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1 Useful Concepts in Molecular Modelling

[2iy o) dadaill LB sajiall aaliall

1.1 Introduction /Assial

What is molecular modelling?

“Molecular” clearly implies some
connection with molecules. The
oxford English Dictionary defines
“model” as ‘a simplified or
idealized description of a system or
in mathematical
terms, devised to facilitate
calculations and  predictions’.
Molecular modelling
therefore appear to be concerned
with ways to mimic the behavior of
molecules and molecular systems.
Today, modelling is
invariably associated
computer modelling, but it is quite
feasible to perform some simple
molecular modelling studies using
mechanical models or pencil, paper
and hand calculator. Nevertheless,
computational techniques
revolutionized molecular modelling
to the extent that most calculations
could not be performed without the
use of a computer. This is not to
imply that a more sophisticated
model is necessarily any better than
a simple one, but computers have
certainly extended the range of
models that can be considered and
the systems to which they can be
applied.

process, often

would

molecular
with

have

Fig1: Example of
Molecular Model
(Source:
http://[www.giantmolecu

le.com/shop/scripts/vrod
View.asp?idproduct=6)

Fig2: Example of
Molecular
Modelling(Source:
http://wwwl.imperial.ac
.uk/medicine/people/r.di

ckinson/)
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The ‘models’” that most
chemists first encounter are
molecular models such as the
‘stick" models devised by
Dreiding or the ‘space filling’
models of Corey, Pauling and
Koltun (commonly referred to
as CPK models). These models
enable three-dimensional
representations of the
structures of molecules to be
An  important
advantage of these models is
that they interactive,
enabling the user to pose ‘what
if .../ or ‘is it possible to ...
questions. These  structural
models continue to play an
important role both in teaching,
and in research, but molecular
modelling is also concerned
with
models, many of which have a
distinguished  history. = An
obvious example is quantum
mechanics, the foundations of
which were laid many years
before the first computers were
constructed.

constructed.

are

7

some more abstract

There is a lot of confusion over
the meaning of the terms
‘theoretical chemistry’,
‘computational chemistry’ and
‘molecular modelling’. Indeed,
many practitioners use all three
labels to describe aspects of
their research, as the occasion
demands!

Fig3: space filling model of
formic acid
vaslal‘space-filling” 74 sai
o) 5l
(Source:
http://www.answers.com/topic/
molecular-graphics)

Fig4: Stick model
(Created with Ball View)
‘Stick” z3sai

&

Fig5: ‘Ball and Stick” model of

proline molecule (Source:
http://commons.wikimedia.org/w
iki/File:L-proline-zwitterion-
from-xtal-3D-balls-B.png)
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‘Theoretical chemistry” is often considered
synonymous  with  quantum  mechanics,
whereas computational chemistry encompasses
not only quantum mechanics but also
molecular mechanics, minimization,
simulations, conformational analysis and other
computer-based methods for understanding
and predicting the behavior of molecular

systems. Most molecular modelling studies
involve three stages. In the first stage a model is
selected to describe the
molecular interactions in the system. The two
most common models
molecular modelling are quantum mechanics
and molecular mechanics. These models enable

intra- and inter-

that are wused in

the energy of any arrangement of the atoms
and molecules in the system to be calculated,
and allow the modeler to determine how the
energy of the system varies as the positions of
the atoms and molecules change. The second
stage of a molecular modelling study is the
itself, energy
minimization, a molecular dynamics or Monte
Carlo simulation, or a conformational search.
Finally, the calculation must be analyzed, not
only to calculate properties but also to check
that it has been performed properly.

calculation such as an

1.2 Coordinate Systems/ it/ a5

It is obviously important to be able to specify
the positions of the atoms and/or molecules in
the system to a modeling program. There are
two common ways in which this can be done.
The most straightforward approach is to
specify the Cartesian (X, y, z) coordinates of
all the atoms present. The alternative is to use
internal coordinates, in which the position of
each atom is described relative to other atoms
in the system. Internal coordinates are usually
written as a Z-matrix. The Z-matrix contains

LSlSal Lol e il LSl jtiad e Lille
At A gle sheal) Jadi 3 Y Gpa 8 ¢ oS
A al) LalSall Liayl (b ¢ cannd oK) 18431S0
é}&jﬁ,\é@dﬂhﬂ}«ﬁ\ﬁw\jcdﬂbc
aedl Cgalall e 4l Cullud) e La e
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54 A ) Aadaill Al 3 e AN dda )
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one line for each atom in the system.

A sample Z-matrix for the Jalaie Jléal ( Z-matrix) JUia
staggered conformation of ethane )-L'I-"\)(Ethane) OEY e
(see Figb) is as follows: : LNA:‘L‘S (Fig6
1 C
2 C 154 1
1 C
5 C 154 1 3 H 10 1 1095 2
' 4 H 10 2 1095 1 180.0
3 H 10 1 1095 2 3
4 H 10 2 1095 1 180.0 3 5 H 10 1 1095 2 60.0
5 H 1.0 1 1095 2 60.0 4 4
6 H 1.0 2 1095 1-600 5 N
106 : 6 H 1.0 2 1095 1-60.0
7 H 10 1 1095 2 180.0 6 Figé : The staggered
8 H 10 2 1095 1 600 7 conformation of ethane. 5
' ' ' 7 H 10 1 1095 2 180.0
6
8 H 1.0 2 1095 1 60.0
7

In the first line of the Z-matrix we define
atoml, which is a carbon atom. Atom
number? is also a carbon atom that is a
distance of 1.54 A® from 1 (columns 3 and 4).
Atom 3 is a hydrogen atom that is bonded to
atom 1 with a bond length of 1.0 A°. The angle
formed by atoms 2-1-3 is 109.5%, and the
torsion angle (defined in fig7) for atoms 4-2-1-
3 is 180° Thus for all except the first three
atoms, each atom has three internal
coordinates: the distance of the atom from one
of the atoms previously defined, the angle
formed by the atom and two of the previous
atoms, and the torsion angle defined by the
atom and three of the previous atoms. Fewer
internal coordinates are required for the first
three atoms because the first atom can be
placed anywhere in space (and so it has no
internal coordinates); for the second atom it is
only necessary to specify its distance from the

235 (Z-matrix)$_) 48 stadl) (1 J Y1 ) =
2500 (Hs— S 53 o8 5 ¢( Atom1) 15,2
s o a8y S50 Ladl o8 (Atom2)
3352 ) (453 EA_AQ‘Y\) 13,00 G A2 540
Jsda 13 )0 diatie (a9 008 33 4 (Atom3)
a3 50109 4503 2-1-3 <A (5585 A Oc]
(Fig7 JSad) 8 o'y =all) 4 gilall Ay gl 31 5
pend 1388 5 Aa 53 180 sl 4-2-1-3 <l Al
A0 Lad 550 JS ¢ (oY1 AENA o lialy <l A
(= 48Lusall :(internal coordinates) 4l Sl
A )50 ¢ Gl sasad) el ,All gaa) )5 A
)5 ¢ AR A e ) e b3l LK
C'_a\JJJ\ (= A5 &= EJ..JJ\ Laaras ‘é_d\ c«\)_d\}[\
Jal o JBY) Adalall cildlaay) collay Zabd)
O Saa (AW E AT Y YT EDET el A
CEREVR VR RN B IPAVERY gt B3 K PP Bt JRpE~
Aalall 5,30 Al g ¢ (Al o) (sl L]
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first atom and then for the third atom only a
distance and an angle are required.

It is always possible to convert internal to
Cartesian coordinates and
However, one coordinate system is usually
preferred for a given application. Internal
usefully describe the
relationship between the atoms in a single
molecule, but Cartesian coordinates may be
more appropriate describing a
collection of discrete molecules.

vice versa.

coordinates can

when

Internal coordinates are commonly used as
input to quantum mechanics programs,
whereas  calculations molecular
mechanics are usually done in Cartesian
coordinates. The total number of coordinates
that must be specified in the internal
coordinate system is six fewer than the
number of Cartesian coordinates for a non-
linear molecule. This is because we are at

using

liberty to arbitrarily translate and rotate the
system within Cartesian space without
changing the relative positions of the atoms.

What is a Torsion angle?

A torsion angle A-B-C-D is
defined as the angle between
the planes A, B, C and B, C, D.
A torsion angle can vary
though 360° although the
range -180° to +180° is most
commonly used.

O Baxg il ALl a5 )5 puall (e
dash iy o) 3l g A8l all callai a5 g ¢ A gY1 3,0
ABJU\EJJH

Gl a) (e J i Lails Sadll (3
g S aldlaa) ) (internal)  Alals
diady ¢ b pay (wSally (uSall 5 (Cartesian)
S umemdﬁuuuu\}dmm_c
SO s A8l Caat o Anaal) cilaad
¢ 1al5 (molecule) s > (=3 2ia sai e

(Cartesian oKl aldla Al Sl
Ae gane Ciia g i i) (585 8 coordinates)
Aladie Al s (e

gl ) JaaaS Al cildlaayl alasial g Liy
(> (4 ¢« (quantum mechanics) o<1 Kail<aa
Ayl LSSl aladi il dpliall Glleadl
e Jdlaa) Al alilaay) 8 sale 18
@ ) Al 8 saas o)) caag Al cililaay)
s ) A LSl cllaay) 8 Waae (e J8 diu
s Ll aY  (non-linear) —ha
o 90 SOl eladll Jaladg jag HLk)

Al gl ¢ Lia Y

) i) Ayl AL

ABCD  slsil¥lag sl 5oy
SABC (485l ) 3 Ll
Ol ¢l N A5 3 S s BCD
545 da ) [80- o zs) B
Ax2 180+
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1.3 Potential Energy Surfaces/dolS @lb/l zhu/

In  molecular modeling the Born-
Oppenheimer approximation is invariably
assumed to operate. This enables the
electronic and nuclear motions be

separated; the much smaller mass of the

to

electrons means that they can rapidly adjust
to any change in the nuclear positions.
Consequently, the energy of a molecule in its
ground electronic state can be considered a
function of the nuclear coordinates only. If
some or all of the nuclei move then the energy
will usually change.
positions could be the result of a simple
process such as a single bond rotation or it
could arise from the concerted movement of a

The new nuclear

large number of atoms. The magnitude of the
accompanying rise of fall in the energy will
depend upon the type of change involved.
For example, about 3 kcal/mol is required to
change the covalent carbon-carbon bond
length in ethane by 0.1A° away from its
equilibrium value, but only about 0.1kcal/mol
is required to increase the non-covalent
separation between two argon atoms by 1A®
from their minimum energy separation. For
small isolated molecules, rotation about single
bonds usually involves the smallest changes
in energy. For example, if we rotate the
carbon-carbon bond in ethane, keeping all of
the bond lengths and angles fixed in value,
then the energy varies in an approximately
sinusoidal. The energy in this case can be
considered a function of a single coordinate
only (i.e. the torsion angle of the carbon-
carbon bond), and as such can be displayed
graphically, with energy along one axis and
the value of the coordinate along the other.

Changes in the energy of a system can be
considered movements

as on a

day,h platil Ladla (e gy ¢ 4y jad) dadadl) <
(Born-Oppenheimer approximation)
Al g I LS ; 255015 g 1Y)
d\@@ﬂdﬁﬂ\é&ﬁ)d\ﬁnm‘ Y U\g“r"'-’
Dbie) oSy ¢ Il A sill Cadl gall 8
IS ol paay calam) 13) Jadd 46l cildlaa
sl o gall (S, ol i AL (515
Oy e sy leal a5 () 32338)
Qi S Ji (single bond rotation) 2l %:",)J\
O S 23e b fliaiedS pd i lid
= b el dalia Q) 30l 3 A ddiad G HA])
¢ QB Jos (Ao | Sl );ﬂ\tjjésféua]\
(3 kcal/mol) Jsw/ L;‘,)}SLS 1S3 Q\P ‘—‘-ﬂﬂé
-0~ G covalent bond =) Jsda padl
Aa N A 0.1 >3 ) (ethane) OWY) & 0 S
ol i ) (<l ¢ L8 (e
333 ( keal/mol 0.1) Jss/ L..S)jju s1<0.1
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multidimensional ‘surface’ called the energy
surface.

1.4 Molecular Graphics/ 4 i/ logus,

Molecular graphics (MG) is the discipline and
philosophy of studying molecules and their
properties through graphical representation.
IUPAC limits the definition to representations
on a "graphical display device".

Computer graphics has had a dramatic impact
upon molecular modelling.

It is the interaction between molecular graphics
and the underlying theoretical methods that has
the accessibility of
modelling methods and assisted the analysis
and interpretation of such calculations.

enhanced molecular

Over the years, two different types of molecular
graphics display have been used in molecular
modelling. First to be developed were vector
devices, which construct pictures using an
electron gun to draw lines (or dots) on the
screen, in a manner similar to an oscilloscope.
Vector devices were the mainstay of molecular
modelling for almost two decades but have now
been largely superseded by raster devices. These
divide the screen into a large number of small
"dots", called pixels. Each pixel can be set to any
of a large number of colors, and so by setting
each pixel to the appropriate color it is possible
to generate the desired image.

Molecules are most commonly represented on a
computer graphics using stick' or 'space filling'
representations. Sophisticated variations
these two basic types have been developed, such
as the ability to color molecules by atomic
number and the inclusion of shading and
lighting effects, which give 'solid' models a more
realistic appearance.

Computer-generated models do have some

on

[10]
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advantages when compared with their
mechanical  counterparts.  Of  particular
importance is the fact that a computer model can
be easily interrogated to provide
quantitative ~ information, @ from  simple
geometrical measures such as the distance
between two atoms to more complex quantities
such as the energy or surface area. Quantitative
information such as this can be very difficult if
not impossible to obtain from a mechanical
model. Nevertheless, mechanical models may
still be preferred in certain types of situation due
to the ease with which they can be manipulated
and viewed in three dimensions.

very

A computer screen is inherently two-
dimensional, whereas molecules are three-
dimensional  objects. = Nevertheless, some

impression of the three-dimensional nature of
an object can be represented on a computer
screen using techniques such as depth cueing (in
which those parts of the object that are further
away from the viewer are made less bright) and
through the use of perspective. Specialized
hardware enables more realistic three-
dimensional stereo images to be viewed. In the
future ‘virtual reality’” systems may enable a
scientist to interact with a computer-generated
molecular model in much the same way that a
mechanical model can be manipulated.

Even the most basic computer graphics program
provides the
manipulation of models, including the ability to
translate, rotate and ‘zoom’ the model towards
and away from the viewer. More sophisticated
packages can provide the scientist with
quantitative feedback on the effect of altering
the structure. For example, as a bond is rotated
then the energy of each structure could be
calculated and displayed interactively.

some standard facilities for

For large molecular systems it may not always

[11]
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be desirable to include every single atom in the
computer image; the sheer number of atoms can
result in a very confusing and cluttered picture.
A clearer picture may be achieved by omitting
certain atoms (e.g. hydrogen atoms) or by
representing groups of atoms as single “pseudo-
atoms’. The techniques that have been
developed for displaying protein structures
nicely illustrate the range of computer graphics
representation possible. Proteins are polymers
constructed from amino acids, and even a small
protein may contain several thousand atoms.
One way to produce a clearer picture is to
dispense with the explicit representation of any
atoms and to represent the protein using a
‘ribbon’.  Proteins are also
represented using the cartoon
developed by J Richardson.

commonly
drawings

1.5 Surfaces/zhw/ obsluw

Many of the problems that
are studied using molecular
modelling involve the non- )
covalent interaction .
between two or more

facilitated by examining the o
van der waals, molecular or
accessible surfaces of the

--'

molecule. The wvan der
waals surface is simply
constructed from the

overlapping van der waals
spheres of the atoms, Fig 8.
It corresponds to a CPK or

accessible surface

- .-‘
L4 - .
+ - 4

»
s
molecules. The study of !
such interaction is often '
. ;sf
» - -

van der Waals surface

Fig 8: The van der Waals surface is
shown in red. The accessible surface
is drawn with dashed lines and is
created by tracing the center of the
probe sphere (in blue) as it rolls along
the van der Waals surface.(Source:
http://en.wikipedia.org/wiki/ Accessibl
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4 Aaial 93 ) sma LAY B2 5l A5 L)
ALl 5 3 0 el (s e eliaiY)
i Moy )i alasi by (4 5 ) J—iay
) G5 SY e gy aladindy Lial i gyl

.( JRichardson) (g )Lihy ) gz g

o— JSLE ) oy a2 aall )
] .\'\AZ\\ ?\ N P s )

Al (e g oati ¢ Ay sall
. DT ) o) G el e
\ et La 1,88 il iall e
. van der ) JW& o gl d)
: C‘L‘—“‘m} °L§)'A.ﬂ (waals
1l a Jfe ddalidl 4y sl
0 Ol el Jelad
Oy Adaliay (van der waals) Jué
van der ) JU o ol Jalas
LS) Gl Al Yl 2 (waals
=25 (fig8 3 sad z—a s
Zisai 5l CPK zdsai L

space-filling model. Let us
now consider the approach
of a small “probe” molecule,
represented as a single van

[12]
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der waals sphere, up to the
van der waals surface of a s
larger molecule. S
The finite size of the probe
sphere means that there will
be regions of ‘dead space’,
crevices that are not
accessible to the probe as it

Molecular sutface

Fig9 : (Source:

wan der VWaals’ . )-.\Si d& ‘):IJ O& ;Lﬁ‘}.}
;fmh‘s/ suface L..SJ ;“ : ” .3;3 S\ : S\
X Al ()5S 4l ixy a8 giall

’ O ooy ¥ i dalice’ (3halic

v Probe sphere . - .
S5 s i LY (3 il
DS

rolls about on the larger
molecule.

This is illustrated in fig 1.4. The amount of
dead space increases with the size of the
probe; conversely, a probe of zero size would
be able to access all of the crevices. The
molecule surface contains two different types
of surface element. The contact surface
corresponds to those regions where the
probe is actually in contact with the van der
waals surface of the ‘target’. The re-entrant
surface regions occur where there are
crevices that are too narrow for the probe
molecule to penetrate. The molecular surface
is usually defined using a water molecule as
the probe, represented as a sphere of radius
1.4 A°.

The accessible surface is also widely used. As
originally defined by Lee and Richards this is
the surface that is traced by the center of the
probe molecule as it rolls on the van der
waals surface of the molecule (Fig.1.4). The
center of the probe molecule can thus be
placed at any point on the accessible surface
and not penetrate the van der waals spheres
of the atoms in the molecule.

http://www.ccp4.ac.uk/.../newsletter38/03
surfarea.html

alua¥) aae 2l 3 e Al Cilalidll dae ala 3y
st 1) a8 glall auall o) aSally g A8 sl
$ a8 JS ) Jsa ) 4Say ¢ ha dana
raie (e Gt Gue s (e g il mhau
Ghlial elli ) celiall C.lm.d\ i C.lm.d\
b s pe lSial e o gidll anall ) s
re-entrant surface Al dshia ,)-@-jm .'QJ@J\' du o
Jsai mand ¥ Al dduall 3800 aal g S
505 3l s 33 ad La Lle o8 giall 675 3al
b s adsia aaS clall (e o5 H pladiuly

.Q\;JJL_%“LLL «cuél‘.ug}ﬁ(w;

-c-“‘\j JSin f—*“%‘ accessible surface —! aiiiwﬁ
(é—"w Richards sLee = a8 Cuuway) g
) el 3 e 5f sy (e tadl el
(Fig.1.4) s 3>l J8 o ld mda s Jsa L
o Ak gl e e{s all S e s S Ul
S8 aall J2a, O O3 accessible surface =l
,c{;j;l\ Jala Jl @l

1.6 Computer Hardware and Software/ s/ cibaa sy i jga/

The workstations that are commonplace in
many laboratories now offer a real alternative
to centrally maintained 'supercomputers' for

Gl yidall (e aganll 85 s gal) Jard) (Slal pS
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molecular modelling calculations, especially
as a workstation or even a personal computer
can be dedicated to a single task, whereas the
supercomputer has to be shared with many
other users. Nevertheless, in the immediate
future there will always be some calculations
that the power that
supercomputer can offer. The speed of any
computer system is ultimately constrained by
the speed at which electrical signals can be
transmitted. This means that there will come a
time when no further enhancements can be
made using machines with ‘traditional’
single-processor serial architectures,
parallel computers will play an ever more
important role.

require only a

and

To perform molecular modelling calculations
one also requires appropriate programs (the
software). The software used by molecular
modelers ranges from simple programs that
perform just a single task to highly complex
packages that integrate many different
methods. There is three items of software
have been so widely used: the Gaussian series
of programs for performing ab intio quantum
mechanics, the MOPAC/AMPAC programs
for semi-empirical quantum mechanics and
the MM2 program for molecular mechanics.

dnbuall Alleally & 88 Sl 'supercomputers'
i sl Jaall LS DS g ¢ Ay Hall Aadaill
SSTENP W AEN Pr DV BICIEN. 5 PRTILGY IPPN
(peddine B xa &yl G oSy §Olanl) o sulal)
Alia & S i) Jutnal) 8 ol pag o A
S Y o 5 gl bl il bl e Ll
e s o) a8 $laall sl V) Lasy o)
Led Jiin i de pulsa e cosuls ol
Yy il adl ey 1ha s 400 5eSl) LY
5 ea ) Aladiuly lisestl e 233l ) ) (e
Al Lta 2 uvigh 3y el ae ol ol
Apaal LT 50 uali G 431 siall vl gl

e i 5 (gl

Leanl 4y jad) A dall Alaadl cilblaad) olal callaty
Sl ) ) (el Al el 5
Adareal) zal ) o A Hadl Axdaill 8 deadiill
28a1l) 325 ]) mal jall g Jadh Baa) 5 daga g2 (A
A0 lia Aliaal) 5kl e duaal) ey o s il
el s ldas e Lgalasiind a3 Al sl il (e ) 50l

ab intio 285 Gaussian e 7l EANIIVERREN
AMPAC / MOPAC g 325 ¢ o8I LSl
MM2 gl g A paill 4 o SIH L SpilSol

1.7 Units of Length and Energy/ 4ikly skl <ilaa

Z-matrix is defined using the angstrom as skl 5as 5 a5 yiwad) alad5ls Z-matrix <& j23 a4y
the unit of length (1 A°= 10 " m=100pm). P PP 3 ():m S 100 = A 10-10= a5 yiwa ',\1)
The angstrom is a non-SI (International :\_A.Dui Sy ¢ calaa ol all ?1 Lill dagli e Baa g
System of wunits) unit but is a ver . T " Vs

y ) Y 51 e dad sl sl alaea i 5 calazind laa

U Ab initio quantum chemistry methods are computational chemistry methods based on quantum chemistry/
(s S L2y s A s 5o o) o) LS () it 31 Aol digle sledl 3k (g (o8, AD imitio <l
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convenient one to use, as most bond | a g yu A

-

lengths are of the order of 1-2 A° One ialaill i _8 AL (5 J.Ai 3aa g ellia Oi L&

other very commonly non-SI unit found in
molecular modelling literature is the
kilocalorie (1 kcal=4.1840 kJ). Other systems
of units are employed in other types of

claadll doadl ldall A agls e oo gy jal)
=4, 32w 1) kilocalorie 4l yall &l janl)
O A Aalail Caa ) @llsa 5 (s 51S 184004

calculation, such as the atomic units used i Dlluall G 5 A t\ﬁj‘ Lg paiiend Glaa gl

in quantum mechanics.

S S L pasie ) A3 sas )

1.8 Mathematical Concepts/ sl ) aoliall

A full appreciation of all the techniques of
molecular modelling would require a
mathematical treatment. However, a proper
understanding does benefit from some
knowledge of mathematical concepts such as
vectors, matrices, differential equations,
complex numbers, series expansions and
lagrangian multipliers and some very
elementary statistical concepts.

e a8 Jal ezl Aallaally sl sy
G e iyl Ay ol Al i
¢ vector A—aiall JAady byl aﬁﬁuaﬁ]‘
Ll el YAl =al) ¢matrices <l gdia Ll
complex Bade ) a\j‘)ﬁy\j ¢ differential equations
mleY dliebiagg ¢ Gl ol bl ¢ numbers
A oY) Ailany) aaliall (amy
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2 Computational

Quantum

Mechanics

oS LSS0 Aoila sl

2.1 Introduction / 4ais

There are number of quantum theories for
treating molecular systems. The one which has
been widely used is molecular orbital theory.
However, alternative approaches have been
developed, some of which we shall also describe,
albeit briefly. We will be primarily concerned
with the ab initio and semi-empirical approaches
to quantum mechanics but will also mention
techniques such as Huckel theory, valence bond
theory and Density functional.

Aalail) A alleal A I iy i e 2ae Gllia
¢l Dladld ki eds A jall
s poda g ot LaS Ylaaioal 3N Ayl
A 5 ab initio) alie ¥ sl S35 (5 AY) zgill
Ceayl SAs [SXNPEN| RENTIN semi-empirical
4,5 ¢ Huckel 4kt J-e @il a2y
45l :\—J)jé-"_j valence bond <nlaiwdl LSS
.Density functional dadnls 4l

The starting point for any discussion of quantum 4_lag (2 Schrodinger 3 b A Talaa )
mechanics is the Schrodinger equation. The full , G; sail) ?55\ Ll 8 iislie g_ay SRR

time-dependent form of this equation is:

eq.2,1 ;2 P
“am\a” T

(‘-}2 o2
oy " 07

9 (e 1l dalatial) Adaleall JLlS)

9 , _ i
)+ y ) U(r, 1) = b (r, b

Eq. (2,1) refers to a single particle (e.g. an
electron) of mass m which is moving through
space (given by a position vector
r=uxi +vj+zk ) and time (f) under the
influence of an external field V' (which might
be the electrostatic potential due to the nuclei
of a molecule). & is Planck’s constant divided
by 21 and i is the square root of -1. W is the
wavefunction  which  characterizes  the
particle’s motion; it is from the wavefunction
that we can derive various properties of the
particle. When the external potential V is
independent of time then the wavefunction

m AL (0538 Jhe) e () Eq. (2,1) o
ila .n\ﬁ N \}.) elea 4l —c ‘ﬂJ
il cai(py g (7= xi+ v+ 2k Aaie
slogSl AulSa) (5508 Al v aladl daall
AN Planck 4ed 58 1 L (ss ol s Adas yall
AW 1A A G s 27 e A guia
4 A Olasaall A8 ja ey (52 A gall 4000
) (e LS il i gl A e L
AN (e Si larie Clapsall daliadl aila &)
Alall AUS (S ol iy Adasi ja e v Aa A
el 12 sall

-
LR

ooy ali_ S
-~ . O
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can be written as the product of a spatial part =y YL Al 3 Al o (s ®(rt) = w(r)TE)
and time part: ¥(7,£) = ¥(r)T{). We shall only  Laa a8 b das jo e A )< Ladie ¢ liie V)
consider situations where the potential is LK ol ccad b A Sall jria g 5l Adalaad o

independent of time, which enables the time- . . . XTRE
’ 8 lL Jayi e yuall anll e e
dependent Schrodinger equation to be written sl basise

in the more familiar, time-independent form:

eq.2,2 R’
! By(r) = —5—V(r) + V(r)y(r).
2m
E is the energy of the particle and we have BN YRR IS DL PUIt PRNWEN By o
used the abbreviation V*(pronounced ‘del (“del squared’ sexsall) V7
squared’):
eq.2,3 o2 GL o2

V=

o’ * Oy’ T 02*

It is usual to abbreviate the left-hand side of eq. a8y Aalaall (ja (5l Agall jaidd Ladole
(1,1) to A W, where H is the Hamiltonian Hamiltonian = 1 of G 1/ (1,1)

operator: operator:

eq.2,4 R ?‘12
H=-——V*+V
2m

This reduces the Schrodinger equation sda Jal H¥ =¥ | jxidg d ddolan palids laa
toH¥=E¥ . To solve the Schrodinger ilslaa 8wl E A e s cddalal)
equation it is necessary to find values of E 1 &l 4 4 gl CValaall A58 Jaly jaia g ol
and functions W. The Schrodinger equation ., _*y o sl G A5 el sl 5 5al
falls into the category of equations known as . i s P T e
4 9 e Lad y o(eigenfunction) 4k g Ao iUl

partial differential eigenvalue equations in e e e
which an operator acts on a function (the P adalas s sy JUie '(A_PN‘ * D scalar —
a)Al) Al

eigenfunction) and returns the function
multiplied by a scalar (the eigenvalue). A
simple example of an eigenvalue equation is:

Eq.2,5



d d
The operator here isd¥. One eigenfunction of 4Jalzall 53¢l Eigen daday gy s L Jadl
this equation is y= € @x with the eigenvalue . g Lﬁjm (:\—}3\53\ uﬁﬂ\) o) =eax y i
r being equal to a. Eq.15 is a first-order ¢V Laaladll i il ) 75 Atabaall aiis
differential equation. The  Schrodinger U_;\_’ﬂ\ ) Lealatl) g ) S Rl dales ) A1
equation is a second-order differential \ A.A u-MJ e ] i ‘P A @lﬂ\ A "5 g

equation as it involves the second derivative & gl
of W. A simple example of an equation of this R

type is

Eq.2,6

=N =N
B 3]
b et

=V

The solutions of eq26 have the «y=Acoskx+Bsinkx JS2 6 adalzdl Ja 245,
form v = Acoskx + Esinkx | where A, B and k AW i gy Adalaa 8 g A B K Ol s

are constants. In the Schrédinger equation W~ lgiad . B 5 Bigen I 43 L
is the eigenfunction and E the eigenvalue. T & i

2.1.1 Operators / ¢ sixciall

The most commonly used operator is that for Lo sd Y Jadiadl 5o d8UaN ) silcla Jadia )
the energy, which is the Hamiltonian operator - Jell) 1A Gludal DA e Al Gludal) (S
itself, H. The energy can be determined by

calculating the following integral:

Eq2,7
COweA¥YdT S o r
E=—2 """ o |@.A¥dT = | ¥+ E¥dT
[ R Z I :
(W*) : the wavefunction may be a complex S e e (oS8 38 da gal) Al ¥
number. AdIal S ) JalSl e 5 ) (S B

E: scalar and so can be taken outside the eq.2,7 FRBEA L.,A z A uu 4 ! ...I ‘,\_J; }d\

integral.
.. ) 1 sl
If the wavefunction is normalized then the -

denominator in eq.2,7 will equal 1. ) ) .
The Hamiltonian operator is composed of two Sat S g e O sl Jrdie LS
parts that reflect the contributions of: kinetic and e @4}3‘ Adlda 54 jall dsall : clale)
potential energies to the total energy. The kinetic : o2 A8 all ddlal) Jaie d8al)  laa)
energy operator is: )

[19]



Eq.2,8
k 3

_ 2
2m v

And the operator for the potential energy 4 yuall 3 jluall (o yuia poia sl A8la Jrdia Jadig g
simply involves multiplication by the 350 8 g STy danilly AU ey Al
appropr;ate ex;l)ressiorT for. tfle dpo’cential 2 gl Al Jrd Jadiy oJg GZ;" . Jj
energy. For an electron in an 1solated atom or 38l sl g ”SS‘?!\ O Al g 5eSH e L)

molecule the potential energy operator & i
. ) i ) ANl g yiSIV g g SN e ) Al
comprises the electrostatic interactions & Yo 5 y 5SS ‘)[ A= A

between the electron and nucleus and the U= 30 &= 8ialy8lsigaaly O -1 Al
interactions between the electron and the e s Alaiaall A8Uall Jadia ld «ligig sl
other electrons. For a single electron and a s AUl gl
single nucleus with Z protons the potential

energy operator is thus:

Eq.2,9

Zes

mTET

V=-

Operator for linear momentum along the x Jduhadll € jal) 0K Al AS jall 4l Jadia

direction : -x olaiy) 3 ) ga
Eq.2,10
h J
i ax
The expectation value of this quantity can (yedaSl) odgd a8 gill dad o Jpaall Say
thus be obtained by evaluating the following . ét_ﬂ\ Jal<iall &:ﬁj A
integral: )
Eq.2,11
fwt Zygr
PY= Ty war

2.1.2 Atomic Units /33 claag

The atomic units of length, mass and energy = saill e & &8l § J ghll g 41U 4, )3 las gl
are as follow: ;S

e 1 unit of charge equals the absolute .. . ,. . il s TR
a4 dllaal) Al (g s EREE
[20]



charge on an electron,
lel = 1.60219 x 1079 C

lel = 1.60219 x 10719 ¢ (5 <)

¢ 1 mass unit equals the mass of the
electron, M. = 9.10593 x 10™3kyg

:0s ALY

m, = 9.10593 x 10 31kg

e 1 unit of length (1Bohr) is given by (JAJ“-’ EUEY G.J}A-.’ 1) d}‘u‘ 8 g csj”f‘ d
2 il

;n‘ﬁ

= h*
fo /-l.-‘r:mb.e: =529177 = 10~ 11m,

It is the radius of the first orbit in
Bohr’'s treatment of the hydrogen

_ h®
Go = /-‘-l.-‘r:mb.e: = 529177 % 107 11m,

350 s zdsal b JsY) o) g lad 4

atom. It also turns out to be the most 3= O =) bLal J sy .O-:‘%JJJ—}@J‘
probable distance of 1s electron from (= (98] J5 (e Laga i HASY) ddli )

the nucleus in the hydrogen atom.

® 1 unit of energy (1 Hartree) is given

i o -1
byEc—€f4?fEua“_4'35981xln o

sl £33 315

Eo =% [gne, 00 = 35981 x 107%¢]

It corresponds to the interaction G g ) i & j{_ﬁ\ o (38 gy ad) LS
between two electronic charges sl & 6 sl Py &L’_:“ Lad

separated by the Bohr radius. The 0.5 Cn s sl 575 Jry ) gl

total energy of the 1s electron in the
hydrogen atom equals -0.5 Hartree.

2.2 One-electron Atoms

In an atom that contains a single electron, the
potential energy depends upon the distance
between the electron and the nucleus as given
by the Coulomb equation.

It is more convenient to transform the
Schrodinger equation to polar coordinates r, 0
and ¢, (wavefunction) where:

r: the distance from the nucleus

0: the angle to the z axis

¢: the angle from the x axis in the xy plane

Eq.2,12

BB

DS el s oy A e (g 5iat Al 8 ,A
3 sall g ¢y 9 STV Adlial) e dialSl) A8l
el oS Aabee sy

s ph Aalae o a3 cdae D SEY) (e
Pus (5o ) 5 Oer Auadadl) Gl
B) g3 (sa Al -y

z osslldygl g

xy sl Ay sl el

tP’,v!l'm =R ?!J{T}Yl'm{ﬁv 'i'}
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Y(6,p) : angular function called a spherical S90S Gl i 434 ) daks Y (6,0)
daeladi ddds 5 R(r)

harmonic R
21,0 sl oSl aae
R(r) : radial function 1)1 0" - \fjg\ 3 JQI;
n-1),...,1, :<“;‘-A-HJ :
n: principal quantum number: 0, 1, 2,... 1,(-1)...0...,(1-1),-1 G...ulal_wd\ A 2xe .y

I: azimuthal quantum number: 0, 1,..., (n-1)

m: magnetic quantum number : -1, -(I-1), ...0...(l-

1,1
Eq.2,13

22\ m—1—1n % o

o — n—: : _PY ir3ien
) I(nﬂa) 20l + DT exp( ) L @)
o s * _2Zr
p =22 fﬂﬂn, where "4 is the Bohr radius. LY &L’““ B NBo S P Inag
L71®) is a special type of function called a (sand @llagll pu jran g 53 o L3I}
Laguerre Polynomial Laguerre Polynomial
Eq.2,14
With:
& ($) = —==exp(img)
V2T y
@+ D= mD] 5y
O = g% Iml}.'] B (cos0)

#n(@): The solutions to the Schrodinger el jaing ph Aaledd Jslal) i, ()
equation for a particle on a ring. the associated ) & ailds g all PVlicos )
P'™cos8). Series of function called the ( Legendre polynomials.

associated Legendre polynomials.
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3d,, % 3d,, %
Fig2.1:

The common graphical representations of s, p and d orbitals/
5,p,d el & jidall e g N Jiaill
Src: http://butane.chem.uiuc.edu/pshapley/ GenChem2/Intro/orbit.gif

The energy of each solution is a function of the
principal quantum number only; thus orbitals
with the same value of n but different 1 and m
are degenerate. The orbitals are often
represented as shown in fig 2.1. These graphical
representations are not necessarily the same as
the solutions given above. For example, the
‘correct’ solutions for the 2p orbitals comprise
one real and two complex functions:

daﬁégu:éj\eﬁ\ AAA\I\A#J@JAJSZE\LQ\
Lm A Lal  dad G Ld il jlaall o) Juilly
s LS ) Jiam Le Wille 4 Aalisg ) oS
o bl JISEYI 038 162 a8 JSE 3 e
e odel s, Saall Jolall udi Lel 5 55 pually
OS5 2p < ylaal dagmaall’ Jglall ¢ Jall Jpans

U DTN PR FEGREN PR

2p(+1) = [3/, R(r)sinfe'®

2p(0) = |3/, R(r)cosé

2p(-1)= |3/, R(r)sinGe™®

R(r): The radial part of wavefunction

m : A normalization factor for the angular
part.

2p (0): function corresponds to the 2p: orbital
that is pictured in Fig 2.1.

Axs gal) AN (e e laddl o 3al) iR(r)

-ij‘)S\ ¢ yall g;dhi cuwti Jale N an
Fig (s ) saall 2p, e e (38155 48da 5.0p (0)
2.1
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The linear combinations below are the 2px and 2py ,lae g 2px el 3 g2 oLial Adadl) sl 43l)

2py orbitals shown in Fig 2.1.

2p, = 1;"2[2p(+1}+ 2p(—1)] =

Fig 2.1 (& (9> 5]l

¥4z RE)sinG cos 6

20y = X apap(+1) - 2p(—13] = § Van RE)sinbsing

These linear combinations still have the same allall 48Ua (yuai Lgaal J) ) Le ddadld) <lusd) gill 524

energy as the original complex wavefunctions.

a1 Sl A sl

2.3 Polyelectronic Atoms and Molecules/ i Jadl g <Al aaia ¢y 9 sl

Solving the Schrodinger equation for atoms
with more than one electron is complicated by
a number of factors. The first complication is
that the Schrodinger equation for such systems
cannot be solved exactly (solutions can only be
approximations to the real true solutions).

A second complication with multi-electron
species is that we must account for electron
spin.

Spin is characterized by the quantum number
s, which for an electron can only take the value
Y. The spin angular momentum is quantized
such that its projection on the z axis is either
+h or —h. These two states are characterized by
the quantum number ms , which can have
values of +1/2 or -1/2, and are often referred to
as ‘up spin” and ‘down spin’ respectively. The
spin part defines the electron spin and is
labeled o or 3. These spin functions have value
of 0 or 1 depending on the quantum number
ms of the electron. Each spatial orbital can
accommodate two electrons, with paired spins.
In order to predict the electronic structure of a
Polyelectronic atom or a molecule, the Aufbau
principle is employed, in which electrons are
assigned to the orbitals, two electrons per
orbital. For most of the situations that we shall
be interested in the number of electrons, N,

D1 I @l AT paia g yd A Ja dlee )
Gy A3 g 3a8a0 dlae a caaly 5 A8 e
oS Y Al o (1 AE A Sl gl e 22e
AalaiVl oaa Jidl i gyl Aaleal (3a8a Ja 2l
Aiial) Jolall la 88 dy 85 Jsda dlag) (1S
paaiall &1 55y ae Al AASE W) (Anpmaal)
doe s Lade Coagail a5 3l
Qs A

OGS (s aslaray a3l
172 (gsbast A 231 of (5 I

Z )saa Ao adalind Jie g5l 3 a3 J 3 e
oS axay GUAAN Glila e . sl h Ll s
Lle s 172 sl412 4ad 330 o 0Sas Al em,
oSe! 5l el e g anly L) i L
(HoAl e 3all) Guad) ¢ 3 dasy MAeludl @ e
3 sl o e (Oeedl) J3A0 05 Y
e ey aalg ol jiiadad ol Caitha
ms U5 S a S
Gl e e g S e gy O Syl IS
A g IV Al 8 6 Jal e (/32 2)
e dae oty il g STV dasiall s ) 1 3,00
et e 3855 gl Cagl aeld b
VLAY adhnad dailly 5l jlaall ) el Iy
8 g N el g STV aamy LD (e gl A
7933 dae ¢ N2 o) A8l Hlaa Jadey
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will be an even number that occupy the N/2
lowest-energy orbitals.

Electrons are indistinguishable. If we exchange
any pair of electrons, then the distribution of
electron density remains the same. According
to the Born interpretation, the electron density
is equal to the square of the wavefunction. It
therefore follows that the wavefunction must
either remain unchanged when two electrons
are exchanged, or else it must change sign. In
fact, for electrons the wavefunction is required
to change sign: this is the antisymmetry
principle.
Eq.2,15

o) oty Liad 13) 5 b aia e il g 51 )
i AU a5 58 8 el g ST e gz 5 )
O ST AAUS () ¢y 5 peandill (88 5 A
AN o) Y das gall ATl ala S gl
Ol s o Lavie Lol a5 Y o s A sl
(o2 Aadlall st o a8 ) g ol STV (4
Ay Ay sl A gl AN ) o805
Lo 138 5 cdadlad) it Jad e il g K1

bl axe oey oy

2.3.1 The Born-Oppenheimer Approximation/ Sl A Ra

The electronic wavefunction depends only on
the positions of the nuclei and not on their
Under the Born-Oppenheimer
approximation the total wavefunction for the
molecule can be written in the following form:

momenta.

Eq.2,16

-0 S e ey Lo o Gl 553
Adlaa) A sall Adlall AUS (1 Sy ¢ el gl

L Sl Il e os 5l

Y e(nucled, electrons) = Yelectrons)¥ (nuclei)

The total energy equals to the sum of the
nuclear energy and the electronic energy. The
electronic energy comprises the kinetic and
potential energy of the electrons moving in the
electrostatic field of the nuclei, together with
electron-electron repulsion:

Eq.2,17

Ayl ddall g 5 ane d Bl Jlea) (g5l
A g SRV A B aa 5 A5 iSIVI AU
L g STV e Alaiagl) A8UA) § 4K jal) daUa)
) s s il AL jeS) Jaall 84S jaidll

O3S -0 I 2oLl e i

Eene = Elglectrons) + E(nucled)
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2.3.2 General Polyelectronic Systems and Slater Determinants / J§ dalal) asaial) G9ASY) dalis)
Py PRI KIS

JICEY) AU Aade LAY AGy Hhall ea 34 ()
Gl g IV Baatiall dua gal) ANal Aalial) duiula )
OS] el Sy bl aae fase okt )
X1,X2,...,XN ‘\—’j)‘d\ ‘—’\)\J-AM Q,J ‘—’1—’5):‘55\ N L‘.—.’ﬂ

A determinant is the most convenient way to
write down the permitted functional forms of
a Polyelectronic wavefunction that satisfies the
antisymmetry principle. In general, if we have
N electrons in spin orbitals Xi,Xz,...,Xxn then an

acceptable form of the wavefunction is:

o ALl A sall AN S5 b ¢

Eq.2,18
x1(1) x2(1) XN(1)
wo L |¥1(2) x2(2) XN(2)
YVl : :
X1VY X2(V) XNV

X1(1): indicates a function that depends on the
space and spin coordinates of the electron

labeled ‘1’.
1

\ml

normalized.

ensures that the wavefunction is
This functional form of the wavefunction is
called a Slater Determinant and is the simplest
form of an orbital wavefunction that satisfies the
antisymmetric principle.

(If any two rows of determinant is identical,
then the determinant vanishes)

When the Slater determinant is expanded, a total
of N! terms results. This is because N! different
permutations of N electrons.

For example, for the three-electron system the

determinant is

X101
= ? Xl'z'
V2lx1(3)

Expansion of the determinant gives the following
expression:

[26]
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X2(1) X3(1)
X2(2) Xx3(2)
X2(3) X3(3)

AU Ay yaall 5 bl caaaddl) dlaial (o iy



X1(1)x2(2)x3(3) - ¥1(1)X3(2)xX 2(3) + X¥2(1)X3(2)X1(3)
—X2(L)XN1(2)03(3) + X3(1IX1(2)X2(3) — A3(1)X2(2HX1(3)

This expansion contains six terms (=3 . The
six possible permutations of three electrons
are: 123,132,213,231,312,321. Some of these
permutations involve single exchanges of
electrons; others involve the exchange of two
electrons. For example, the permutation 132
can be generated from the initial permutation
by exchanging electrons 2 and 3 (If we do so
we will obtain the wavefunction with a
changed sign —\).By contrast, the permutation
312 requires that electrons 1 and 3 are
exchanged and then electrons 1 and 2 are
exchanged. (This gives rise to an unchanged
wavefunction).

In general an odd permutation involves an
odd number of electron exchanges and leads
to a wavefunction with a changed sign; an
even permutation involves an even number of
exchanges the
wavefunction

electron and returns

GOl E3D (s Aw e (g gbagy dlatiayl s
0 Gl g I A Saal) A N ol
38 (ya =2y (5 ¢l 123,132,213,231,312,321: 2
= el g ST (e B3 pde VAL e Joalll
O O ol (e AV (anall (5 5l (s
Al e Jeaad o S w51y
O3 A daag e A1 Aol A 56 132
el ¢ puSally g (@ Aedlally juad ae A gl
Joasi ol (e s 35 1 i yiSIY) o 312 Aal
o An s A ey La 12)2 5 1 il Sl
(Bota

e Jald Ao o yaall Jagll (g pdatt cale JS5
e yuad Al g0 Laa Sl g IV (0 2 a4
Dol e A g0yl Aol (g ghaii ¢ s sal) A1)
Ao sall Al amy 5 il g SISV (o 7 50 e 220
oS (9

The Slater determinant can be reduced to a
shorthand notation. In one system of the
various notation systems, the terms along the
diagonal of the matrix are written as a single-
row determinant

2saal) AU 255 ¢ Al J) 35aY) 3y e gaa)
ae Caal il diadll gyl Jgh o 33 gall
e

Eq.2,19
XL(1) X2(1) X3(1)
AL(2) X2(2) X3(2)|=Ix1 Xz X3l
X1(3) X2(3) X3(3)

The normalization factor is assumed. It is
often convenient to indicate the spin of each
electron in the determinant; this is done by
writing a bar when the spin part is  (spin
down); a function without a bar indicates an
spin (spin up). Thus, the following are all
commonly used ways to write the Slater

OsSila Llle (5 salal) il Jule )
faraall 8 05,38 JS J e (Al lad clia
el sl G558 Bl Loy 53 ke e o3 s
Lal ¢(Jan) (A J32) B Al s oal) ¢S Lanie
O (e N e) o e sall oS e
e o Lad Lgigh 81 Ty yid (g 90 () 5S3 Ada )
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determinantal wave function for the Be atom
(which has the electronic configuration 1s?
2s?)

(1525 5b 55 SV Lena 3 55) psiba ) 553

Eq.2,20
@,-(1) @,.(1) ¢,.(1) @,.(1)
_ 1 ¢y 61:02) ¢g.(2) 02.02)
T V7R |04.(3) 6,.3) 0..03) §,.3)
@,-(4) ﬁigfi} ¢2:(4) ﬁggf"l}

= I':-"’hifﬂift-tl:fﬁ:sl

=|15"1s5 25 25|

An important property of determinants is that
a multiple of any column can be added to
another column without altering the value of
the determinant. This means that the spin
orbitals are not unique; other
combinations give the same energy.

linear

@ S 5 o)) a Il i agall Glaall sas
Ja5 0 5AT sale ) Cilad of 58 35ele
G d O laall J 38 ol (irg 138 22 al Ao
b O AV Akadl) 3od) gl Sy g sy
) Ll sl

2.4 Molecular Orbital Calculations / ) Jlaal) clibea

2.4.1 The Energy of a General Polyelectronic System/ aladl daaiall i g Sy aUAI 43Ul

For N n-electron system, the Hamiltonian takes
the following general form:

28 o silialell 2435 ¢ 5 3N Nabdai Jal (a

(302

11
i —F—

1
LE] Mz Tiz

alal) JS

A, B, C, etc: indicates the nuclei.
1,23 ..
The Slater determinant for a system of N
electrons in N spin orbitals can be written:

: indicates the electrons.

ol Jde Ju&l A B C

Os A e dv,2,3

N5 O S N G pldadl il daaall U (S
;&lﬂ\ Ja) RN L;)r_ )\.3.4
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A1l X2(1) .. XN(L1)
K120 X2(2) .. XN(2)
X1V X2(N) .. XN(V)
Each term in the determinant can thus be S sl 83~ S4 US Sa

written Xi(1)Xj(2)Xk(3)...Xu(N-1)Xv(N) where
i,j,k,...,u,v is a series of N integers.
As usual, the energy can be calculated from

A ik o s (DXG(2)XK(). .. Xu(N-1)Xo(N)
ROP\LNE VA Ry WA W
cye ALl lodial (Sas caalallS

_ feay
L
‘ ‘PHH”:J ...Ja”an dry [[x:-(1}4-(z}xk(a}...] X (—EZ..E = (V)= Mrpe) oot (V) + () +
[#9 = [ [arsdrs o dr{[X: X, @) w £ DX, K 3w ]}

If the spin orbitals form an orthonormal set
then only products of identical terms from
the determinant will be non-zero when
integrated over all the space.

(If the spin orbitals are normalized, integral
will equal 1)

(If the term involves different electrons, it
will equal zero, due to the orthogonality of
spin orbitals).

The numerator in the energy expression can
be broken down into a series of one-electron
and two-electron integrals. Each of these
individual integrals has the general form:

e gaae S A il Gl jladll cdas) Ja 8
(term Aa é_AA) JJJAM ) c:\.ALﬁ.m_A} 'B.A_A\;J.A
Ldie jiia g gt Y 2aaall (ya Lol 4250 ALl
(JalSS

g - alal dde e d ) jall @l jladll cils 13))
(35 Jalsl)

A8 dabide lig yiKl) e 3all ¢ gia d\AuJ)
(d)ﬂ\ Gl lae el s ¢ a5 gl

e Al 1A ) 5l 8 ol apeai S0
O Y] S g aal ) SV LS
Jaa 341 oLl s3a (e 2 jite JWlSS S g S

l l @rqidrg - [ferml]operator[term2]

[term1] and [term?2] each represent one of the
N! terms in the Slater determinant. To
simplify this integral, we first recognize that
all spin orbitals involving an electron that
does not appear in the operator can be taken
outside the integral. For example, if the
operator is 1/ria, than all spin orbitals other

k) daaa e A (S [term2].s [term1] A Jia
Yo o (el s Javess Jal e
e Y o e syl G156 lae S
Qs e JalSal) a5 o Sy e Jritall
G lae JS b (Jriidll ga 1794 OLS 1) (LA
Glilaa) e g alay sl e Lo J il
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than those that depend on the coordinates of
electron 1 can be separated from the integral.
The orthogonality of the spin orbitals means
that the integral will be zero unless all indices
involving these other electrons are the same
in [term1] and [term2].

For integrals that involve two-electron
operators (i.e. 1/rj), only those terms that do
not involve the coordinates of the two

electrons can be taken outside the integral.

Apaalad () JelSill (e pgliad 1Sy ] (5 SY)
131 Y] a5 slany JalSl) o and A3 3ad) )l
Lo STV ol e T 56l J S 3S
[term2] s [term1] (& Ledd (A (5 ﬁy\

O () Jrdie peai ) Ol Al @
(terms) J}JAM ol Jaad ‘(1/7’ij) JUia ul_UJNY\
el g IV e (i) Gldlaa) e Y Al
Sl (e A O apdaiads

It is more convenient to write the energy
expression in a concise form that recognizes
the three types of interaction that contribute to
the total electronic energy of the system.

First, there is the kinetic and potential energy
of each electron moving in the field of the
nuclei. The energy associated with the
contribution for the molecular orbital Xi is
For N
electrons this
contribution to the total energy is (the actual
electron may not be ‘electron 1°):

often written Hi~re and M nuclei.

in N molecular orbitals

e IS0 Ay puall A8l 5 jle AUS Jiadd) (g
Hlan) (o aguad AN L ¢ sl Cpacay
alaill 4 4 yiShy) AUl

JS pa sl) Al 5 4 jal) 2l Gllia aa 5 oY
Al i e ke 5 ol Jala & yaty 5 5]
M s Hicore 1358 Xi o5 3l lan algmuls ddagi )
cog o Gl la N 2 s Nl (e s 54
O -SIY)) (o A8l M) (e aleul) 1an

:(“electron 1’ 3_ 5_pzally L (sizdll

coreg
total

= Z Fﬂ":LX (1}(

i=1

X(l}_\T'HcDL-

.-=-1

Z

2

The second contribution to the energy arises
from the electrostatic repulsion between pairs
of electrons. This interaction depends on the
electron-electron  distance  (Ji5).The  total
Coulomb contribution to the electronic energy
of the system a double
summation over all electrons, taking care to
count each interaction just once:

is obtained as

aelall e i SUall SUA aleuy) Ly
Aaing g FIY) (e g5l (e (Sl g 5eS)
()O3 8- 5 38 G Adlsal) e aeLall 12a
A8lal Cae sl S ale) (Mlaa) (e Jpaall S5y
S (Ao 793w a0 jliie by 4 5 STy oLkl
5w U dSae o pajsall pa el g Sy

:33;\‘5

oo =zwn
z

/(' A2)X;(1)
T1z

L x,@x%,02)
Tz
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The third contribution to the energy is the Mol Jalil) e ddUall GG aleuy)
exchange ‘interaction’. = Aahial) edh cils g pSIY) e ) Jis) 1)
If two electrons occupied the same region of | &; a) )5S (L3l g mgd 36 (LS5 sl
space and had parallel spins then they could be | . =y .\ - RN ?SS\ G e
considered to have the same set of quantum | ~ 2 A 6“-) -

number. Electrons with the same spin thus tend . . )
to 'avoid' each other, and they experience a Lfi“”w' Las ¢ oY) L?‘AJSJSS\ 2e Ll 4.;5.«5 g5
lower Coulombic repulsion, giving a lower A (e adlLl Qt—‘u‘ Caaling ol A s
energy. The total exchange energy is calculated AUl Adalal)
by the following equation:

N N N

B =), S drdn X% @ () n@nm=Y Y &

=17 JT1imin

Kij: Energy due to the exchange. LJalilly daletia d8Ua:- K
The prime on the counter / indicates that the | Ls oa el G e Ja s a0l 3 g8 Aadlal) )
summat.ion is only over electrons with the o A (d ) O ey Ky e
same spin as electron i. NI

i O AW (s

2.4.2 Calculating the Energy from the Wavefunction: The Hydrogen Molecule / :4: gall 41141} (e d8Ual) luda)
Ol 55

In the most popular kind of quantum |inleall Ol laall o i i, 3SY) gl 8
mechanical calculations  performed on L;\ e J;, <y )';j\ LA:_ Gad LF",j\ (,Sj\ Sl
molecules each molecular spin orbital is L0 @ jad i b s e b lae J e JS
expressed as a linear combination of atomic Sl ‘LJSS\ e ol I" | eyl e )L)
orbitals (the LCAO approach)®.. Thus each . i s L e e .
o e JS i o S 13K (el

molecular orbital can be written as a

summation of the following form: :L“J'm JSAl) g sanaS

Eq.2,21

.4
W= Z Cui®u
=1

where ¥: is a molecular orbital represented as | (;« k & s<aS Miaa il jladl ga vl

2 LCAO is a quantum superposition of atomic orbitals and a technique for calculating molecular orbitals in
quantum Chemistry.(Ref:Wikipedia)/aS-“ sbasS (8 43 jall <l jlaall Caluad 455 5 45,00 <l jlaall (e oSI ST 5 58
LCAO
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the sum of k atomic orbitals @z, each
multiplied by a corresponding coefficient “x:,

and x represents which atomic orbital is

combined in the term.? There are two
electrons with opposite spins in the lowest
energy spatial orbital (labeled 1o;), which is
formed from a linear combination of two

hydrogen-atom 1s orbitals:

d_AL’.A.a Qg paa JA\} J< 6':--""',_42—1‘)&3\ u\)\d_d\
J\J_A\HHQ\(J_J&_P#JM}‘ € Auliall
CAQL:IJ‘)SSS\;” u.AuLs:}mﬂLxA sl Lfét,.f,)ﬂ\
Dlaall aY) Asal) 84 Saa lealiae i
B G5 e 0S5 5 (01 omsall) A8

Do sonedl B )M g1 Gl lae e oY

Eq.2,22

1o, = A(ls; + 1s5)

To calculate the energy of the ground state of
the hydrogen molecule for a fixed
internuclear distance we first write the
wavefunction as a £ X 2 determinant:

o5 3t Ao Al Al A8l Cluia) Jal
O Lide (5 oall Al Ala)al) Adluall (a5 500l
2x2 22aaS dua gall Al Y 5 <G

Eq.2,23
_ i) xz2(1)
¥= F{,ﬂ{z} xz2(2)

| = X¥1(1)xX2(2) — X1(2)x2(1)

(See paragraph 2.1.1 operators) In atomic
units the Hamiltonian is thus:

Glas ol 8 g silaled) (Jadadl 211 c.Lai«S\ =3B)
(s A

Eq.2,24a
. 1 Z Z Z Z 1
f=-2a,- -a, _fA_£SB_f4 2B -
2 T4 T Tea Tip Mz
Eq.2,24b
= fy +fp + (V)

1 and 2: indicate the electrons.
A and B: indicate the nuclei.
Za and Zs: nuclear charges =1.

The energy of this hydrogen molecule:

sl e dyia B
.‘L‘u})ﬂ\?{\ g;; dd-’ 1,2

N Lﬁjudjmw ZB 97 A
1O 5ouell o5 5 A8

3 Ref: http://en.wikipedia.org/wiki/Linear combination of atomic orbitals molecular orbital method : el
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Eq.2,25

E=

2w AwdT

S 2

The normalization constant for the wavefunction
of the two electrons hydrogen molecule is 1/72

u_ai)ﬂy doa gal) Adjall cyil) quu‘x\ il
2, 25 Adalaall 8 al8all 5142 s eyl

and so the denominator in Eq.2, 25 is equal to 2. 2 (s sl
Substltutlon of hydrogen molecule wavefunction b s sedl 508 ad A gl Al Jpas
into Eq.2, 25 i B -

2,25 Aalzall
Eq.2,26

E= %JJ drydps {X10X202) - X200 12N A, + 8, + (Y, J]Draxn2@ - x2(0x 1211}

Eq.2,27

E = JJ dT1dT2X1(1)X2(2)(H, ) 1(1)x2(2)

- JJ dT1dT2X 1(1)X2(2){(H, X 2(1)X1(2) + -

+ JJ dT1dT2X1(1)X 2(20H; )X 1(1)X2(2)

- J]'dndrzxuuxz(z}{ﬂz}xzu}xuz}+

+J]'dndrzmu}xz(z}(})szm(z)

1z

—JJ a‘na‘rzxuuxz(z}(})szxuz}+

il

Each of these individual terms can be
simplified if we recognize that terms dependent
upon electrons other than those in the operator
can be separated out. For example, the first

term in the expansion, Eq.2,25,is:

Yasaadl o) Lidaa¥ 13) ¢a yiie 3 JS J) 3 (Kay
" i g S aiza (terms
Sy il g 20 2l 850 s gall il ST
bl e J oY) Al ety e JUia Lpasnss

: Eq.2,25

<n.\gbl ‘(‘ 2

Eq.2,28

JJ dT1dT2X1(1)X2(20{H, X 1(1)x2(2)

The operator H is a function of the coordinates
of electron 1 only, so terms involving electron 2
can be separated as follows:

1 oSy clilaay ddda g sa iy Jadidl )
alaidll lallaia W) Jia 81 30 13) oJa a8

(SIS 2 gy S

Eq.2,29
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[famarzriaxa@)(i, ) 1wx2@) = | dr2xz@x2e@) [a‘nxm}(— 8- i)rm}
J J Tia Tig

If the molecular orbitals are normalized, the | (& (Lalal duwia o5 jall &l jlae il Ja
IT2X2(2)X2(2 dT2X2(2)3
i d (2)x2( }21. 1 s Jarzxz(z)xz(z} Jalsal

integral -
Eq.2,30

[ 1 1 1 [ 1 1 1 [

dry X ——-8;, - — - —|X =jd.lag {1}(——3 ————)10 (11 fdoyal1)a(1)

J 1 1{1}( -1 Tag ,_,,.15) 141} J g 21 Tia Tig g J 1
d» indicates integration over spatial coordinates. Al aldlaaly) JalSs sae e g, judy
ds indicates integration over the spin o Al ) cldlaay) S gam e g, by
coordinates. The integral over the spin 1 (s A sl sy e Jalal)

coordinates =1. dgaiaal) Liagsy 1oy Jlasic OS’\ LSy

Now we can substitute the atomic orbital
combination for 1og:

Eq.2,31

[ . 1 1 1 I P P 1
' a,l,lag{l}(— iﬂi _E_E)lggﬂ}: A ' ﬂi“1{15‘_1|~lpl+155I‘lfl}(—§31 -

1 1
—_— = —){15‘4[ 1)+1s501)13
Tia Tap

The integral in Eq.2,31 can in turn be factorized | A= sana Eq.2,3 Jalsil) RN C—Sal
to give a sum of integrals, each of which | & J\J_Aj\ (T e 2al g J< Craaly (SS

involves a pair of atomic orbitals: Ay
P gl
Eq.2,32
s aaaf 1. 1 1 . N 11 1
‘lQL1{15A|__1_,|+155|__1_,|]'( Eﬂi a a){IEALlJ'i‘lESLl_J}— ‘lﬂlj_lEA{l}( Eﬂi ﬂ ﬂ)lsﬂ(l}_i"la‘ilifl(

If we apply the same procedure to the second | 8 3all e el yal) udi 3nlaiy Liad 13)
term in Eq.2,27 : :Eq.2,27 Aotz

Eq.2,33
J]'dndrzmu}xz(z}{ﬂi}22(1}21(2} = [arxia(A)w2(1) [aT2x22)x1(2)
Eq.2,34

{aT2x22)x12) = 0
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Eq.2,34 equals zero because the molecular
orbitals are orthogonal.

ssall &l ylae (Y s Eg2 34 Aalaal (5 sl
Balxtia

2.4.3 The energy of a Closed-shell System/ 4ilial) 48al) sUas 43U

In a closed-shell system containing N electrons
in N/2 orbitals, there are two spin orbitals

associated with each spatial orbital Yipia and

Yi. The electronic energy of such a system can

be calculated in a manner analogous to that for
the hydrogen molecule. First, there is the
energy of each electron moving in the field of
the bare nuclei. For an electron in a molecular
orbital X;, this contributes energy """ . If there
are two electrons in the orbital then the energy
is 2f57° and for N/2 orbitals. The total
contribution to the energy will be:

N/2 (2 05 Sl N (6 simg Ailae ddida oLy 8
Aot o J Rl Al jlaa e il Sllia as g ¢ Hlae

ClosiaY Al 48y jhay A g IV 28U Ciludia)
dal e 33yl 31 5l Qo 8 & ay 5 5|
L HETE Al eSS X e Ll (B o)
el b g SISy ) i LS 1Y)
) OS5 e N2 S HETTp Al o 5SS

: d8Uall algud)

2

Hcors

The Coulomb interaction between each pair of
electrons in the same orbital must be included;
there is no exchange interaction because the
electrons have paired spins. The total energy is
thus given as:

O 750 IS G a8 LA A Al sy
YOSl e Y Gy laall G & S DY)
il Lt il g S (Y IS Jals o

T3 BB ) 555 A s 3e (U2)




2.5 The Hartree-Fock Equations/ & - s s <¥alaa

In most electronic structure calculations we are
usually trying to calculate the molecular
orbitals. But for many-body problems there is
no ‘correct’ solution; so the variation theorem
provides us with a mechanism to decide
whether one proposed wavefunction is ‘better’
than another. (The best wavefunction is the
one with the lowest energy). The Hartree-Fock
equations are obtained by imposing this
condition on the expression for the energy.

The Fock operator (/) takes the form:

sale Jslad el oI Al cillas alaaa 8
G el duiilly S5 o 3adl & jlae ludal
1A Mmaa” da gl @lia aa g Y alua ¥ Jilss
13 La 5 e Lae Lual 41 ) &y ylas Wl 2365
O "da 8 s da jial) da gl A sl
A Jead) s sl A ) 5 AY)
OYalza Ao J pasll uS.u (L,,_m‘ﬁ\ 48Ul elliag
il s JLaa) IO e gd g 5 Ll
) 8L 3 el 5 Ll

r Al JSall ) £ s aand 2aly

[ = Heo* )+ ) ;) - K;( 1))
=1

The Fock operator for a closed-shell system, has
the following form:

JSallc dagdaal) dagdall alaily 7 (@l 68 aase 33
Al

ral

fly = Her () + Z{Ef M) - K}

The Hartree-Fock equations then take on the
standard eigenvalue form:

Anal) dadl) Ja ol g8 5 5 jla ci¥alas 2al
AauluY)

f[iX; = & X;

2.5.1 Hartree-Fock calculations for Atoms and Slater's Rules/ S 351 g8 g i Al & g8 5 15 el cabadia)

The Hartree-Fock equations are usually solved
in different ways for atoms and molecules. For
atoms, the equations can be solved numerically
if it is assumed that the electron distribution is
spherically symmetrical. these
numerical solutions are not particularly useful.
Fortunately, analytical approximations to these

However,

By Al Bale gd (g 5 jla SYALaa Jad
J Sy el il il Sall (e it
e jsa s S o Al 8 Caad ) c¥aladll
Agad )l Jslallodn (i1 Hlaliie 55,8 JSay
aladi o) (pSay cdaadl sl 32 de Caily Ca ]

oia zals Ji Jplall adgd Llasll coy il
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solutions can be wused with considerable
success. These approximate analytical functions
thus have the form:

AUl Il el el Ay al Cailda o))

P = R, ("), (6, @)

Y is a spherical harmonic and R is a radial
function. Slater suggested a simpler analytical
form for the radial functions:

c8 Acllidah; AR SEISGS Y
el i gl Lo L IS5 0

-1

R () = (20" 2[(2ny) 2™

L—gr

These functions are universally known as Slater
type orbitals (STOs). The first three Slater
functions are as follows:
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To obtain the whole orbital we must multiply
R(r) by the appropriate angular part. Slater
provided a

series of empirical rules for

choosing the orbital exponents ¢, which are

given by:
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Z is the atomic number and o is a shielding
constant. n* is an effective principal quantum
number, which takes the same value as the true
principal quantum number for n=1, 2, 3, but for
n=4, 5, 6 has the values 3.7, 4.0, 4.2, respectively.
The shielding constant is obtained as follows:
First, divide the orbitals into the following
groups:
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| (15): (252p): (35, 3p): (3d): (45, 4p): (4d): (47): (55, 5p); (5d )

For a given orbital, o is obtained by adding
together the following contributions:

a) Zero from an orbital further from the
nucleus than those in the group;
0.35 from each other electron in the
same group, but if the other orbital is
the 1s then the contribution is 0.3;
1.0 for each electron in a group with the
quantum number 1 fewer than the
current orbital.;
For each electron with a principal
quantum number 1 fewer than the
current orbital: 1.0 if the current orbital
is d or f; 0.85 if the current orbital is s or
p-
The shielding
electrons of silicon is obtained using Slater’s
rules as follows. The electronic configuration
of Siis:

b)

constant for the wvalence
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We therefore count 3x0.35 under rule (b), 2.0
under rule (c) and 8x0.85 under rule (d), giving
a total of 9.85. When subtracted from the
atomic number (14) this gives 4.15 for the
value of Z-o.
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2.5.2 Linear Combination of Atomic Orbitals (LCAO) in Hartree-Fock Theory/ kil 35l

The most popular strategy, to find solution of
the Hartree-Fock for the molecules, is to write
each spin orbital as a linear combination of
single electron orbitals:
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The one-electron orbitals @
called basis functions and often correspond to
the atomic orbitals.

K: number of basis functions.

At the Hartree-Fock limit the energy of the
system can be reduced no further by the
addition of any more basis functions; however,
it may be possible to lower the energy below
the Hartree-Fock limit by using a functional
form of the wavefunction that is more extensive

are commonly

than the single Slater determinant.

For a given basis set and a given functional
form of the wavefunction (i.e. a Slater
determinant) the best set of coefficients €=: is
that for which the energy is minimum, at which

point
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for the coefficientsC.:. The objective is thus to
determine the set of coefficients that gives the
lowest energy for the system.

e ganeadant gafdlcan gl o) 0y Jaladl
Al 48U 8 Jaas ) Jalacall

2.5.3 Closed-shell Systems and the Roothaan-Hall Equations/ J%-(5 5 ¥ a9 4klial) Aidal) aUas

We shall initially consider a closed-shell
system with N electrons in N/2 orbitals. The
derivation of the Hartree-Fock equations for
such a system was first proposed by
Roothaan [Roothaan 1951] and
(independently) by Hall [Hall 1951].Unlike
the integro-differential form of the Hartree-
Fock equations, Roothaan and Hall recast the
equations in matrix form, which can be
solved using standard techniques and can be
applied to systems of any geometry.

The standard form for the expression for the
Fock matrix in the Roothaan-Hall equations:
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2.5.4 Solving the Roothaan-Hall Equations and A Simple lllustration/

The Fock matrix is a KxK square matrix is
symmetric if real basis functions are used.
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The Roothaan-Hall equations can be ilent
conveniently written as a matrix equation: e g e Jsa-oly ) c¥alae 4..11_15 4Say
FC=SCE

The elements of the KxK matrix C are the
coefficients Cui:
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E is a diagonal matrix whose elements are the
orbital energies:
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A common scheme for solving the

Roothaan-Hall equations is as follows:
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1. Calculate the integrals to form the S b ghadll Jala Cldal 2

Fock matrix, F. S L 3
2. Calculate the overlap matrix, S. ) um;:u )
3. Diagonalise S. o . S Js& 4
4. Form S~ ASUS el dial (g AT A8 yhay ol (pads 5
5. Guess, or otherwise calculate, an P 43,3...»1...;‘}(\ 43 g4l

initial density matrix, P.

6. Form the Fock matrix using the
integrals and the density matrix P.

7. Form F'=§12F 5§12,
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8. Solve the secular equation |F-EIl=0
to give the eigenvalue E and the
eigenvectors C’ by diagonalising F’.

9. Calculate the molecular orbital
coefficients, C from C=S512.C’.

10. Calculate a new density matrix, P,
from the matrix C.

11. Check for convergence. If the
calculation has converged, stop.
Otherwise repeat from step 6 using
the new density matrix, P.

This procedure requires an initial guess of
the density matrix, P.

The result of a Hartree-Fock calculation is a
set of K molecular orbital, where K is the
number of basis functions in the calculation.
The N electrons are then fed into these
orbitals in accordance with the Aufbau
principle, two electrons per orbital, starting
with the lowest energy orbitals. The
remaining orbitals do not contain any
electrons; these are known as the virtual
orbitals.

e Jsasll Jal e FoETI=0 Ualaall a8
e O A Gilgatiall 5 pASIAN Al
C= S ~=C “H‘};ﬂ Ol Jales lisisl) 9
A2, C
e, Peddghia allzaaa 44US Cludal (10
. C4d a4l

B baall o Jla (B E 2 ga g e B8l ]
BIEEEJUNINL | PV U A/ PUNIPRI -
ALY aladiul aa 6 3 ghaall (e 2lai) &l ghadll

P 48 siiaall 3aaal)

P 48 ghiadll ZEKT g el o] jaY) 13 callaty
Ao gana (o ool Aylaall Lleal) dait
dulay) @LLJS\ e gk Cuay o S Jlwk (e
s s—ar 05 =Sl N o 585 Al all A leall 8
L g I e o) ¢ gl gl Bac l (ad g ¢l i)
el ) g il Hlaall a Telaiy) caad sl Hla Wb

Y
) e oY g A aiall il jlaall (ol
' ' A )l ladl o5

[41]




