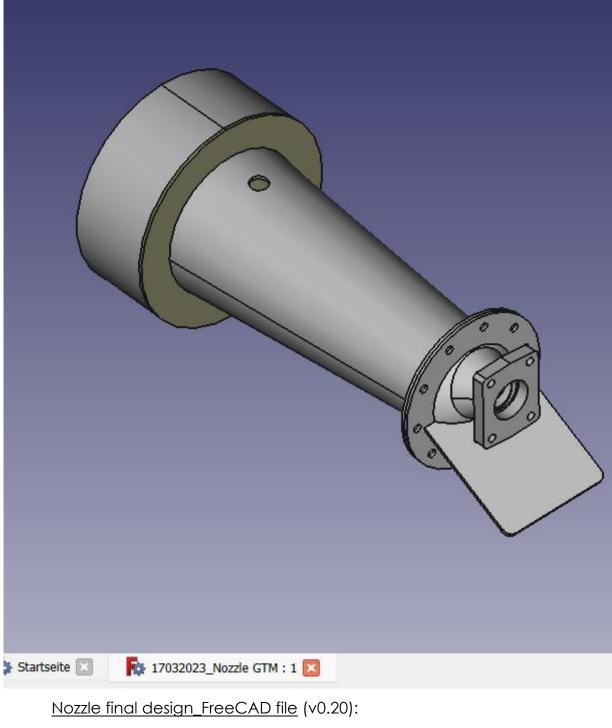
Nozzle premium design	FreeCAD
<u>file</u> (v0.20):	

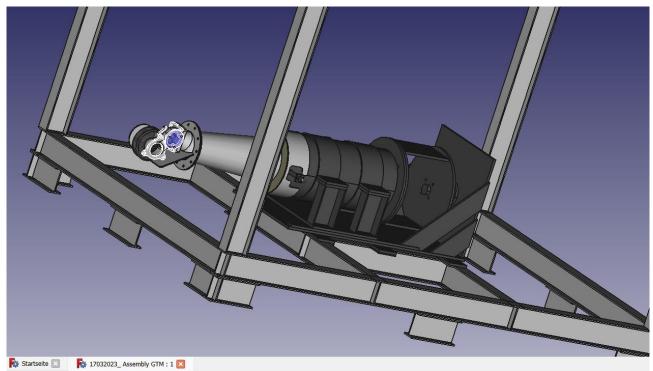



5.6.4 GTM Assembly - premium design

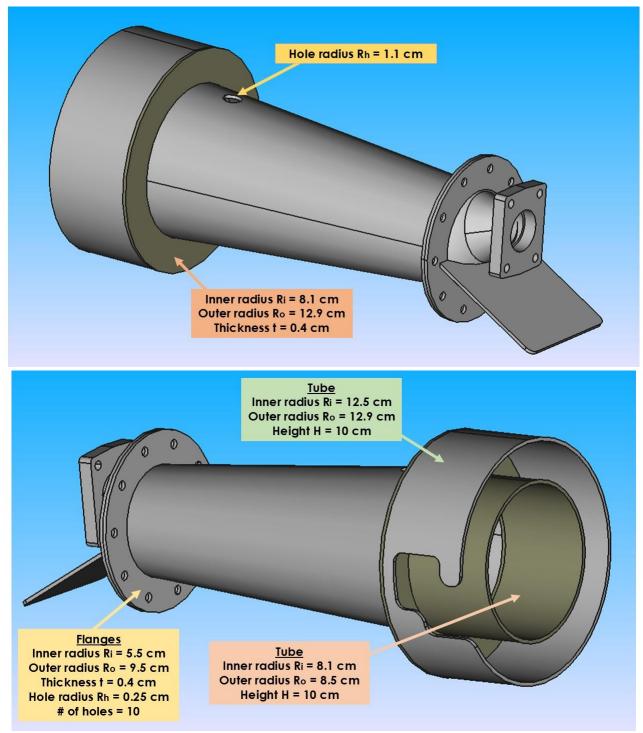

GTM Assembly - premium design_

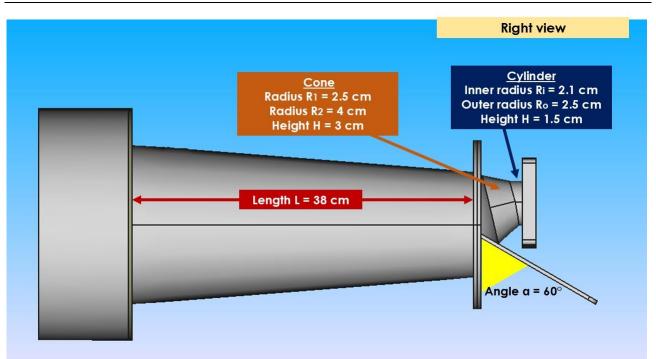

FreeCAD file (v0.20)

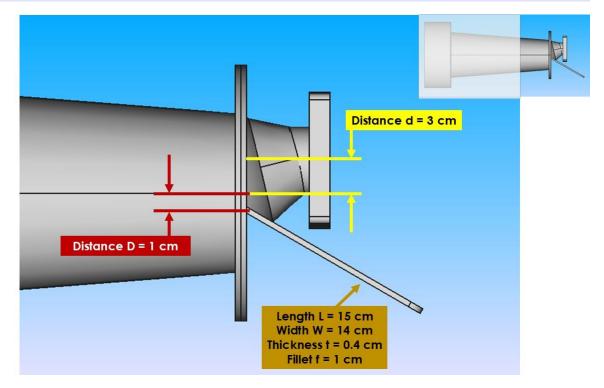


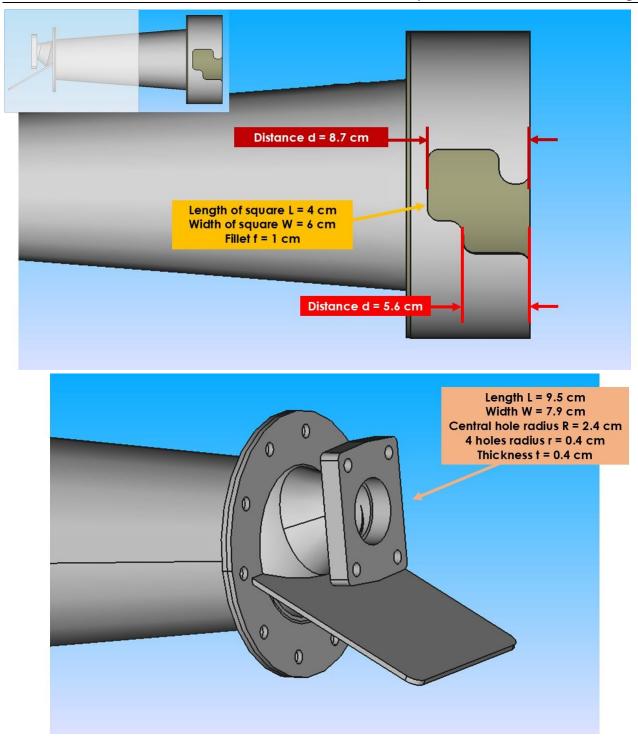

5.6.5 Nozzle design - Final design

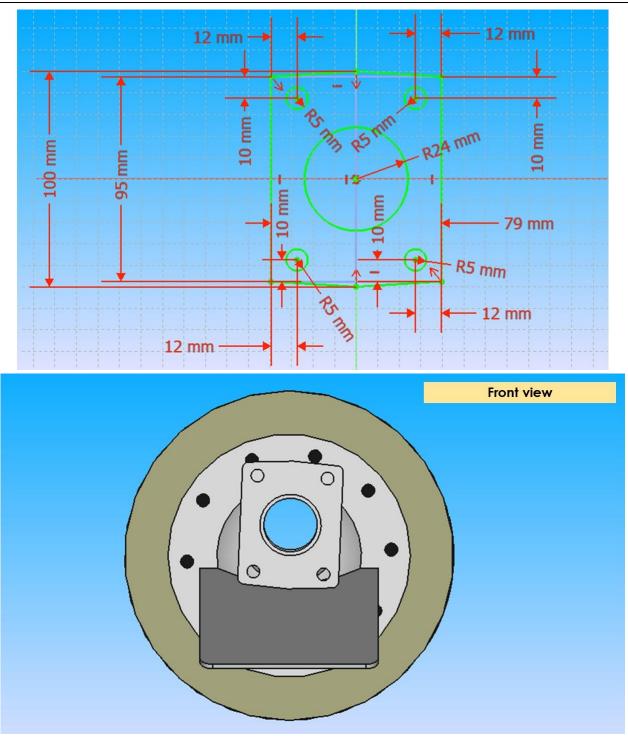
5.6.5.1 Nozzle final design

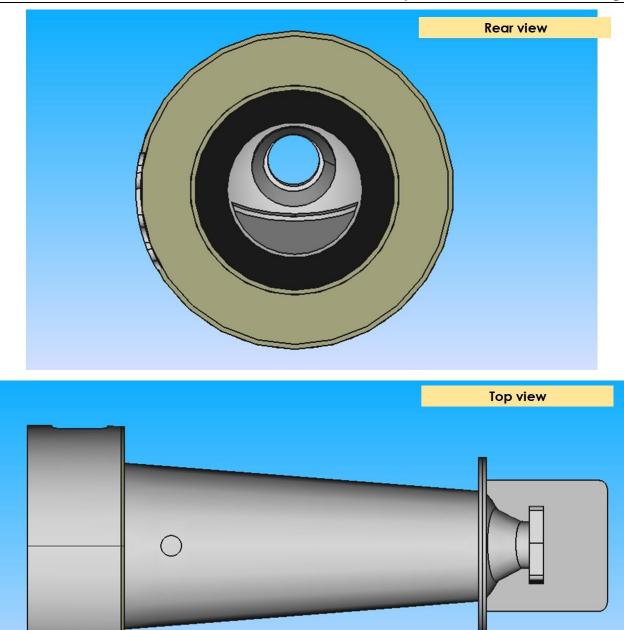

5.6.5.2 GTM assembly for the final design

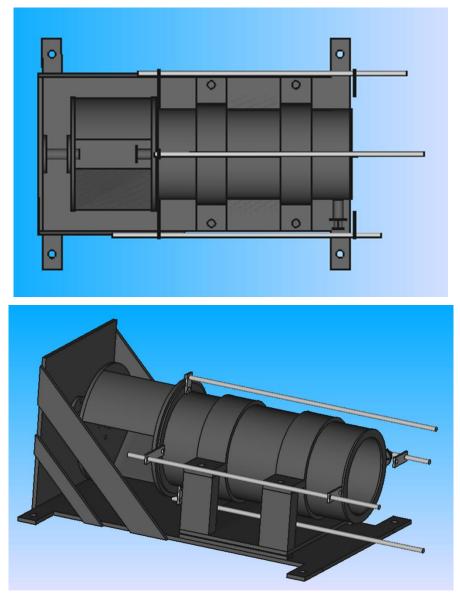


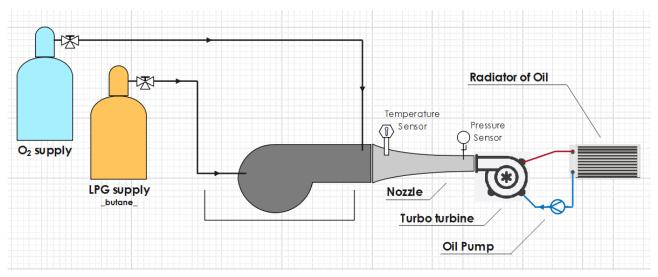

Final GTM assembly_FreeCAD file (v0.20)



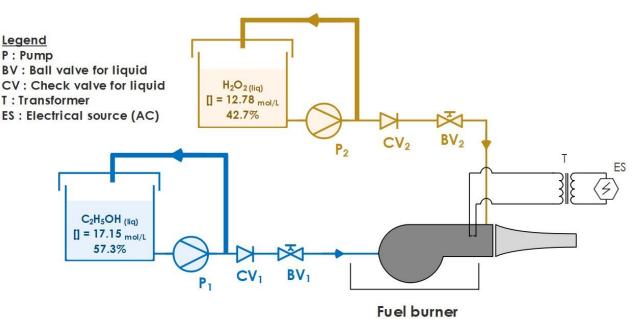

5.6.5.3 Nozzle sizing for the final design






Nozzle sizing - Final design _ pptx file:

5.6.6 Fuel Burner connections



5.7 Fuel burner flow chart

5.8 Combustion of Ethanol with H2O2

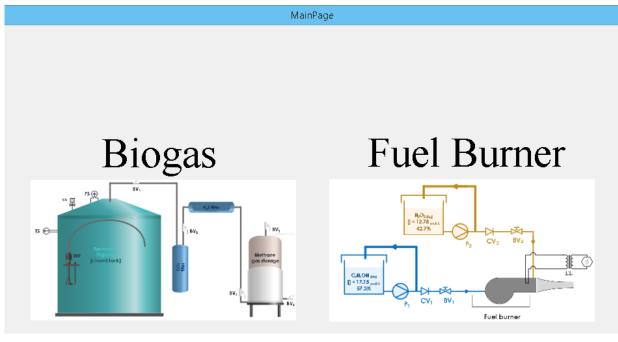
5.8.1 Design of Liquid Ethanol Combustion with Liquid Hydrogen peroxide unit using the FuelBurner

FB - Combustion of Ethanol Eddx file:

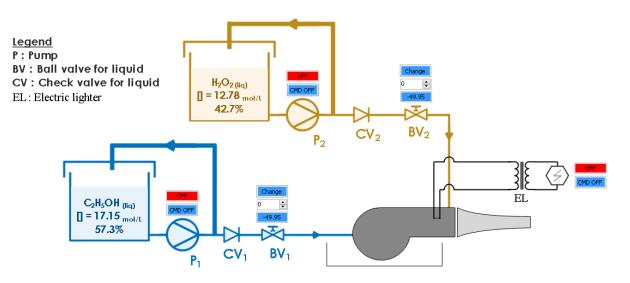
5.8.2 FuelBurner Requirements

- The concentration of Hydrogen peroxide (H₂O₂) should be about 12.8 mol/L.
- The concentration of Ethanol (C₂H₅OH) should be about 17.2 mol/L.
- The pumps should be able to pump the liquids (ethanol and hydrogen peroxide) from tank to the fuel burner.
- The PLC should be able to control the pumps and the Automatic controller valves.
- The fuel burner should be able to burn the liquid ethanol with oxidant (H₂O₂).
- The check valve must be able to pass fluids in one direction only.
- The Automatic controller valve should be able to open and close through the GUI.
- The tanks must be semi-closed to prevent the evaporation of the solutions (C₂H₅OH & H₂O₂) and to avoid explosion due to expansion.

Step	Step description	Expected result	Result
Precondition	The system is Off	All valves are closed	


5.8.3 FuelBurner Test specifications

		All pumps are turned Off
Turn On the transformer (T)	Connect electricity to the transformer (T)	Spark is On
Open the Automatic controller valve of Ethanol (BV1)	Click "Turn On" on BV1 button from the GUI	BV1 is open
Turn On the	Click "Turn On" on	P1 is turned On
ethanol pump (P ₁)	P ₁ button from the GUI	The spark is appeared, and will turns into a flame
Control the flame without oxidant	Adjust the orifice degree to control the ethanol flow rate from the GUI	The flame will be more stable
Open the Automatic controller valve of Hydrogen peroxide (BV ₂)	Click "Turn On" on BV2 button from the GUI	BV2 is open
Turn On the Hydrogen	Click "Turn On" on	P ₂ is turned On
peroxide pump (P ₂)	P ₂ button from the GUI	The flame will be more strong
Control the flame with oxidant	Adjust the orifice degree to control the hydrogen peroxide flow rate from the GUI	The flame will become stronger and more stable
Turn Off the system	Turn Off the Hydrogen peroxide pump (P ₂)	P2 is turned Off


	Close the Automatic controller valve of Hydrogen peroxide (BV ₂)	BV2 is closed
	Turn Off the ethanol pump (P1)	P1 is turned Off
	Close the Automatic controller valve of Ethanol (BV ₁)	BV ₁ is closed
		The flame disappears with time
	Turn Off the transformer (T)	The transformer (T) is turned Off
		The spark is disappeared

5.8.4 PCS Ethanol combustion

5.8.4.1 GUI

Fuel Burner

5.8.5 Graphical User Interface code (C#) and PLC Code

PLC Code	Graphical User Interface code (C#)
NLAP_Biogas_Fuel-Bu	NLAP-Biogas_Fuel-B
rner_PCS_PLC-code_2!	urner_PCS_GUI_0104

5.9 Fuel Burner Test using Air-compressor on 12.2.2024

5.9.1 What is the goal of this test?

This project aims to study and test the fuel burner's effectiveness using butane gas with compressed air. When the main goal of the test is to make the turbocharger rotate.

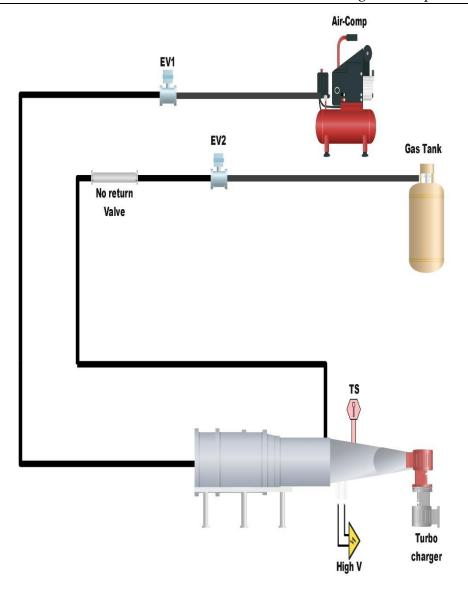
5.9.2 What has been changed compared to the previous test?

Compared to the previous tests, the turbocharger was installed in the outlet hole of the fuel burner, whereas in the previous test, it was installed in the side of the conic shape of the fuel burner.

The pictures show the changes made:

The flame igniter installed in the left side of the Fuel Burner

5.9.3 What are the results?


Steps	Step Description	Expected Result	Result	
	Precondition			
System is off	All valves and systems are closed	System is off	System is off	
	Check out			
Check out EV1	Check out by GUI EV1 valve (open it/close it)	Working good	Working good	

Check	Check out by GUI EV2		
out EV2	valve (open it/close it)	Working good	Working good
Check out high V	Check out by GUI the high Voltage or flame igniter (open it/close it)	Working good	we make some changes
Check out Ts	Check out the temperature sensor By Gui	Reading ambient Temperature	Reading ambient Temperature
Check out Ps	Check out the pressure sensor By Gui	Reading the Atmospheric pressure	no pressure sensor
Check out TU	Check out theTurbocharger (manually)	Blades rotating normally	Blades rotating normally
Check out A- COM	Check out the air compressor main valve and its connection (manually)	Working good	Working good
Check out C1	Check out the camera 1 filming	The system visible	no camera
Check out C2	Check out the camera 2 filming	The turbocharger blades are visible	The system visible
	Test S	Start	
Open Gas Tank	Open the gas tank main Valve (manually)	Working good	Working good
Open A- COM	Open the Air compressor main Valve (manually)	Working good	Working good
Open High V	Open the High V or the flame igniter by GUI	Start Working	Start Working
Open EV1	Open EV1 valve by GUI	Fire Start	Fire Start
Close High V	Close the High V or the flame igniter by GUI after fire start	Closes	Closes
Read Ts	Read the temperature sensor by GUI	Temperature rise	Temperature rise
Read Ps	Read the Pressure sensor by GUI	Pressure normal	no pressure sensor

See C1	Using camera 1 watch the System	No abnormal activity	no camera
See C2	Using camera 2 watch the Turbocharger blades rotation	Blade starts to rotate	Blade start to rotate for 0.5 seconds only
Open Ev2	Open the EV2 valve by the GUI	The fire starts to rise	Fire starts to rise slightly
See C1	Using camera 1 watch the System	No abnormal activity	no camera
See C2	Using camera 2 watch the Turbocharger blades' rotational speed	Blade rotational speed increases	no rotation as expected
Read Ts	Read the temperature sensor by GUI	Temperature rise	Temperature rise
Read Ps	Read the Pressure sensor by GUI	Pressure normal	no pressure sensor
Close EV2	Close the EV2 valve by the GUI	Fire gets back to normal	not the expected result
Close EV1	Close EV1 valve by GUI	Fire is off	Fire is off
Close Gas Tank	Close the gas tank main Valve (manually)	No abnormal activity	No abnormal activity
Close A- COM	Close the Air compressor main Valve (manually)	No abnormal activity	No abnormal activity
	Postcor	ndition	
System is off	All valves and systems are closed	System is off	System is off

Here is a diagram of the system:

The problems we faced during the test were:

- leakage in the pipes
- A high-voltage igniter is not enough to fire the system
- fire doesn't reach out its full combustion
- the turbocharger didn't rotate
- the system needs a regulating value to control the flow of gases

Video concerning the Test connections:

5.9.4 What is the next test about?

In the next tests, we will use oxygen gas instead of compressed air, we will fix the leakage in the system, and we will install regulating values to control the flow of the gases.

5.10 Fuel Burner test using Butane/Oxygen on 20.02.2024

5.10.1 Test conditions

Butane pressure: 12 bar

Oxygen pressure: 12 bar

Result: Unexpected high-pressure explosion

5.10.2 Analysis

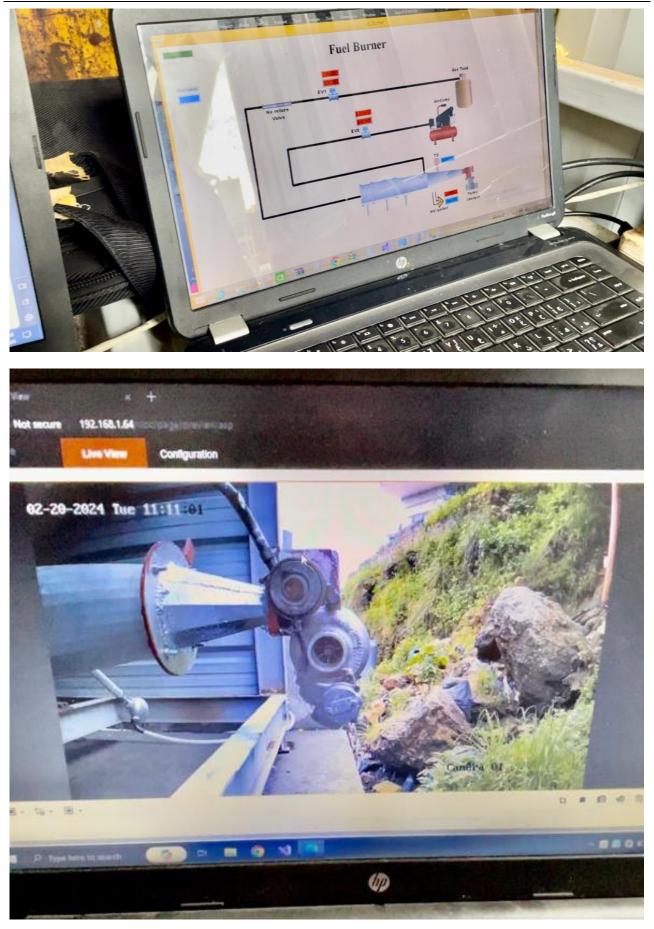
The test resulted in a high-pressure explosion due to an improper fuel-to-oxidant ratio. The supplied amount of oxygen exceeded the amount of butane that could be completely combusted by the igniter. This led to unburned butane gas accumulating within the chamber, which ignited explosively upon reaching a critical concentration.

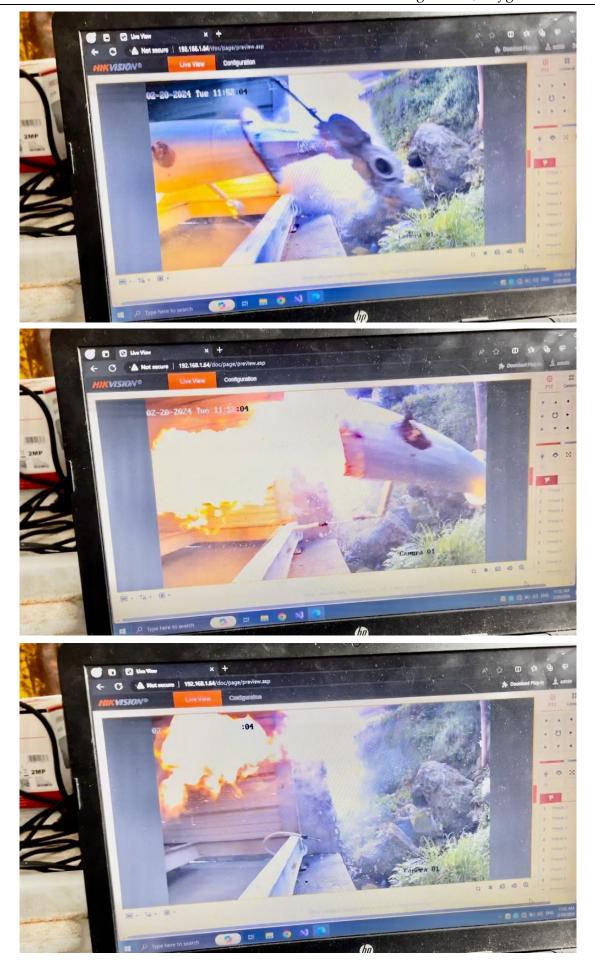
5.10.3 System Test

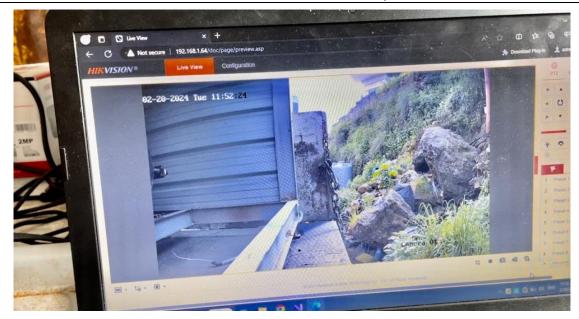
Steps	Step Description	Expected Result	Result
System is off	All valves and systems are closed	System is off	
	Check out		
Check out EV1 ,RV1	Check out by GUI EV1 and RV1 valve (open it/close it)	Working good	
Check out EV2, RV2	Check out by GUI EV2 and RV2 valve (open it/close it)	Working good	Failure in the system When we
Check out high V	Check out by GUI the high Voltage or flame igniter (open it/close it)	Working good	open the system the conic shape gets
Check out Ts	Check out the temperature sensor By Gui	Reading ambient Temperature	out from the system due to high
Check out Ps	Check out the pressure sensor By Gui	Reading the Atmospheric pressure	pressure from the ignition process.
Check out TU	Check out theTurbocharger (manually)	Blades rotating normally	
Check Oxygen tank	Check out the oxygen tank main valve and its connection (manually)	Working good	
Check out C1	Check out the camera 1 filming	The system visible	

Check out C2	Check out the camera 2 filming	The turbocharger blades are visible
	Test Start	
Open Gas Tank	Open gas tank main Valve (manually)	Working good
Open oxygen gas	Open the oxygen tank main Valve (manually)	Working good
Open High V	Open the High V or the flame igniter by GUI	Start Working
Open EV1 and RV1	Open EV1 and RV1 valve by GUI	Fire Start
Close High V	Close the High V or the flame igniter by GUI after fire start	Closes
Read Ts	Read the temperature sensor by GUI	Temperature rise
Read Ps	Read the Pressure sensor by GUI	Pressure normal
See C1	Using camera 1 watch the System	No abnormal activity
See C2	Using camera 2 watch the Turbocharger blades rotation	Blade start to rotate
Open Ev2 and RV2	Open EV2 valve by the GUI	Fire starts to rise
See C1	Using camera 1 watch the System	No abnormal activity
See C2	Using camera 2 watch the Turbocharger blades' rotational speed	Blade rotational speed increases
Read Ts	Read the temperature sensor by GUI	Temperature rise
Read Ps	Read the Pressure sensor by GUI	Pressure normal
Close EV2 and RV2	Close EV2 and RV2 valve by the GUI	Fire gets back to normal
Close EV1 and RV1	Close EV1 and RV1 valve by GUI	Fire is off

Close Gas	Close the gas tank main Valve	No abnormal
Tank	(manually)	activity
Close oxygen	Close the oxygen tank main	No abnormal
tank	Valve (manually)	activity
Postcondition		
System is off	All valves and systems are closed	System is off


Video related:





5.10.4 Pictures Related:

5.11 Biogas Turbine test using Butane/Oxygen on 29.03.2024

5.11.1 Test Description

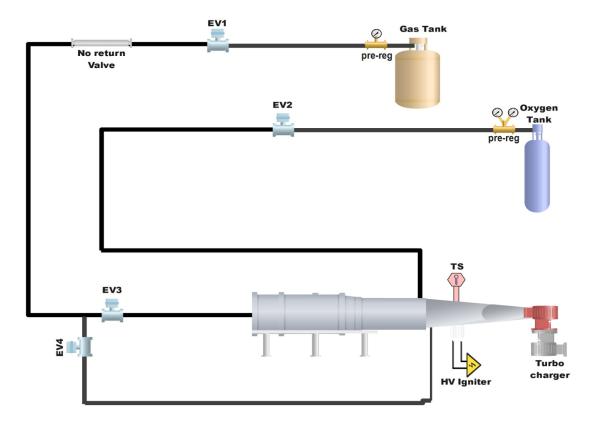
On **March 29, 2024**, a test was conducted on the Biogas Turbine using **butane gas** and **oxygen gas** in a 3:1.29 ratio. By introducing oxygen, we achieved complete combustion of the butane gas. A video demonstrating the difference between combustion with and without oxygen is available." Click the icon below" to get the video demonstrating the difference between each case.

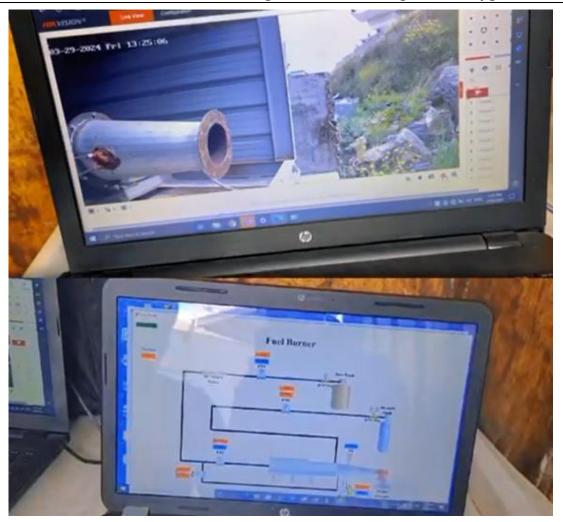
The test showed us a good result compared to the previous test with controlled pressure, but due to the low pressure of 2.5 bar butane, we didn't get the combustion force we expected to add the turbocharger to the system, we will connect it to see the result of the biogas turbine in its complete form with the turbocharger before we make any changes or decisions to the system.

5.11.2 System Test

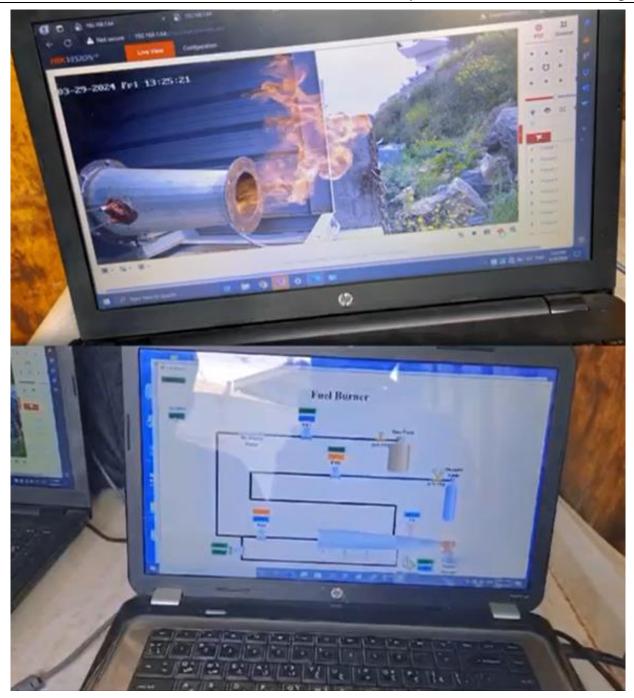
Steps	Step Description	Expected Result	Result	
Precondition	Precondition			
System is off	All valves and systems are closed	system is off	System is off	
Check out				

Check out EV1	Check out by GUI EV1 (open it/close it)	Working good	Working good
Check out EV2	Check out by GUI EV2 (open it/close it)	Working good	Working good
Check out EV3	Check out by GUI EV3 (open it/close it)	Working good	Working good
Check out EV4	Check out by GUI EV4 (open it/close it)	Working good	Working good
Check out HV igniter	Check out by GUI the high Voltage or flame igniter (open it/close it)	Working good	Working good
Check out Ts	Check out the temperature sensor By Gui	Reading ambient Temperature	Reading ambient Temperature
Check out Ps	Check out the pressure sensor By Gui	Reading the Atmospheric pressure	not connected
Check out TU	Check out theTurbocharger (manually)	Blades rotating normally	not connected
Check Oxygen tank	Check out the oxygen tank main valve and its regulator (manually)	Working good	Working good
Check Butane tank	Check out the Butane tank main valve and its regulator (manually)	Working good	Working good


Check out C1	Check out the camera 1 filming	The system visible	The system is visible
Check out C2	Check out the camera 2 filming	The turbocharger blades are visible	not connected
Test Start			
Open Gas Tank	Open gas tank main Valve (manually)	Working good	Working good
Open oxygen gas	Open the oxygen tank main Valve (manually)	Working good	Working good
Open HV igniter with EV4	Open the High Voltage with EV4 By Gui	Start Working	Start Working
Open EV1	Open EV1 By Gui	Fire Start	Fire Start
Close HV Igniter with EV4	Close the high-voltage Voltage Igniter and the EV4 by GUI after the fire starts	Closes	Closes
Read Ts	Read the temperature sensor using the GUI	Temperature rise	Temperature rise
Read Ps	Read the Pressure sensor by GUI	Pressure normal	Pressure normal
See C1	Using camera 1, watch the System	No abnormal activity	the system visible
See C2	Using camera 2, watch the Turbocharger blade's rotation	Blade starts to rotate	Blade starts to rotate


Open Ev2 and EV3	Open EV2 and EV3 valves using the GUI	Fire starts to rise	fire starts to rise
See C1	Using camera 1, watch the System	No abnormal activity	No abnormal activity
See C2	Using camera 2, watch the Turbocharger blades' rotational speed	Blade rotational speed increases	Blade rotational speed increases
Read Ts	Read the temperature sensor using the GUI	Temperature rise	Temperature rise
Read Ps	Read the Pressure sensor by GUI	Pressure normal	Pressure normal
Close EV2 and EV3	Close EV2 and EV3 valves by the GUI	Fire gets back to normal	fire gets back to normal
Close EV1 and EV4	Close EV1 and EV4 valves by GUI	Fire is off	fire is off
Close the gas tank.	Close the gas tank main Valve (manually)	No abnormal activity	No abnormal activity
Close oxygen tank	Close the oxygen tank main Valve (manually)	No abnormal activity	No abnormal activity
Postcondition			
system is off	All valves and systems are closed	System is off	system is off

5.11.3 Scheme of the System by GUI



5.11.4 Pictures Related

Biogas Turbine test using Butane/Oxygen on 29.03.2024

Biogas Turbine test using Butane/Oxygen on 29.03.2024

This is a gas explosion that happened for 1 second,

5.12 Biogas Turbine test using Butane/Oxygen with Turbocharger on 02.04.2024

5.12.1 Test Description

On April 2, 2024, the Biogas Turbine was tested using butane gas and oxygen gas at a 3:1.29 ratio. By adding oxygen, we were able to complete the burning of butane gas. A video that shows the difference between combustion with and without oxygen is available: "Click the icon below to view a video illustrating the differences between each situation.

WhatsApp Video 2024-04-07 at 10.37.

The test revealed findings compared to the prior test with regulated pressure.

First, we set the Butane pressure to 2 bar and the oxygen pressure to 0.86 bar. The fire in the Biogas turbine chamber began, and we noticed it after the blades began to rotate. After a while, we didn't notice anything because the blades began to rotate when there was an excess of butane and oxygen, or, in other words, when the pressure in the chamber increased.

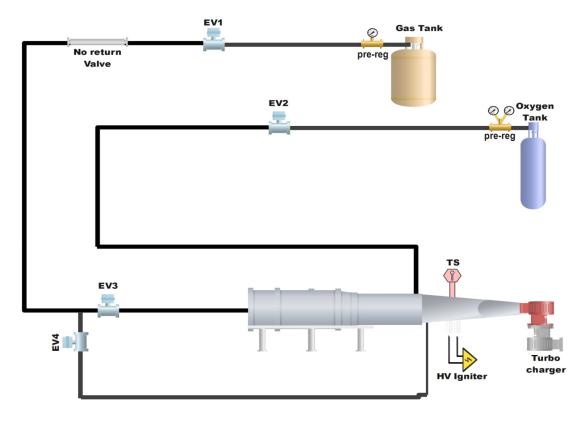
We noticed that the temperature began to drop, so we closed the system. We then changed the butane pressure to 3 bar and the oxygen pressure to 1.29 bar, and we started the HV igniter. We encountered the same issue, and the fire began after high pressure. We noticed it with blade rotation, and fire emitted from the turbocharger.

Finally, we increased the oxygen pressure to 3 bar while keeping the butane constant at 3 bar. After a few seconds, the pressure exited the Biogas turbine with a pop sound, and the turbocharger was damaged as a result of the high pressure caused by oxygen and butane gases, the combustion process power, and the gases produced by the combustion itself.

This test concludes that the system requires breathing and that the system failed due to the turbocharger's limited exit diameter. In the following stage, we will need a better design of rotatable blades than the turbocharger, as well as a new approach, to complete the power-generating process.

Steps	Step Description	Expected Result	Result
Precondition			
System is off	All valves and systems are closed	System is off	System is off
Check out			
Check out EV1	Check out by GUI EV1 (open it/close it)	Working good	Working good

5.12.2 System Test

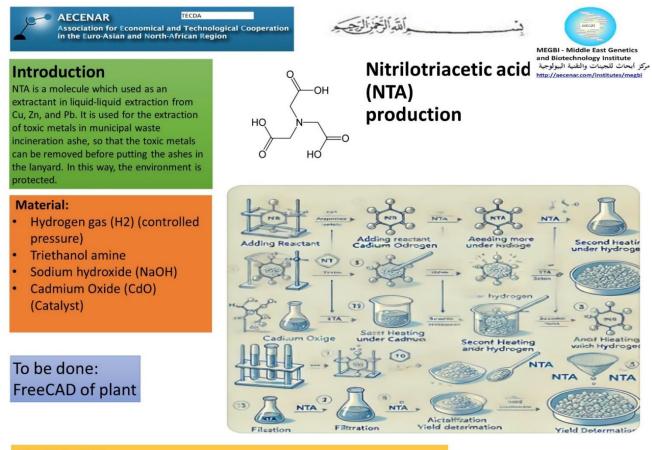

Check out EV2	Check out by GUI EV2 (open it/close it)	Working good	Working good
Check out EV3	Check out by GUI EV3 (open it/close it)	Working good	Working good
Check out EV4	Check out by GUI EV4 (open it/close it)	Working good	Working good
Check out HV igniter	Check out by GUI the high Voltage or flame igniter (open it/close it)	Working good	Working
Check out Ts	Check out the temperature sensor By Gui	Reading ambient Temperature	Reading ambient Temperature 40
Check out TU	Check out theTurbocharger (manually)	Blades rotating normally	Blades rotating
Check Oxygen tank	Check out the oxygen tank main valve and its regulator (manually)	Working good	we put it on 0.86 bar
Check Butane tank	Check out the Butane tank main valve and its regulator (manually)	Working good	we put it on 2 bar
Check out C1	Check out the camera 1 filming	The system visible	The blades are Visible
Test Start			
Open Gas Tank	Open gas tank main Valve (manually)	Working good	Working good
Open oxygen gas	Open the oxygen tank main Valve (manually)	Working good	Working good

Open HV igniter with EV4	Open the High Voltage with EV4 By Gui	Start Working	Start Working
Open EV1	Open EV1 By Gui	Fire Start	we are checking Ts and it started to rise
Close HV Igniter with EV4	Close the High Voltage Igniter and the EV4 by GUI after the fire start	Closes	we didn't close it
Read Ts	Read the temperature sensor by GUI	Temperature rise	Temperature rise
See C1	Using camera 1 watch the Turbocharger blades rotation	Blade start to rotate	Blade starts to rotate after we get excess
Open Ev2 and EV3	Open EV2 and EV3 valves by the GUI	Fire starts to rise	quantity of oxygen.
See C1	Using camera 1 watch the Turbocharger blades' rotational speed	Blade rotational speed increases	Blade rotational speed increases due to high pressure
Read Ts	Read the temperature sensor by GUI	Temperature rise	Temperature rise in abnormal way
Close EV2 and EV3	Close EV2 and EV3 valve by the GUI	Fire gets back to normal	
Close EV1 and EV4	Close EV1 and EV4 valves by GUI	Fire is off	abnormal activity
Close Gas Tank	Close gas tank main Valve (manually)	No abnormal activity	

Close oxygen tank	Close the oxygen tank main Valve (manually)	No abnormal activity	
Postcondition			
System is off	All valves and systems are closed	System is off	System is off

5.12.3 Scheme of the System by GUI

5.12.4 Pictures Related



5.13 What's next

To complete this project, we must select the type of metals and sensors suitable for the model. Then, we can start manufacturing the turbine.

6 Project 6: NTA Production

6.1 NTA production poster

Requirements:

1. Physical: Pipes, tanks, and autoclave must withstand high temperatures (T = 300°C) and pressures (P = 260 bar).

Chemical: - Tanks, autoclaves, pipes, valves, and sensors must resist corrosion from Triethanol amine, sodium hydroxide, and hydrochloric acid
 Mechanical: 1-Autoclave and tank systems, pipes, valves, and sensors must be made of stainless steel 316

2-complete system closure, resisting high-pressure 4. Electronic: Sensors must accurately read system data

Noor.Koulayb

Prepare the Autoclave hastelloy B: 1. Make sure all valves are

closed 2. Make sure the power is turned off Connect the reagent valve to

the reactor

3. Put the amount of the

reagent needed in the reactor 4. Close the valve for reagent filling

Safety precautions:

- 1. Electrical Heating:
- 2. Triethanolamine: Irritates eyes, skin, and respiratory tract
- 3. Sodium Hydroxide: Dangerous substance
- 4. Cadmium Oxide (CdO): Highly corrosive

@AECENAR/July2024

6.2 Protocol NTA production

6.2.1 Introduction

Nitrilotriacetic acid, or NTA, is a molecule that acts like a metal magnet. It grabs onto minerals in water, like calcium and magnesium, which can make soap less effective. This grabbing power makes NTA useful in detergents and water treatment to soften hard water and remove unwanted metals.

6.2.2 Materials and Equipment

- Hastelloy B autoclave (use only under supervision!)
- Safety goggles
- Gloves
- Lab coat
- Temperature sensor x2 (T1 and T2)
- Pressure sensor (S1)
- Flow sensor (F1)
- Heater x2 (Heater 1 and Heater 2)
- Mixers 2
- Filter x2 (F1 and F2)
- Stainless steel tanks x2 (waste tank and HCl Tank)
- Hydrogen gas (controlled pressure)
- Triethanol amine (0.8 mol)
- Sodium hydroxide (3 mol)
- Cadmium Oxide (Catalyst)

6.2.3 Procedure

The passage you provided can be summarized into the following steps:

1. Adding reactants to the autoclave:

- 119g of triethanolamine (0.8 mol)
- 148.5g of water
- o 120g sodium hydroxide (3.0 mol)
- 6g of cadmium oxide CdO
- $_{\circ}\;$ All these were added to a Hastelloy B autoclave.

2. Heating under hydrogen:

- The mixture in the autoclave was stirred and heated for 3 minutes at 260°C under a hydrogen atmosphere.
- The pressure during this heating reached 3,600 PSIg

3. Adding more cadmium oxide:

- The autoclave was cooled down, and the pressure was vented.
- Another 6.0 g of cadmium oxide were added to the mixture.
- 4. Second heating under hydrogen:

- The mixture with the additional cadmium oxide was reheated under hydrogen at 260°C for another 3 minutes.
- The pressure during this heating reached 460 p.s.i.g. (lower than the first heating).

5. Workup and Filtration:

- Water was added to the reaction product.
- The resulting turbid solution (800 grams) was filtered.

6. Acidification and Crystallization:

- The filtrate was acidified as in Example I (add 350ml HCl to reach pH = 0.35).
- The solution was then heated to 100°C and cooled.

7. NTA Isolation:

- The precipitated NTA was filtered, separating the solid NTA from the liquid.
- The filtered NTA was washed with ice water until the washings were free of chloride ions (test for chloride using a standard silver nitrate test).
- The washed NTA was further washed with methanol to remove any remaining water.
- Finally, the purified NTA was dried at 120°C.

8. Yield Determination:

• Although not explicitly mentioned in the provided steps, the yield of the recovered NTA can be determined at this point using appropriate analytical techniques (refer to the original protocol for yield calculation).

6.3 Requirements NTA pilot plant

6.3.1 System requirements

- NTA (nitrilotriacetic acid) Pilot Plant shall be able to produce the nitrilotriacetic acid.
- The control panel shall be able to control all valves, mixers, and Heaters and read the sensor data (Temperature, Pressure, and Flow).

6.3.2 Physical requirements

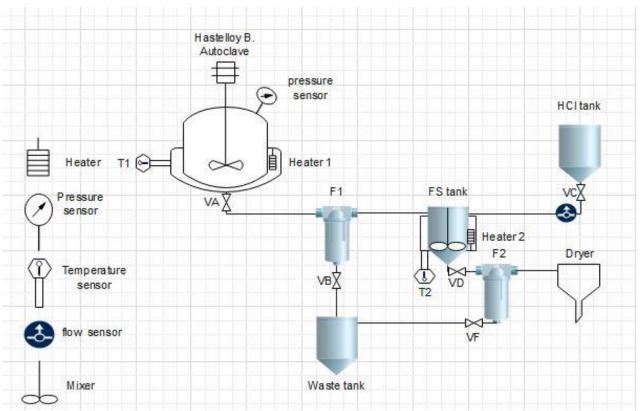
- The pipes shall be able to withstand the temperatures and pressures that exist at the points.
 - Temperature that shall be withstood: 100°C plus.
 - Pressure that shall be withstood: 2 bars.

- The **tanks** and **autoclave** shall be able to withstand the Temperature exchanges, pressures, and mechanical forces that exist at the points.
 - Temperature in **tanks** that shall be withstood:100°C plus.
 - -Temperature in **Autoclave** that shall be withstood: 200-300°C.
 - Pressure in **tanks** that shall be withstood: 2 bars.
 - Pressure an **autoclave** that shall be withstood: 200-260 bars.
 - -mechanical forces: shall be withstood: mixer movements and rotation.
- The sensors (Temperature, Pressure, and Flow) shall be able to withstand the temperatures and pressures that exist at the points.
 - Temperature that shall be withstood:100°C plus. In **tanks** and 200-300°C in **autoclave**.
 - Pressure that shall be withstood: 2 bars in **tanks** and 200-260 bars in **autoclave**.

6.3.3 Chemical Requirements

- The **Tanks** and **autoclave** system shall be able to withstand the corrosion with organic and inorganic reagents: Tri-ethanol amine, sodium hydroxide, and chloridric acid.
- The **pipe system** used shall be able to withstand the corrosion with Tri-ethanol amine, sodium hydroxide, and chloridric acid.
- The **valves** shall be able to withstand the corrosion with Tri-ethanol amine, sodium hydroxide, and chloridric acid.
- The **sensors** (Temperature, Pressure, and flow) shall be able to withstand corrosion with Tri-ethanol amine, sodium hydroxide, and chloridric acid.

6.3.4 Mechanical Requirements

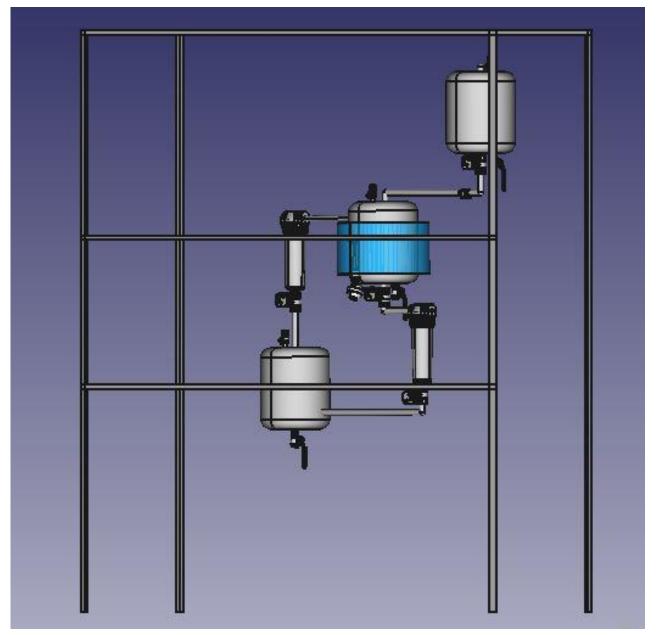

- The **Autoclave** Hastelloy B shall be made of stainless steel 316.
- The **Autoclave** shall be able to close the system completely.
- The **Autoclave** shall be able to resist the pressure (+240 bars) without letting gas or vapor exit through.
- The **Tank system** shall be made of Stainless Steel 316.
- The **Tank system** shall be able to close the system completely.

- The **pipes** shall be made of stainless steel 316.
- The **pipes** shall be able to resist the pressure without letting gas or vapor exit through.
- The **valves** shall be made of stainless steel 316.
- The **valves** shall be able to close completely.
- The **valves** shall be able to open or close independently of the pressure.
- The **sensors** shall be made of stainless steel 316.
- The **sensors** shall be able to close the system completely.
- The NTA pilot plant shall be designed according to the mechanical design

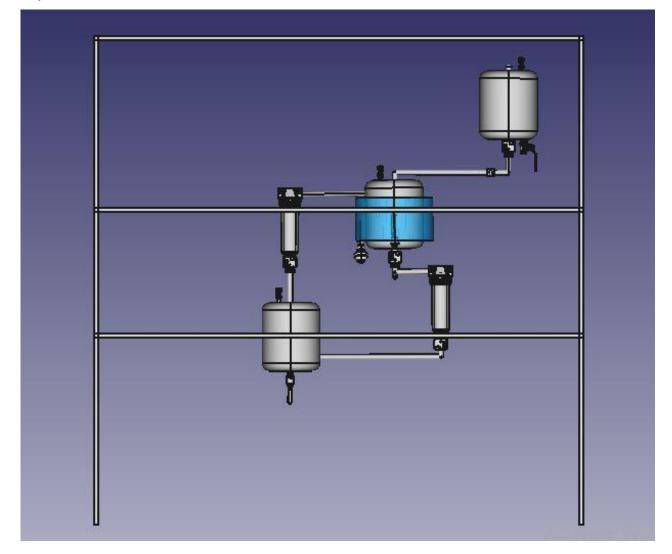
6.3.5 Electrical requirements:

- The **sensors** shall be able to read the data from the system.
- The control panel connected to the GUI shall be able to control the whole system:
 - Open/close valves
 - Turn ON/OFF Moto mixer
 - Turn ON/OFF heater

6.4 NTA Pilot Plant



6.4.1 System design / System concept (NTA Pilot Plant)


NTA pilot plan _24052024 [Edraw file]:

6.4.2 Mechanical design (NTA pilot plant)

Project 6: NTA Production

Pilot Plant production design _25.07.24_ (NOT COMPLETED YET) [FreeCAD file]:

6.5 Test specification NTA pilot plant

6.5.1 Prepare the Autoclave hastelloy B

- 1. Make sure all valves are closed
- 2. Make sure the power is turned off
- 3. Connect the reagent valve to the reactor
- Put the amount of the reagents needed in the reactor (amount of reagents: 119g tri-ethanol amine (0.8mol), 120 g sodium hydroxide (3mol), 12g divided CdO (cadmium oxide) and 148 ml water)
- 5. Close the valve for reagent filling.

6.5.2 Safety precaution

- Electrical heating (+260 °c) could suffer fourth degree burns (Autoclave = tank 1)
- Tri-ethanol amine: Irritating to the eyes, skin, and respiratory tract.
- Sodium hydroxide: Dangerous substance. It can hurt you if it touches your skin and if you breathe it. Eating or drinking sodium hydroxide can cause severe burns and vomiting, nausea, diarrhea, burns eyes, or chest and stomach pain.
- Cadmium oxide (CdO): highly corrosive, burns eyes and skin, inhaling damages lungs, a potential carcinogen, flammable, and reacts violently with many substances.

1 N.B.: Wear protective gloves/protective clothing/eye protection/face protection.

6.5.3 NTA Production Operation Method

- 1) Ensure all sanitary connections
- 2) Put the reagents in "Autoclave B" (tri ethanol amine, sodium hydroxide, and CdO)
- 3) Reaction: (TEA + 3 NaOH + CdO (catalyst) --> NTA + 3 H2O + Na-byproducts)
- 4) Plug the control system
- 5) Check the control system if it's working properly
- 6) Operate the "mixer" to mix the reagents in the "Autoclave B"
- 7) Operate the "heater 1" to heat = (260°c) in the "Autoclave B", 3600 PSI (248 bars) for 3 min
- 8) After 3 min: Operate the control system to Cooling and pressure venting
- 9) Put the catalyst in "Autoclave B" for the second time (CdO only and the same amount as the first one)
- 10) Re-heat by "Heater 1" to reach 260°C, 460 PSI (32 bars) and for 3 min
- 11) Operate "Filter F1" to filtrate the turbid solution obtained
- 12) Operate "Heater 2" to heat the water (100°C) in the "Filtered solution tank"
- 13) Operate the control system to add HCl in "Filtered solution tank"
- 14) Operate "Filter F2" to filtrate the acidic solution obtained
- 15) Operate the dryer to dry the solution obtained in the "Dryer"
- 16) After finishing, Operate the valves, heaters and mixers to close.

6.6 001: NITRILOTRIACETIC ACID PRODUCTION SYSTEM TEST

Step	Step Description	Expected Result
Precondition	System is OFF	
TURNING ON the system	Turn ON the GUI	The system is ON

6.6.1 Reaction phase 1

Reagents adding*

Switch ON the "heater 1" (Autoclave Hastelloy B)	Turn ON the "Heater 1" from the GUI	"THE HEATER 1" is heating till reaches 260°C indicated on the "T1" (autoclave's temperature sensor) and 3600 PSI (248 bar) indicated on the "Pressure Sensor"
i-Switch ON the "mixer" (Autoclave B) ii-Switch ON the "timer" (autoclave B)	i-Turn ON the mixer from the GUI ii-Turn ON the timer from the GUI	i-Mixing the reagents (manually added) to obtain the mixture in the "autoclave B" ii-Reaction timer's set at 3 min to be completed
iii- Switch OFF the "mixer" (Autoclave B)	i-Turn OFF the "mixer" from the GUI	i- The "mixer" is OFF
iv- Switch OFF the " Heater 1 " (Autoclave B)	ii-Turn OFF the "heater 1" from the GUI	 The "Autoclave B" and the mixture in the "Autoclave" is cooled till reaches room temperature indicated on the "T1" (temperature sensor of the Autoclave)
v- Switch OFF the "Timer" (Autoclave B)	iii-Turn OFF the "timer" from the GUI	iii- Reaction "Timer" is OFF
- Open the "venting valve" (Autoclave B)	- Open the venting valve from the GUI	- The venting valve is open for cooling and pressure realizing from the system

6.6.2 Reaction phase 2

Switch ON the "heater 1" (Autoclave B)	Turn ON the "Heater 1" from the GUI	The "Heater 1" is heating till reaches 260°C indicated on the "T1" (autoclave's temperature sensor) and 460 PSI indicated on the "Pressure Sensor"
-Switch ON the "mixer" (Autoclave B)	-Turn ON the "mixer" from the GUI	-Mixing the reagents = catalyst in reaction 2 (manually added)
-Switch ON the "timer" (autoclave B)	-Turn ON the "timer" from the GUI	-Reaction timer's set at 3 min to be completed
 Switch OFF the "mixer" (Autoclave B) Switch OFF the "heater 1" (Autoclave B) Switch OFF the "timer" (autoclave B) 	-Turn OFF the "mixer" from the GUI -Turn OFF the "heater 1" from the GUI -Turn OFF the "timer" from the GUI	-The "mixer" is OFF -The "Autoclave jacket" and the mixture in the "Autoclave" are cooled till reach room temperature indicated on the "T1" (temperature sensor of the Autoclave) -Reaction "timer" is OFF

6.6.3 Filtration

-Open the "valve A" (Autoclave B: filter F1)	-Open the valve "VA" to transfer the turbid solution (after adding 400ml Distilled Water) from the Autoclave to filter "F1"	-Turbid solution is filtered and the filtrate is transferred to "FS tank"
-Open the "Valve B" (Filter F1: waste tank)	-Open the valve "VB" to transfer the solid residue to the waste tank	-Turbid solution is filtered and the solid residue is transferred to the "Waste tank"

6.6.4 Acidification

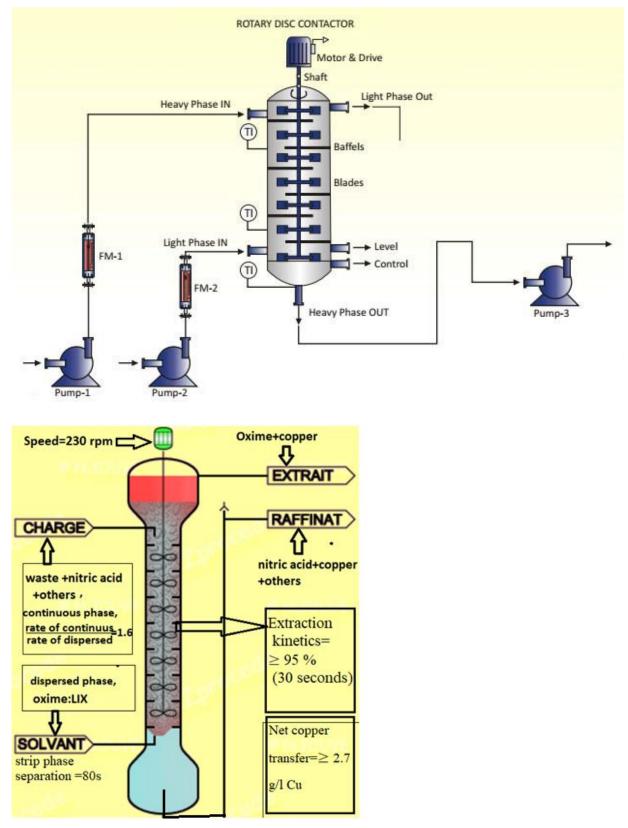
-Open the	-Open the valve VC to	- (350 ml indicated in the flow sensor)
valve C (HCl tank:	transfer the HCl	Hydrochloric acid is transferred to "FS
FS tank)	solution from the "HCl	tank": pH= 0.35
	tank" to the "FS tank"	

-Switch ON the mixer (FS Tank)	-Turn ON the mixer from the GUI	- Mixing the filtrate and Hydrochloric acid in "FS tank"
-Switch ON the heater 2 (FS tank)	-Turn ON the heater 2 from the GUI	- Heater 2 is heating the water in the jacket till reaches 260°C indicated on the T1 (autoclave's temperature sensor) and 460 PSI indicated on the Pressure Sensor
-Switch OFF the "mixer" (FS tank)	-Turn OFF the "mixer" from the GUI	-The "mixer" is OFF
-Switch OFF the	-Turn OFF the	The "Heater 2" is OFF

"heater 2" from the GUI

6.6.5 NTA Isolation

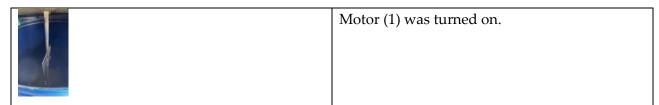
"heater 2"


(Autoclave B)

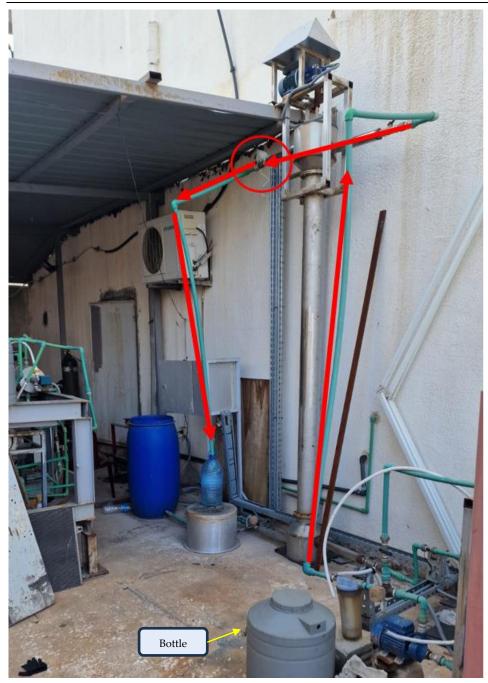
		-"The acidic
	Open the value "VD" to	filtrate" is
Open the "valve D" (FS tank	1	filtrated and the
filter 2)	the "FS tank" to the "Filter F2"	filtrate is
	the FS tank to the Filter F2	transferred to the
		"Dryer"
Switching off the system	Switch off the system	The system is OFF
Postcondition	system is OFF	
		The system is OFF

6.7 What's next

Procurement/producing of solubles.


- 7 Project 7: Ashes Recycling Project
- 7.1 System Test only with water in February 2025
- 7.1.1 Ashes recycling test specification

7.1.2 Ashes recycling - test documentation (test date: 12.02.2025)


This experiment was carried out exclusively with water for demonstration purposes. First, pump (1) and pump (2) were turned on to transport the water to the separation tower. Due to a defective valve (right picture, red circle), the backflow-path (left picture, yellow circle) to the tank was closed so that the test could be carried out. The water now flows in the direction of the red arrow. The defective valve was not removed from the system because no valve of the same model was available. Only the flow direction was manually adjusted so that the water can only flow in one direction, as previously described. During the test it was also discovered that there was a leak next to the filter (left picture, red circle).

Now the water was pumped via pump (1) to the tank on the left side.

Whats next?

The water was also pumped into the upper part of the tower via pump (2). As soon as the tower is filled to the top, the water should flow through the path (red arrow) into the bottle. This test was only carried out for a short time to test the system, so the tower was not filled. During the test it was also discovered that the upper valve after the tower (red circle) was defective. The valve was replaced by a different model. The old model runs with 24V and needs a relay. The new valve runs with 220V and doesn't need a relay. The PLC can access it immediately.

7.2 Whats next?

Procurement of solvents for extraction of specific metals