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in a discretized fashion on a computer. One method is to discretize the spatial domain into
small cells to form a volume mesh or grid, and then apply a suitable algorithm to solve the
equations of motion (Euler equations for inviscid, and Navier—Stokes equations for viscous
flow). In addition, such a mesh can be either irregular (for instance consisting of triangles in
2D, or pyramidal solids in 3D) or regular; the distinguishing characteristic of the former is
that each cell must be stored separately in memory. Where shocks or discontinuities are
present, high resolution schemes such as Total Variation Diminishing (TVD), Flux Corrected
Transport (FCT), Essentially NonOscillatory (ENO), or MUSCL schemes are needed to avoid
spurious oscillations (Gibbs phenomenon) in the solution.

If one chooses not to proceed with a mesh-based method, a number of alternatives exist,
notably :

(SPH), a Lagrangian method of solving fluid problems, Smoothed particle hydrodynamics
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, a technique where the equations are projected onto basis functions like the Spectral methods
, Chebyshev polynomials and spherical harmonics

system on a mesoscopic (LBM), which simulate an equivalent Lattice Boltzmann methods
Cartesian grid, instead of solving the macroscopic system (or the real microscopic physics).

It is possible to directly solve the Navier—Stokes equations for laminar flows and for turbulent
flows when all of the relevant length scales can be resolved by the grid (a Direct numerical
simulation). In general however, the range of length scales appropriate to the problem is
larger than even today's massively parallel computers can model. In these cases, turbulent
flow simulations require the introduction of a turbulence model. Large eddy simulations
(LES) and the Reynolds-averaged Navier—Stokes equations (RANS) formulation, with the k-&
model or the Reynolds stress model, are two techniques for dealing with these scales.

In many instances, other equations are solved simultaneously with the Navier—Stokes
equations. These other equations can include those describing species concentration (mass
transfer), chemical reactions, heat transfer, etc. More advanced codes allow the simulation of
more complex cases involving multi-phase flows (e.g. liquid/gas, solid/gas, liquid/solid), non-
Newtonian fluids (such as blood), or chemically reacting flows (such as combustion).
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®  Scientific computing FAQ
®  Numerical analysis DMOZ category

®  Links to Open Source Scientific Computing codes
®  Numerical Recipes Homepage - with free .complete downloadable books

® Alternatives to Numerical Recipes
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In all of these approaches the same basic procedure is followed.

During preprocessing the geometry (physical bounds) of the problem is defined.

The volume occupied by the fluid is divided into discrete cells (the mesh). The mesh may be
uniform or non uniform.

The physical modeling is defined — for example, the equations of motions + enthalpy +
radiation + species conservation

Boundary conditions are defined. This involves specifying the fluid behaviour and
properties at the boundaries of the problem. For transient problems, the initial conditions are
also defined.

The simulation is started and the equations are solved iteratively as a steady-state or
transient.

Finally a postprocessor is used for the analysis and visualization of the resulting solution.

Discretization methods 3.1.1

The stability of the chosen discretization is generally established numerically rather than
analytically as with simple linear problems. Special care must also be taken to ensure that the
Navier— and Euler equationsdiscretization handles discontinuous solutions gracefully. The

both admit shocks, and contact surfaces.Stokes equations

Some of the discretization methods being used are:

(FVM). This is the "classical" or standard approach used most often in Finite volume method
commercial software and research codes. The governing equations are solved on discrete
control volumes. FVM recasts the PDE's (Partial Differential Equations) of the N-5 equation
in the conservative form and then discretize this equation. This guarantees the conservation

of fluxes through a particular control volume. Though the overall solution will be
conservative in nature there is no guarantee that it is the actual solution. Moreover this
method is sensitive to distorted elements which can prevent convergence if such elements
are in critical flow regions. This integration approach yields a method that is inherently

I; diation neededconservative (i.e. quantities such as density remain physically meaningful)!

lfon

or Euler equationswhere Q is the vector of conserved variables, F is the vector of fluxes (see

is the cell surface area. i""‘L), V is the cell volume, and Navier—Stokes equations

(FEM). This method is popular for structural analysis of solids, but is Finite element method
also applicable to fluids. The FEM formulation requires, however, special care to ensure a
conservative solution. The FEM formulation has been adapted for use with the Navier—
Stokes equations. Although in FEM conservation has to be taken care of, it is much more
Consequently it is the new direction in which CFD is stable than the FVM. approach
I. Generally stability/robustness of the solution is better in FEM though for citetion neededm oyingl

Blsome cases it might take more memory than FVM methods.

In this method, a weighted residual equation is formed:
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where Ri is the equation residual at an element vertex I , (J is the conservation equation

expressed on an element basis, Wi is the weight factor and V is the volume of the element.
method. This method has historical importance and is simple to program. It Finite difference
is currently only used in few specialized codes. Modern finite difference codes make use of
an embedded boundary for handling complex geometries making these codes highly
efficient and accurate. Other ways to handle geometries are using overlapping-grids, where
the solution is interpolated across each grid.

0Q JOF 0G 0H "
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Where Q is the vector of conserved variables, and F, G, and H are the fluxes in the X, Y,

and Z directions respectively.
. The boundary occupied by the fluid is divided into surface mesh. Boundary element method
are used where shocks or discontinuities are present. To capture High-resolution schemes

sharp changes in the solution requires the use of second or higher order numerical schemes
flux that do not introduce spurious oscillations. This usually necessitates the application of
. total variation diminishing to ensure that the solution is limiters

] Turbulence modelsedit[ 3.1.2

Turbulent flow produces fluid interaction at a large range of length scales. This problem
means that it is required that for a turbulent flow regime calculations must attempt to take this
into account by modifying the Navier—Stokes equations. Failure to do so may result in an
unsteady simulation. When solving the turbulence model there exists a trade-off between
accuracy and speed of computation.

1 Direct numerical simulationedit[ 3.1.2.1

Direct numerical simulation (DNS) captures all of the relevant scales of turbulent motion, so
no model is needed for the smallest scales. This approach is extremely expensive, if not
intractable, for complex problems on modern computing machines, hence the need for models
to represent the smallest scales of fluid motion.

] Reynolds-averaged Navier-Stokesedit[ 3.1.2.2

Reynolds-averaged Navier—Stokes equationsMain article:

Reynolds-averaged Navier—Stokes (RANS) equations are the oldest approach to turbulence
modeling. An ensemble version of the governing equations is solved, which introduces new
apparent stresses known as Reynolds stresses. This adds a second order tensor of unknowns
for which various models can provide different levels of closure. It is a common
misconception that the RANS equations do not apply to flows with a time-varying mean flow
because these equations are 'time-averaged'. In fact, statistically unsteady (or non-stationary)
flows can equally be treated. This is sometimes referred to as URANS. There is nothing
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inherent in Reynolds averaging to preclude this, but the turbulence models used to close the
equations are valid only as long as the time over which these changes in the mean occur is
large compared to the time scales of the turbulent motion containing most of the energy.

RANS models can be divided into two broad approaches:

Boussinesq hypothesis
This method involves using an algebraic equation for the Reynolds stresses which include
determining the turbulent viscosity, and depending on the level of sophistication of the
model, solving transport equations for determining the turbulent kinetic energy and
dissipation. Models include k-e¢ (Spalding), Mixing Length Model (Prandtl) and Zero
Equation (Chen). The models available in this approach are often referred to by the number
of transport equations they include, for example the Mixing Length model is a "Zero

Equation" model because no transport equations are solved, and the k-¢ on the other hand is
a "Two Equation" model because two transport equations are solved.

(RSM) Reynolds stress model

This approach attempts to actually solve transport equations for the Reynolds stresses. This
means introduction of several transport equations for all the Reynolds stresses and hence this
approach is much more costly in CPU effort.

1 Large eddy simulationedit[ 3.1.2.3

&

Volume rendering of a non-premixed swirl flame as simulated by LES.

Large eddy simulations (LES) is a technique in which the smaller eddies are filtered and are
modeled using a sub-grid scale model, while the larger energy carrying eddies are simulated.
This method generally requires a more refined mesh than a RANS model, but a far coarser
mesh than a DNS solution.

] Detached eddy simulationedit] 3.1.2.4

Detached eddy simulations (DES) is a modification of a RANS model in which the model
switches to a subgrid scale formulation in regions fine enough for LES calculations. Regions
near solid boundaries and where the turbulent length scale is less than the maximum grid
dimension are assigned the RANS mode of solution. As the turbulent length scale exceeds the
grid dimension, the regions are solved using the LES mode. Therefore the grid resolution for
DES is not as demanding as pure LES, thereby considerably cutting down the cost of the
computation. Though DES was initially formulated for the Spalart-Allmaras model (Spalart et
al., 1997), it can be implemented with other RANS models (Strelets, 2001), by appropriately
modifying the length scale which is explicitly or implicitly involved in the RANS model. So
while Spalart-Allmaras model based DES acts as LES with a wall model, DES based on other
models (like two equation models) behave as a hybrid RANS-LES model. Grid generation is
more complicated than for a simple RANS or LES case due to the RANS-LES switch. DES is
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a non-zonal approach and provides a single smooth velocity field across the RANS and the
LES regions of the solutions.

1 Vortex methodedit[ 3.1.2.5

The Vortex method is a grid-free technique for the simulation of turbulent flows. It uses
vortices as the computational elements, mimicking the physical structures in turbulence.
Vortex methods were developed as a grid-free methodology that would not be limited by the
fundamental smoothing effects associated with grid-based methods. To be practical, however,
vortex methods require means for rapidly computing velocities from the vortex elements — in
other words they require the solution to a particular form of the N-body problem (in which the
motion of N objects is tied to their mutual influences). A long-sought breakthrough came in
the late 1980’s with the development of the Fast Multipole Method (FMM), an algorithm that
has been heralded as one of the top ten advances in numerical science of the 20th century.
This breakthrough paved the way to practical computation of the velocities from the vortex
elements and is the basis of successful algorithms.

Software based on the Vortex method offer the engineer a new means for solving tough fluid
dynamics problems with minimal user intervention. All that is required is specification of
problem geometry and setting of boundary and initial conditions. Among the significant
advantages of this modern technology;

It is practically grid-free, thus eliminating numerous iterations associated with RANS and
LES.

All problems are treated identically. No modeling or calibration inputs are required.
Time-series simulations, which are crucial for correct analysis of acoustics, are possible.

The small scale and large scale are accurately simulated at the same time.

1 Vorticity Confinement methodedit] 3.1.3

The Vorticity Confinement method (VC) is an Eulerian technique, well known for the
simulation of turbulent wakes. It uses a solitary-wave like approarch to produce stable
solution with no numerical spreading. VC can capture the small scale features to over as few
as 2 grid cells. Within these features, a nonlinear difference equation is solved as opposed to
finite difference equation. VC is similar to shock capturing methods, where conservation laws
are satisfied, so that the essential integral quantities are accurately computed.

] Two phase flowedit[ 3.1.4

The modeling of two-phase flow is still under development. Different methods have been
proposed. The Volume of fluid method gets a lot of attention lately, but the Level set method
and front tracking are also valuable approaches. Most of these methods are either good in
maintaining a sharp interface or at conserving mass. This is crucial since the evaluation of the
density, viscosity and surface tension in based on the values averaged over the interface.
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] Solution algorithmsedit[ 3.1.5

Discretization in space produces a system of ordinary differential equations for unsteady
problems and algebraic equations for steady problems. Implicit or semi-implicit methods are
generally used to integrate the ordinary differential equations, producing a system of (usually)
nonlinear algebraic equations. Applying a Newton or Picard iteration produces a system of
linear equations which is nonsymmetric in the presence of advection and indefinite in the
presence of incompressibility. Such systems, particularly in 3D, are frequently too large for
direct solvers, so iterative methods are used, either stationary methods such as successive
overrelaxation or Krylov subspace methods. Krylov methods such as GMRES, typically used
with preconditioning, operate by minimizing the residual over successive subspaces generated
by the preconditioned operator.

Multigrid is especially popular, both as a solver and as a preconditioner, due to its
asymptotically optimal performance on many problems. Traditional solvers and
preconditioners are effective at reducing high-frequency components of the residual, but low-
frequency components typically require many iterations to reduce. By operating on multiple
scales, multigrid reduces all components of the residual by similar factors, leading to a mesh-
independent number of iterations.

For indefinite systems, preconditioners such as incomplete LU factorization, additive
Schwarz, and multigrid perform poorly or fail entirely, so the problem structure must be used
for effective preconditioning.lgl The traditional methods commonly used in CFD are the
SIMPLE and Uzawa algorithms which exhibit mesh-dependent convergence rates, but recent
advances based on block LU factorization combined with multigrid for the resulting definite
systems, have led to preconditioners which deliver mesh-independent convergence rates.”!

1 See alsoedit[ 3.2

Blade element theory

Finite element analysis
Immersed Boundary Method
Fluid mechanics

List of finite element software packages

Visualization

Wind tunnel

Multidisciplinary design optimization
Turbulence modeling
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