

Electrolysis Unit

Based on the following reports

[NLAP-WEDC 2017]

[NLAP-WEDC 2018]

[NLAP-WEDC 2019]

Detailed Design & Construction for:

• Electrolysis System

With contributions of:

Siham Aisha

Othman Dhaibe

Samer Youssef

Last update: 26. Apr. 2022 / AthThulatha, 25 Ramadan, 1443

 $D: AECENAR \setminus ICPT \setminus Electrolysis_sinceSep2019 \setminus 18052020_ICPT-EFB_Report1_2020.docx$

- 1 Conception and Predevelopment for Electrolysis Unit
 - 1.1 Alkaline Electrolysis System Design from lightbridge.sales@gmail.com

Schematic of Alkaline Water Elec

Module of 2.5kW Electrolyser

Specification

Size: 52cm × 30cm × 50cm Power Consumption: < 2.5kW Gas production per hour: hydrogen gas 500liter; oxygen gas 250liter, separately Pressure: 5 bar. Temperature: 50~80°C Purity of gas: hydrogen gas 99.9%, oxygen gas 98%

1.2 Concept

1.3 Design 1 (April 2018)

Base plate for anode and cathode

Diaphragm

Electrode

Pipe

1.3.1 Materials

morr materials		
2 plates plastic	1m * 1m	
8 plates plastic	1.1 cm * 1m	
4 plates caoutchouc	1m * 1m * 0.5 cm	
1 plate Stainless	95 cm * 90 cm	
1 plate Nickel	95 cm * 90 cm	
2 tubes Nickel	Ф 1cm L:10 cm	
2 tubes Stainless	Ф 1cm L:10 cm	
6 tubes plastic	Ф 2cm L:10 cm	
7 tubes plastic	Ф 2cm L:20 cm	
7 elbows plastic	Ф 2cm _Г	
2 tubes plastic	Ф 2cm L: 1m	
2 T plastic	Φ 2cm 📲	
2 condenser		
2 faucet		
2 tank plastic		
2 fixes bolt		
	1	

Electrolyte (KOH)	Polassium Hydroxide Pellets Figure 1.5 Across 1.5 Acro
Anode (Nickel)	
Cathode (Stainless)	
Diaphragm	DOLICH

1.3.2 Cost of materials

Material	Suppliers	Prices	Pictures
Nickel	نوفل	1 kg = 2.5 \$	
	Alibaba	1kg = [15\$ - 40\$]	
Stainless	نوفل	1kg = 4.5\$	
	Alibaba	1 kg = 2.3\$	

1.4 Design 2 (May 2018)

1.4.1 Result:

Plexi breaks, when two plates are pressed together such that the water can't flow out.

1.5 Design 3 (Aug 2018)

STEPS:

- 1-2 stainless plates tied up tightly
- 2- ppr pipes allowing the gas to flow freely
- 3- a plastic headed bound to prevent electrical contact between the 2 plates
- 4-retatchebel iron link to separate the 2 basic compounds [pipes,plates] (قطع وصل).

a check valve (NON-REVERSE LINK) to prevent the water from turning back once it has been pumped .

The motor has initially the basic role to pump the water threw the device starting the mechanicsm witch whom it is meant for.

- 1-industriel rolls
- جلدة-2
- جلدة-3
- 4-industriel rolls
- 5- stainless cathode
- 6-stainless anode
- 7- nafion membrain

We have replaced the motor with a more accurate full-mechanic system , using a relatively small volume tank decreasing the water pressure in the pipes making a more efficient and accurate mechanicsm

1.5.1 From report 10 Nov 2018 (Samer Youcef)

electrolyser 201018 - Copy (16).FCStd

A WATER TANK AT 50 cm OF DIAMETRE , STANDING ON A 90cm HEIGHT TABLE , WE ATTACHED A WATER TAP TO IT , CONTROLING THE WATER QUANTITY IN THE SYSTEME

small tank (2).FCStd

A REALTIVELY SMALLER TANK, THIS TANK HAS NO WATER TAP, IT'S MAIN ROLE IS CONTROLING WATER LEVEL WITHIN THE SYSTEME, THREW A SPECIFIC WATER LEVELING INTRUMENT(FAWAYSHA); IT HAS LESS THEN 20cm IN DIAMETER, AND STANDING AT A TABLE HEIGHT OF 70cm.

stop check valve.FCStd

A STOP CHECK VALVE, PREVENTING WATEER FROM TURNING BACK TO THE DIRECTION OF IT'S SOURCE, PLAYING A KEY ROLE IN THE STABILITY OF THE WATER IN THE SYSTEME, INCREASING LEVEL CONTROLING PRESICION; AND TO THE RIGHT WE HAVE A WATER TAP, WICH REPRESENTS THE SOUL EXIST OF THE WATER FROM THE SYSTEME, WHEN WANTED

THE MAIN PART OF THE SYSTEME, 2 STAINLESS STEAL

PLATES(D=30cm,edge:L,l=4m m,h=4 cm) PRESSED TOGETHER , LAYS IN BETWEEN THEM 2 RUBBER JOINTS TO ENDURE THE MASSIVE PRESSURE , AND THESE JOINTS ARE IDEAL IN PREVENTING ANY PENETRATION, BETWEEN THE PALTES

pressure table.FCStd

AFTER THE **DECOMPOSASTION** PROCESS, GAS WILL START FLOATING INSIDE THE PLAKSI PIPES, WICH WILL **EVENTUALLY BE STOCKED** ΙN THE **PRESSURE** CHAMPER BY A SPECIFIC WATER METHODE, EACH ONE OF THIS 2 CHAMPERS **CONTAINS DIFERENT** GASES (H2,O2).

Electrolyser base :180918

ارتفاع الاقدام:60 سنتمتر الطول والعرض:55 سنتمتر
قطر الدائرة :20 سنتمتر السماكة: 10 ملمتر
قطر الدائرة الداخلية : 12 سنتمتر السماكة :5 ملمتر ارتفاع الدائرة : 25 سنتمتر تبعد الدائرة الاولى عن الثانية كحد اقصى : 50 سنتمتر
طول : 14 سنتمتر عرض :18 سنتمتر

1.6 Hydrogenics electrolyzer

Technical specifications

MODEL	HySTAT*-10-10
Operating Pressure	10 b
Max. Nominal Hydrogen Flow	10 Nm³/h
Hydrogen Flow range	40 - 10
Hydrogen Purity (before HPS)	99,9%; H
Hydrogen Purity (after HPS)	99,998% (99,999% Atm. Dew point: -6/
Nr. of cell stacks	
Estimated AC power consumption (all included)	4
Voltage	3 x 400 VAC ± 3%
Frequency	50 Hz ±
Installed power	100 KVA
Max. cooling water to (electrolyte)	40°C
Design flow cooling water (electrolyte)	
Max. cooling water to (gas cooling)	
Design flow cooling water (gas cooling)	
Demineralized water consumption	
Electrolyte	
Approx. Electrolyte Quantity	
Installation Area	Inde
Ambient Temperature Range	
Dimensions Process Part (LxWxH)**	
Dimensions Power Rack (LxWxH)	
Dimensions Control Panel (LxWxH)	
Approx. empty Weight Process Part	1.350 kg
Weight Power Rack	
Weight Control Panel	

(*) HPS = hydrogen purification system (**) including 'ATEX' enclosure

2 Cascaded Design and Calculation for Alkaline Electrolysis Unit

2.1 Overview

Figure 1: Plant of electrolysis (FreeCAD)

Specification	
Voltage	8 volt
Current	300 Ampere
Power	2.4 KW
КОН	5.7 Kg
Gas flow rate Hydrogen all stacks	$2.27 L. min^{-1}$
Gas flow rate Oxygen all stacks	$1.13 L. min^{-1}$
Dimensions	Electrode (Radius: 15 cm / thickness: 2cm) Stainless 304 Stack (Radius: 15 cm/ Thickness: 16 cm)

Table 1: Specification of electrolysis

8 Volt/300 Ampere

Figure 2:Multistack Amperage/Voltage

Each stack has 4 serial cells (2+2+2+2 = 8 Volt / 75 Ampere)

4 stack parallel (8 Volt/75 Ampere*4 = 300 Ampere)

• Each electrode has thickness 2 cm: 166.6 g (KOH) We have 30 electrodes (2 cm) => 30 * 166.6 = 5000 g (KOH)

• Electrode has thickness 4 cm: 333.3 g (KOH) We have 2 electrodes (4 cm) \Rightarrow 2 * 333.33 = 666.6 g (KOH)

2.2 Design FreeCad

Figure 3: Serial stack

Base plate

الشكل	المقاس	عدد	مواد
	10 انش طول $\frac{1}{4}$	6	قسطل
	سنتمتر		

من 1⁄2 الى 1⁄4	2	محول
1⁄2 انش	1	كوع
1⁄4 انش	4	كوع
1⁄4 انش	4	

الشكل	المقاس	عدد	مواد
	انش طول $^{1/4}$	6	قسطل
adababa	سنتمتر		
	1⁄4 انش	5	

2.3 Calculation of the amount of water and KOH

 $V=\prod .R^2.h$

Radius: 15 cm

 $H_1: 4 \text{ cm } H_2 = 2 \text{ cm}$

 $V_1=\prod .R^2.h_1$

 $= \prod .0.15^{2} .0.04$

 $= 2.82* 10^{-3} \text{ m}^3$

= 2.82* 10⁻³.10⁶ cm³

=2.82*10³ cm³

=2.82 liter

 $V2 = \prod R^2.h_2$

 $= \prod .0.15^{2} .0.02$

= 1.41* 10⁻³ m³

= 1.41* 10⁻³.10⁶ cm³

=1.41*10³ cm³

=1.41 liter

The cell can contain 2.82 liter and 1.41 liter but in reality we want fell cell a)1 liter and b) 0.5 liter respectively

<u>KOH</u>

A. The electrolysis need 25 % KOH in 1000 ml so 75 % is water

 $250 \text{ g} \rightarrow 750 \text{ ml}$

?? <--1000 ml

Amount of KOH in one cell end plate electrode = $\frac{1000 \, ml*250 \, g}{750 \, ml}$ = 333.33 g

We have 2 electrodes end plate: 2*333.3 g = 666.6 g

Figure 4: Amount of KOH

B. The electrolysis need 25 % KOH in 500 ml so 75 % is water

 $125 g \rightarrow 375 ml$

?? <--500 ml

Amount of KOH in one cell base plate $=\frac{500 \text{ ml}*125 \text{ g}}{375 \text{ ml}} = 166.66 \text{ g}$

We have 30 electrodes base plate: 30 * 166.66 g = 5000 g

2.4 Calculate gas flow rate

The maximum cell current value of 75 A is selected for the calculation. Faraday constant (F= $96485 \text{ C.} mol^{-1}$ or C: coulomb (1C = 1A.s)). Moreover, Eq. 1 is used to calculate the number of hydrogen moles as follows.

$$n_{(H_2)} = \frac{I*t}{2F} = \frac{75\,(A)*60(s)}{2(electrons)*96485\,C.\,mol^{-1}} = 0.0233\,mol/min$$

Considering Eq. 2, assuming the pressure of 1 atm and the operating temperature of 25°C, the theoretical $V_{H2(g)}$ can be determined as,

$$V_{H_{2(g)}} = \frac{n_{H_2}RT}{P} = \frac{0.0233 \, mol/\, \text{min*} \, 0.082 \, Latm \, K^{-1}mol^{-1} * 298 \, K}{1 \, atm}$$

$$V_{H_2} = 0.569 \, L. \, min^{-1}$$

Each stack produce $0.569 \text{ L.} min^{-1} \Rightarrow 4 \text{ stack produce } = 0.569 \text{ L.} min^{-1} * 4 \text{ (stack)} = 2.279 \text{ L.} min^{-1}$

For oxygen:

The amount of substance for O_2 (g) can be determined by using either Eq. 5.1 or the electrochemical reaction of the alkaline electrolysis cell. According to the electro chemical reaction, the number of $O_2(g)$ moles should be half of $H_2(g)$ moles. Hence, the number of $O_2(g)$ moles can be easily determined as in Eq.

$$n_{O_2} = \frac{n_{H_2}}{2}$$

$$n_{O_2} = 0.0116 \ mol/min$$

$$V_{O_{2(g)}} = \frac{n_{O_2}RT}{P} = \frac{0.0116 \ mol/\min*\ 0.082 \ Latm\ K^{-1}mol^{-1}*\ 298\ K}{1\ atm}$$

$$V_{O_2} = 0.284 \ L.min^{-1}$$

Each stack produce $0.284 \text{ L.}min^{-1} \Rightarrow 4 \text{ stacks produce} = 0.284 \text{ L.}min^{-1} * 4 \text{ (stacks)} = 1.138 \text{ L.}min^{-1}$

Other https://www.editions-petiteelisabeth.fr/calculs-electrolyse-3.php

2.5 Power supply

- Density current for electrolysis: 0.2 0.4 A/cm²
- Our cell contains 0.5 liter = 250 cm²
- Current apply for each cell = $\frac{250 \text{ cm}^2 * 0.3 \text{ A/cm}^2}{1 \text{ cm}^2} = 75 \text{ A}$
- Voltage apply for each cell is 2V
- Each stack has 4 serial cell => voltage = 4*2 = 8 V Current = 75A

• The total is 4 parallel stack => voltage = 8 V Current = 4 * 75 = 300 A

• Power apply: Power = voltage x Current = 8 Volt x 300 Ampere = 2.4 KW

2.6 Simplified Design¹

2.6.1 Level Control System

tubes=12.5mm,6mm

¹ Samer Youssef, July/Aug 2019

2.6.2 Electrolysor Container

Number of columns: 2-(162) cm

14-(150) cm or 12(126)cm

2(150)cm.

2.6.3 Integration

3 Alkaline Electrolysis of Water Unit including Fuel Burner

3.1 Overview

Figure 5 : Plant of electrolysis (FreeCAD

Specification	
Voltage	4 volt
Current	150 Ampere
Power	0.6 KW
КОН	1.33 Kg
Gas flow rate Hydrogen all stacks	$2.27 L. min^{-1}$
Gas flow rate Oxygen all stacks	$1.13 L. min^{-1}$
Dimensions	Electrode (Radius: 15 cm / thickness: 2cm) Stainless 304 Stack (Radius: 15 cm/ Thickness: 16 cm)

Table 2: Specification of electrolysis

Figure 6 : Multistack Amperage/Voltage

Each stack has 2 serial cells (2+2 = 4 Volt / 75 Ampere)

2 stack parallel (4 Volt/75 Ampere * 2 = 150 Ampere)

• Each electrode has thickness 2 cm: 166.6 g (KOH)We have 6 electrodes $(2 \text{ cm}) \Rightarrow 4 * 166.6 = 666.6 \text{ g (KOH)}$

3.2 FreeCad Design

Figure 7

Figure 8

Figure 9

Figure 10

Figure 11: Serial stack

Figure 12

Figure 13

Figure 14

Figure 15

الشكل	المقاس	عدد	مواد
	قطر: " 1/4 طول 10سنتمتر	8	قسطل

قطر: "1/2	4	قسطل
طول10سنتمتر	1	0
من "1 الى "1/2	4	محول
1/4"	16	T (بلاستك)
1/2"	3	صباب عدم رجوع(ماء)
		(50)(3.5)
Ø:16 mm	2	صباب عدم رجوع (azot)
Ø:16 mm	2	صباب عدم رجوع(Hyd,Oxy)
1/2"	8	شريط بعزقة
20 mm	43	حبسة حجم صغير
40 mm	35	حبسة حجم كبير

3.3 Calculation of the amount of water and KOH

 $V=\prod .R^2.h$

Radius: 15 cm

 $H_1: 4 \text{ cm } H_2 = 2 \text{ cm}$

 $V_1=\prod .R^2.h_1$

 $= \prod .0.15^{2} .0.04$

 $= 2.82* 10^{-3} \text{ m}^3$

 $= 2.82* 10^{-3}.10^{6} \text{ cm}^{3}$

=2.82*103 cm3

=2.82 liter

 $V2 = \prod .R^2.h_2$

 $= \prod .0.15^2 .0.02$

 $= 1.41* 10^{-3} \text{ m}^3$

= 1.41* 10⁻³.10⁶ cm³

=1.41*103 cm3

=1.41 liter

The cell can contain 2.82 liter and 1.41 liter but in reality we want fell cell a)1 liter and b) 0.5 liter respectively

KOH

B. The electrolysis need 25 % KOH in 1000 ml so 75 % is water

 $250 \text{ g} \rightarrow 750 \text{ ml}$

?? <--1000 ml

Amount of KOH in one cell end plate electrode = $\frac{1000 \, ml*250 \, g}{750 \, ml}$ = 333.33 g

We have 2 electrodes end plate: 2*333.3 g = 666.6 g

Figure 16: Amount of KOH

C. The electrolysis need 25 % KOH in 500 ml so 75 % is water

 $125 g \rightarrow 375 ml$

?? <--500 ml

Amount of KOH in one cell base plate $=\frac{500 \text{ ml}*125 \text{ g}}{375 \text{ ml}} = 166.66 \text{ g}$

We have 4 electrodes base plate: 4 * 166.66 g = 666.6 g

3.4 Calculation of gas flow rate

The maximum cell current value of 75 A is selected for the calculation. Faraday constant (F= $96485 \text{ C.} mol^{-1}$ or C: coulomb (1C = 1A.s)). Moreover, Eq. 1 is used to calculate the number of hydrogen moles as follows.

$$n_{(H_2)} = \frac{I*t}{2F} = \frac{75 \, (A)*60(s)}{2(electrons)*96485 \, C. \, mol^{-1}} = 0.0233 \, mol/min$$

Considering Eq. 2, assuming the pressure of 1 atm and the operating temperature of 25°C, the theoretical $V_{H2(g)}$ can be determined as,

$$V_{H_{2(g)}} = \frac{n_{H_2}RT}{P} = \frac{0.0233 \ mol/\min*\ 0.082 \ Latm\ K^{-1}mol^{-1}*\ 298\ K}{1\ atm}$$

$$V_{H_2} = 0.569\ L.\ min^{-1}$$

Each stack produce $0.569 \text{ L.} min^{-1} \Rightarrow 4 \text{ stack produce } = 0.569 \text{ L.} min^{-1} * 2 \text{ (stack)} = 1.138 \text{ L.} min^{-1}$

For oxygen:

The amount of substance for O_2 (g) can be determined by using either Eq. 5.1 or the electrochemical reaction of the alkaline electrolysis cell. According to the electro chemical reaction, the number of $O_2(g)$ moles should be half of $H_2(g)$ moles. Hence, the number of $O_2(g)$ moles can be easily determined as in Eq.

$$n_{O_2} = \frac{n_{H_2}}{2}$$

$$n_{O_2} = 0.0116 \ mol/min$$

$$V_{O_{2(g)}} = \frac{n_{O_2}RT}{P} = \frac{0.0116 \ mol/\min*\ 0.082 \ Latm\ K^{-1}mol^{-1}*\ 298\ K}{1\ atm}$$

$$V_{O_2} = 0.284 \ L.min^{-1}$$

Each stack produce 0.284 L. $min^{-1} \Rightarrow 2$ stacks produce = 0.284 L. $min^{-1} * 2$ (stacks)= 0.568 L. min^{-1}

Other https://www.editions-petiteelisabeth.fr/calculs-electrolyse-3.php

3.5 Power supply

Figure 17

- Density current for electrolysis: 0.2 0.4 A/cm²
- Our cell contains 0.5 liter = 250 cm²
- Current apply for each cell = $\frac{250 \text{ cm}^2 * 0.3 \text{ A/cm}^2}{1 \text{ cm}^2} = 75 \text{ A}$
- Voltage apply for each cell is 2V
- Each stack has 2 serial cell => voltage = 2*2 = 4 V

$$Current = 75A$$

• The total is 2 parallel stack => voltage = 8 V

Current =
$$2 * 75 = 150 A$$

• Power apply: Power = voltage x Current = 4 Volt x 150 Ampere = 0.6 KW

3.6 Compact Design²

3.6.1 Level Control System

tubes=12.5mm,6mm

Figure 18

² Samer Youssef, July/Aug 2019

Figure 19

Figure 20

3.6.2 Electrolyser Container

Figure 21

Figure 22

Figure 23 Figure 24

numbers of columns : 4-(180)cm

6-(72) cm

5-(80) cm

5-(68) cm

6-(60) cm

2-(40) cm

1-(56) cm

1-(46) cm.

3.6.3 Integration

Figure 25

