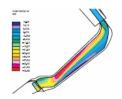


Ras Nhache/Batroun - Tripoli, 11th Jan 2015

TEMO-IPP Incineration Demonstration Plant Ras Nhache/Batroun, Lebanon

Vaporizer of TEMO-IPP incineration demonstration plant at Ras


Upscaled vaporizer train element (TEMO-IPP has to be upscaled in such a way) (picture is from Dr.-Ing. M. Franz, "Dampferzeuger ", www.axpoholz.ch/Dampfer zeuger.pdf)

Nhache/Batroun

CFD Analysis step 1: Upscaling CAD Model of vaporizer (to be done by student working on Master Thesis Mechanical Analysis of an upscaled version of the Vaporizer (pressure vessel and circulation tubes) of the incineration pilot power plant TEMO-IPP)

CFD Analysis step 2: Grid generation

CFD Analysis

step 3: Calculated water/steam flow

Master Thesis

Computational Fluid Dynamics (CFD) Analysis for Water/Steam flow in an upscaled version of the vaporizer of incineration power plant TEMO-IPP

To be able to upscale the TEMO-IPP incineration plant to a commercial incineration plant (about 40 MW) in Tripoli or otherwhere in North Lebanon critical components shall be verified by Computational Fluid Dynamics with the tool Abaqus. The main critical component is the pressure vessel with about 100 bar pressure difference. Working packages:

1. CAD Modeling	2. Mesh Generation	3. Solver	4. Visualization	5.Documen-
				tation
Upscaling CAD Model	A mesh generation C++ code shall	A finite difference and a finite volume	Shall be done	
with ProE (to be done	be taken from the open source	C++ code shall be taken from the open	with the tool	
by other student -see	code OpenFoam and migrated to	source code OpenFoam and migrated	Paraview	
<mark>above)</mark>	TEMO_IPP-CFD tool.	to TEMO_IPP-CFD tool.		
	4 weeks	6 weeks	4 weeks	3 weeks

Keywords: Alternative Energy, Steam Generation in power plant, Computational Fluid Dynamics (CFD), OpenFoam, C++

Contact: Samir Mourad, Email: samir.mourad@aecenar.com