W AECENAR
 J

Association for Economical and Technological Cooperation
in the Euro-Asian and North-African Region

.aecenar.com

AS-COMSAT Communication System

Author: Raja Murad

Last Update: 17.03.2022 11:21

CONTENT

L0 11 £ OO III
1 THE Plan...itcttitssssese s s bbb bbb bbb s ssss e s s s s asasssesasenes 5
2 Setting Up the Experiment ReqUirementseiiiireiicneeneeesnsssssesssesesesesesesene 6
21 Installing and Testing HackRf Packagesccccccceueuiuiiiiiiiiiiiiiiiiccieennes 6
2.2 Installing GNUradio COMPAanion........cccoviviiiniiiiiniiiiiiiiicicicccicicccs e 8
2.3 Installing GOQRX.....cccooiiiiiiiiiiii e 9
3 EXPEIIIMENES ...ttt sssssss s ssssse s ssssssssssssssssssssssssssnssssssenees 11
3.1 Receiving/Transmitting Raw IQ Files.........cccccoiiiiiiiiiiniiiiiiiiiiccces 11
3.2 Receiving Basic FM Stations Through GNU Radio ..., 12
3.3 FSK TranSmUiSSIONccccveieiiiiuiiiietinitetetctee ettt ae s 15
XN ©) 41 1Y (Yo 181 F=1 5 Te) s LY, (<11 4 Vo Yo NPT 19
3.5 GFSK Modulation/Demodulation............ccceeueiiiiiiiniiiiiiiciccccccccc e 21
3.6 Conclusion Up t0 3.17.2022c.ccuiiiiiiiiiiiiiiiiiiniiciiniiciie s 23

III

1 THE PLAN

This section is a complimentary part of the AS-COMSAT project. The aim of this section is to
establish a communication channel between the Cubesat satellite and a ground station. The station
shall transmit the control commands for the satellite as well as receiving different information from
it. The figure below shows the basic communication architecture between the Telemetry, Tracking,
and Control (TT&C) ground station and the satellite system. For primary prototyping and testing,

the communication frequencies in the figure below may vary and other frequencies might be used.

| 2: HackRF tools (hackrf_transfer -r
..., hackrf_transfer -t ...

‘ HackRF
Linux, Raspberry Pi

1: Gnuradio

HackRF
3: Gnuradio, RTL-SDR, Linux

in VM / Windows, Laptop

Linux in VM / Windows, Laptop

Payload: Sending from 1 to 2 an AIS file on 161.975 MHz — Sending from 2 to 3 this file on 2.6 GHz

Telemetry, Tracking & Control (TT&C): Sending from 1 to 2 a control command file on 2.6 GHz,
sending from 2 to 1 a file with sensor information on 2.6 GHz

The basic components of this architecture are the ground station controller (A regular
Laptop), a raspberry pi which is the onboard computer, and a second computer at the receiving end.
The communication devices are HackRf One which offers a state-of-art Software Defined Radio

(SDR) and GNUradio for rapid-implementing all digital signal processing.

2 SETTING UP THE EXPERIMENT REQUIREMENTS

To achieve the goal of this project, I used 2 computers that act as sending and receiving PCs
respectively. Each PC has Ubuntu OS which is much simpler and robust in such applications. In this
section, I will show the setup made and demonstrate the installation procedure of HackRf and
GNUradio modules on Ubuntu 20.04 LTS.

Figure 2-1. Experiment Setup. Computer A to the left and Computer B to the right

The setup, as shown in Figure 2-1 above, includes 2 PCs with the following specs:

- Computer A: HP Laptop equipped with Ubuntu 21.10 OS, 8 GB RAM, Intel Celeron CPU
N3060 @1.60 GHz x 2, and a 512 GB HDD.

- Computer B: HP Laptop equipped with Ubuntu 20.04 via Virtual Machine, 8 GB RAM,
Intel Core i5-6200U CPU @ 2.3 GHz 2.4 GHz, and a 200 GB HDD for the virtual machine.

The setup is used to boost the testing and make sure every device is working well before
mounting to the onboard computer. The reason why Ubuntu is chosen because it is much simpler
than windows to install already existing Debian packages by sudo commands through terminal

window.

2.1 INSTALLING AND TESTING HACKRF PACKAGES
Open a terminal window and insert the following commands.

1- Run the update command to update package repositories and get latest package
information.

sudo apt-get update -y
2- Run the install command with -y flag to quickly install the packages and dependencies.

sudo apt-get install -y hackrf

The HackRf now is installed. To check the hackrf available commands, open a terminal
window and type hackrf_ and press the “Tab” button twice to list all available commands as shown
below.

[+ raja’61@ubuntu: ~

:~% hackrf_
hackrf_cpldjtag hackrf_info hackrf_sweep
hackrf_debug hackrf_spiflash hackrf_transfer
:~S$ hackrf

Figure 2-2. HackRf available commands

The important commands for this application are “hackrf_info” which can be executed to check
the information of the connected HackRf and “hackrf_transfer” which is used to send or receive 1Q-
type or binary-type files. It has the following documentation:

1 rajas61@ubuntu: ~

:~$ hackrf_transfer
specify one of: -t, -c, -r, -w
Usage:

-h # this help

[-d serial_number] # Serial number of desired HackRF.

-r <filename> # Receilve data into file (use '-' for stdout).

-t <filename> # Transmit data from file (use '-' for stdin).

-w # Receive data into file with WAV header and automatic name.

This is for SDR# compatibility and may not work with other software.

-f freq_hz] # Frequency in Hz [@MHz to 7250MHz].

-1 if freq hz] # Intermediate Frequency (IF) in Hz [2156MHz to 2750MHz].
lo_freq_hz] # Front-end Local Oscillator (LO) frequency in Hz [84MHz to 5408MHz].
image_reject] # Image rejection filter selection, ©=bypass, 1=low pass, 2=high pass.
amp_enable] # RX/TX RF amplifier 1=Enable, ®=Disable.
antenna_enable] # Antenna port power, 1=Enable, ©=Disable.
gain_db] # RX LNA (IF) gain, 0-40dB, 8dB steps
gain_db] # RX VGA (baseband) gain, ©-62dB, 2dB steps
gain_db] # TX VGA (IF) gain, ©-47dB, 1dB steps
sample_rate_hz] # Sample rate in Hz (4/8/10/12.5/16/20MHz, default 10MHz).
num_samples] # Number of samples to transfer (default is unlimited).
buf_size] # Enable receive streaming with buffer size buf_size.
amplitude] # CW signal source mode, amplitude ©-127 (DC value to DAC).
] # Repeat TX mode (default is off)
[-b baseband_filter_bw_hz] # Set baseband filter bandwidth in Hz.
Possible values: 1.75/2.5/3.5/5/5.5/6/7/8/9f/10/12f14/15/20/24/28MHz, default <= 0.75 * sample_rate_hz.
[-C ppm] # Set Internal crystal clock error in ppm.
[-H hw_sync_enable] # Synchronise USB transfer using GPIO pins.

m
a
P
1
9
X
s
n
c
R

Figure 2-3. Hackrf_transfer command documentation

2.2 INSTALLING GNURADIO COMPANION

The GNU Radio is an open-source development toolkit that provides signal processing blocks
to implement software radios. It can be used with plenty pf low to high-cost RF hardware to create
software-defined radios (SDRs, or without hardware in a simulation environment. Installing GNU

Radio is easy, just open a terminal window and type the following commands:

1- To access the current released version (3.10), we shall add the GNU Radio ppa and remove
all existing versions:

$ sudo add-apt-repository ppa:gnuradio/gnuradio-releases

2- Update the apt sources, and install gnuradio

$ sudo apt-get update
$ sudo apt install gnuradio

3- Install python module ‘packaging’ using pip which may also need to be installed:

$ sudo apt install python3-pip
$ pip install packaging

Once the GNU Radio is installed, open it either by clicking on its icon in the applications
menu or by typing “gnuradio-companion” in a terminal window. The GNU Radio will open a new
script as shown below.

4 v .
-
Options Variable o0 o Operate
Title: Not titled yet 1D: samp_rate 2 °
Author: raja%61 Value: 35\(‘
Output Language: Python ;
Generate Options: QT GUI 3 od
oding
(o] ol Po
Debug Too
B Dep
A C °
.
Ope o

Figure 2-4. GNU Radio main page

The GNU Radio’s new script has the following parts:

- A:The option block, it sets special parameters for the flow graph. Only one option block is
allowed per flow graph. The generate options controls the type of code generated. Non-
graphical flow graphs should avoid using graphical sinks or graphical variable controls. In
a graphical application, run can be controlled by a variable to start and stop the flowgraph
at runtime. The id of this block determines the name of the generated file and the name of
the class. For example, an id of my_block will generate the file my_block.py and class
my_block(gr...).

- B: The variable block, it maps a value to a unique variable. This variable block has no
graphical representation.

- C: Functions list, different function blocks can be selected from this menu by dragging the
desired block to the workspace.

- D: Output window, here, you can track the flowgraph’s status and used for debugging.

——E: The variables window, this window shows all the variables placed inside the workspace
in which you can track them easily and change their values.

2.3 INSTALLING GQRX

GQRX is a SDR receiver application. It supports many SDR hardware including HackRf. It
will be used to check the presence of signals in a selected frequency band. To install it, open a
terminal window and type the following commands:

1- Run update command to update package repositories and get latest package information

$ sudo apt-get update -y

2- Run the install command with -y flag to quickly install the packages and dependencies.

$ sudo apt-get install -y ggrx-sdr

Once it is installed, open a terminal window and type “gqrx” to open it. The software
will ask you to configure the hardware device as in the figure below:

Configure I/O devices x

1/Q input
Device | Other...
Device string | hackrf=2a69¢3
Input rate | 8000000
Decimation | None
Sample rate 8.000 Msps
Bandwidth | 0.000000 MHz

LNB LO |0.000000 MHz

Audio output
Device ES1371/ES1373 / Creat -

sample rate 48 kHz

©cancel ‘ @ok |
Figure 2-5. GQRX Configuration menu

In the device tab, choose the HackRf device (make sure the device string tab updates with the
selected HackRf device). The input rate or in other words the sample rate must be chosen between
4 and 8 MHz to not heavily-load the CPU and good results can be achieved. In the Device tab, choose
the speaker hardware (built-in hardware) and press OK. If everything was configured well, the

following main menu will be displayed:

Ggrx 2.12 - hackrf=2a69¢3

View Help

144.500.000

Hardware freq: 144.500000 MH:

144500.000 || kHz

A Frequency
Filter width | User (10 k)
B

Filter shape Normal

Demod OFff

AGC | Medium
Squelch | -150.0dB = | A | R

Noise blanker | NB1 NB2
Inputc... Receiver ... FFTS...
Audio

Figure 2-6. GORX main menu

- A:The selected baseband frequency in MHz.

- B: Waterfall display of the frequency bandwidth. This is a good representation of where
are the strong signals in the frequency spectrum,

- C: Tuning knob. This can be used to change the baseband frequency.

- D: This menu here can change the frequency in different decimals quickly (10s, 100s, or
1000s of KHz).

- E: The output mode. If you are receiving a voice signal, choose WFM(stereo) option to
activate the internal amplifiers of your PC speakers.

10

- F: Change the receiving amplifier power.

- G: This button can be used to record the signal and save it in IQ or binary format.

- H: The button to the right can be used to edit the hardware configuration and the button
to the left starts receiving. Once everything is configured correctly, press the start button.

Once the start button is pressed, the GUI's menu becomes:

Gqrx 2.12 - hackrf=2a69¢3

File Tools View Help
mEg e,

Receiver Options a®

100.700.000 bt =

Hardware freq: 100.700000 MHz
Frequency |M\ kHz
Filter width User (10 k)
Filter shape Normal
Mode | WFM (stereo) ~ | ..
AGC | Medium
Squelch | -150.0dB 2| A | R
Noise blanker | NB1 | NB2

Inputc... Receiver ... FFTS...
Audio

Gain; e—

Mute | UDP | Rec
DsP

LR L T S e s

Figure 2-7. GOQRX receiving FM radio station at 100.7 MHz

As can be seen from Figure 2-7 above, the spectrum spans about 8 MHz and the central
frequency is tuned at 100.7 MHz. The amplitude of pulse represents the power of the channel in DB.
Using GQRX makes it easier to ensure the reception of a specific frequency.

3 EXPERIMENTS

This section handles all the experiments done (including failed and succeeded ones) in order
to achieve a well-functioning communication system between 2 HackRfs. The main aim of the
experiments is to be able to send a custom text from one source to a receiver.

3.1 RECEIVING/ TRANSMITTING RAw IQ FILES

At first, I tried to receive raw IQ files through hackrf by using terminal commands. Figure 2-3
above shows the commands that can be used to transmit or receive available signals at the
determined frequency. I started the experiment by receiving click buttons from a Proton Persona
key which transmits data information with a carrier frequency of 433.92 MHz and then tried to re-
transmit them again to the other HackRf. I used the following terminal command to receive key

signal:

$ hackrf_transfer -r fileReceived.iq -f 433920000 -a 1 -p 1 -s 8000000

11

The command above will receive an “ig” file name “fileReceived” and save it in the current
repository. The center frequency is 433.92 MHz and I ensured that both the antenna and power
amplification are enabled. The hackRf’s sampling frequency was set to 8 MHz.

I tried pushing the key button 3 or 4 times to make sure it was clearly detected and saved. I
kept the receiving process running for 8 seconds. Then I tried to transmit the file using the first
hackRf that I received by entering the following command:

$ hackrf_transfer -t fileReceived.iq -f 433920000 -a 1 -p 1 -s 8000000 -x 47

“yr “_ g
T

The only difference is that [used the letter “t” for transmission instead of “r” for receiving and
I enabled the maximum transmission amplification of 47 db. On the other hackRf, I reused the

receiving command to store the data coming from the first hackRf:

$ hackrf_transfer -r fileReceived.iq -f 433920000 -a 1 -p 1 -s 8000000

And as expected, I received the exact same signal coming from car’s key at the second hackRf.

3.2 RECEIVING BAsIC FM STATIONS THROUGH GNU RADIO
After making sure the HackRfs are operating correctly and can send/receive data, I made a
simple “hello world” SDR application that detects FM radio stations by using GNU Radio

Companion. The below figure shows the receiving flow graph.

Options
Output Language: Python Name:
Generate Options: QT GUI FFT Size: 1024
Center Frequency (Hz): 97.5M
Bandwidth [Hz): 200k
Update Rate: 10

QT GUI Sink

Variable
1D: samp_rate
Value: 4M

Rational Resampler
Interpolation: 12
Decimation: 5

Variable
1D: center_freq

Value: 97.9M
aue Soapy HackRF Source
Device arguments: hackrf=0
lemd|

Low Pass Filter
Decimation: 20
Gain: 1 Taps:

Sample Rate: 4M Fractional BW: 0
Cutoff Freq: 75k
Transition Width: 25k
Window: Kaiser

Beta: 6.76

Variable Sample Rate: 4M
1D: channel_width Center Freq (Hz): 97.9M
Value: 200k

A WBFM Receive

Quadrature Rate: 480k

QT GUI Range
1D: audio_gain
Default Value: 100m
Start: 0
Stop: 10 [emd]|
Step: 100m
QT GUI Range

Signal Source
Sample Rate: 4M
Waveform: Cosine
Frequency: 0
Amplitude: 1
Offset: 0
Initial Phase (Radians): 0

1D: channel_freq

Label: Channel Frequency
Default Value: 97.9M
Start: 86M

Stop: 108M

Step: 100k

Multiply

Audio Decimation: 10

Audio Sink
Sample Rate: 48 kHz

Figure 3-1. Flow graph of receiving FM stations via GNU Radio

The flow graph has embedded python code for each block. There are mainly 2 sensitive
parameters that must be configured precisely in order for the flow graph to operate smoothly; the
receiving central frequency and the sample rate. The central frequency can be tuned until a FM

12

station is detected. However, sample rate should be treated differently. The output of the FM station
is sound, hence, a 48 KHz sampling frequency should be present at the output to drive the speakers
efficiently. But, the sampling rate of the HackRf (which is the input) should be something between
4 and 8 MHz. Thus, the sample rate must be narrowed down to match the speaker’s rate at the

output. The flow graph, with each block’s sample rate, works as follow:

1-

2-

Soapy HackRF Source: This block receives the signal detected by the hackRf’s antenna at
the specified center frequency and amplifies by a factor of “IF Gain” and “VGA Gain”
determined. The bandwidth could be specified so that it regulates for some frequency

errors. The sample rate of the HackRf was set to 4 MHz.
Properties: Soapy HackRF Source

General Advanced RF Options Documentation

Bandwidth (D=auto)

Center Freq (Hz)

Amp On (+14 dB)

IF Gain (0dB - 40dB)

VGA Gain (0dB - 62dB)"

Cancel

Figure 3-2. Soapy HackRF Configuration

Signal Source: this block is used to generate a cosine signal that is capable of shifting the
central frequency when multiplied with the received signal. The frequency of this block is
determined by how far is the center frequency from the selected (tuned) frequency. Hence,
it is selected as (center frequency — selected frequency). This block does not affect the
sample rate.

Low Pass Filter: From its name, a low pass filter allows the passage of frequencies below
its cutoff frequency and prevents the passage of frequencies above it. It is used to eliminate
the carrier frequency and keeps the original message. It affects the sample rate thus, a
decimation of 20 is set so the sample rate at the block’s output will be equal to the sample
rate of its input divided by 20 (4 MHz / 20 = 200 KHz).

Rational Resampler: This block affects the sample rate by multiplying the input’s rate by
the “interpolation” and divides it by “decimation” values. Thus, the sample rate at the output
of this block is (200 KHz x 12) / 5 = 480 KHz.

13

5- WBFM Receive: This block does the demodulation of FM radio stations. The sample rate
of the input to this block must be 480 KHz and its output sample rate is divided by the
“decimation” value. Thus, the output sample rate of this block is (480 KHz / 10 = 48 KHz).

6- Multiply Constant: This block multiplies the input’s magnitude by the value specified. It
is used to control the volume.

7- Audio Sink: This block outputs the input signal directly to the speakers.

8- QT GUI Sink: This is a GUI that shows the received signals in frequency and time domain.
The GUI page when running the above flow graph appears as the below figure. The
“Channel Frequency” and “audio_gain” are 2 variables set by the “QT GUI Range” block
where the min and max values of these variables can be adjusted by configuring the QT
GUI Range block.

Channel Frequency 97900000

‘audio_gain’ < 0.100 |+

Frequency Display | waterfall Display = Time Domain Display = Constellation Display

] H Data 0
o
20
.]
@
]]
= 0]
4= E
L]
(&)]
£ oo
S
=
-]
& 80
100
120 J
r T T T 1
97800.00 97850.00 97900.00 97950.00 98000.00
Frequency (kHz)
Max Hold Average
Min Hold 0
v Display RF Frequencies FFT Size: | 1024

window: | Blackman-harris

Figure 3-3. QT GUI Sink

14

Channel Freq B b e R B R By

T T i O S e e e

oo 97900000 |3

Frequency Display | Waterfall Display | Time Domain Dispiéy * Constellation Display i

2.00e+01

1.50e+01

1.00e+01

Time (s)

5.00e+00

0.00e+00

Intensity Display: \ Color

T (0100 [

-200

-150
1

97800.00

| Autoscale |

T
97850.00

-200

9790Io.oo
Frequency (kHz)

100

T 1
97950.00 98000.00

50 [

V! Display RF Frequencies FFT Size: | 1024 - |

window: | Blackman-harris ~ |

Figure 3-4. QT GUI Sink Waterfall Representation

3.3 FSK TRANSMISSION

In this experiment, I connected 2 HackRfs to a 1 computer in order to form a communication
loopback system where 1 hackrf transmits and the other receives on the same PC. The modulation
scheme I am trying to send my data over is the Frequency Shift Keying (FSK) which transforms the
digital message into a varying frequency (high frequency for 1 and low frequency for 0). It is one of
the most useful transmission techniques requiring low receiver complexity.

Binary FSK (BFSK) is the simplest form of FSK where the two bits 0 and 1 correspond to two

distinct carrier frequencies Fo and Fi to be sent over the air. The bits can be translated into symbols
through the relations:

0- -1
1-1
So, the frequencies can be written as:
Fi=F +(—1)"' =F, + AF

Where F. is the nominal carrier frequency and AF is the frequency deviation from this
carrier. Thus, the signal waveform can be written as:
s(t) = Acos(2mFit + ¢) = Acos[2n(Fc + AF)t + ¢]

where 0 <t < T, and ¢ is an arbitrary phase. The message signal is taken to be a random
stream of bits. Figure 3-5 below displays a BFSK waveform for a random stream of data at a rate
of Rb=1/Ts. Note that we are not distinguishing between a bit period and a symbol period because
both are the same for a binary modulation technique.

15

Modulated Signal
m Signal 1

0.5 +

Amplitude
[=]
|

&
n
| PR

Time (ms)
Figure 3-5. FSK Modulated Signal

As can be seen, for a digital “1”, the frequency of the modulated signal goes higher and when
the message bit is “0”, the frequency goes lower.

The very basic scheme of an FSK modulation can be generated using the flowgraph below.
An FSK signal is generated with a center frequency of 1.5 KHz and a frequency deviation of 500 Hz.
This result in 2 carrier frequencies, one at 1 KHz (for 0), and one at 2 KHz (for 1).

Sntioes Variable Variable Variable Variable Variable | [Variable Variable Variable
Title: Not titled yet 1D: samp_rate 1D: center_freq | | ID: fsk_deviation | | 1D: hackrf_rate | | ID: freg 1D: bandwidth | | ID: transition_bw | | ID: decimation
L Value: 32k Value: 15k Value: 500 Value: 4M Value: 1G | | Value: 15k Value: 500 Value: 2
Output L Python
Generate Options: QT GUI Signal Source
s‘mm’mw — QT GUI Frequency Sink
QT GUI Range - Name: TX Spectrum
ID: center freq_tune =i = FFT Size: 1024
Default Value: -15k cmd A:":":“'::_'l Center Frequency (Hz): 1.5k
Start: -20k uﬂ:ﬂ_ o Bandwidth (Hz): 1k
Stop: -10k "
Initial Phase (Radians): 0
Step: 250 n e ns) Rational Resampler
Interpolntion: 125 Soapy HackRF Sink

Decimation: 1
Taps:
Fractional BW: 0

Device arguments: hackrf
Sample Rate: 44
Center Freq (Hz): 1G

Virtual Sink
Stream ID: tx_out

il El

Random Source

::::.n.:nmoz Repeat H Char To Float
- Int: lation: 100 Scale: 1

Num Samples: 1k erponen =

Repeat: Yes

QT GUI Time Sink
Name: Modulated Signal
Number of Points: 1.024k
Sample Rate: 32k
Autoscale: Yes

Constant Source
Constant: 1

Signal Source
Sample Rate: 32k
Waveform: Cosine
|emd| Frequency: 1k
Amplitude: 1
Offset: 0
Initial Phase (Radians): 0

Figure 3-6. FSK Modulation Flowgraph
The above flowgraph works as follows:

Multiply the bits, e.g., 0,1,1,0,0,1,..., with the higher frequency wave at 2 kHz that produces

a 2 kHz wave for 1 bits and a blank space of zeros for 0 bits.
Multiply one minus the bits, e.g., 1- (0,1,1,0,0,1,...), with the lower frequency wave at 1 kHz

that produces a 1 kHz wave for 0 bits and a blank space of zeros for 1 bits.

= Add the two waves together thus generating a BFSK waveform.

16

For the receiving part, a commonly used technique in the gnuradio is the quadrature

demodulation block. The below flowgraph shows the receiver diagram.

QT GUI Frequency Sink
Name: Received

FFT Size: 1024

Center Frequency (Hz): 1G
Bandwidth (Hz): 32k

QT GUI Frequency Sink
Name: Filtered
FFT Size: 1024
Center Frequency (Hz): 0
Bandwidth [Hz): 32k

‘Quadrature Demod
Gain: 10.1853 ‘

l Binary Slicer I -
UChar To Float

Virtual Source
Stream ID: tx_out

Soapy HackRF Source
Device arguments: hackrf=1
Sample Rate: 4M
Center Freq (Hz): 1G

Rational Resampler
Interpolation: 1 Frequency Xlating FIR Filter

Decimation: 125 Decimation: 1

Taps: Taps: firdes.low_pass(1,sa...
BW: 0 \freg| Center Frequency: 1.5k
Sample Rate: 32k

QT GUI Time Sink
Name: Message
Number of Points: 2k
Sample Rate: 32k
Autoscale: No

Figure 3-7. FSK Demodulation Flowgraph

Such a structure can be used to demodulate several frequency modulation schemes such as
FM, FSK and GMSK. The input to the block is the complex baseband waveform. Within the block, a
product of the one-sample delayed input and the conjugate original signal is computed, the output
of which is a complex number.

A “Frequency Xlating FIR Filter” with a center frequency of 1.5 KHz is employed. According
to its documentation, this block performs a frequency translation on the signal, as well as down-
samples the signal by running a decimating FIR filter on it. This operation places the modulated
signal at baseband and hence the two possible frequencies are now located at +500 Hz. This is shown
by two impulses at +500 Hz below that is the output of the flowgraph described above.

Filtered
0 m Data 0

— -20
@
2
& -40
]]
L]
o -60 -]
g
=]
< -804
@ m

e [J\'\ m

E M [\ M'il In
T T T T T T T
-15.00 -10.00 -5.00 0.00 5.00 10.00 15.00
Frequency (kHz)
Received
m Data 0
0

204
—]
@
T -40
£ b
o
g 60
e]
S -804
=2]
[7]
& -100 -

-120

-140 2

T T T T T T T
999985.00 599950.00 999995.00 1000000.00 1000005.00 1000010.00 1000015.00

Frequency (kHz)

Figure 3-8. The transmitted signal and the filtered one (after the FIR filter)

17

Message

= Main Message

m Modulated Message

0.5 1

Amplitude
o
|
T

-0.5 o

T
0 10 20 30 40 50 60
Time (ms)

Figure 3-9. Main Message (Green) and the demodulated Message (Red) at the reception

The command firdes.low_pass(1.0, samp_rate, 900,300) uses a lowpass filter with unity gain,
a sample rate of 32 kHz, a cutoff frequency of 900 Hz and a transition bandwidth of 300 Hz.
According to GNU Radio documentation, the cutoff frequency is meant to be at the center of

transition band in firdes.low_pass function. This implies that the edge of passband lies at 900-
300/2=750 Hz, well beyond the impulse location of 500 Hz.

Simulating the FSK modulation gave satisfactory results. However, when coming to real
hardware, the blocks “Soapy HackRf sink” and “Soapy HackRf source” block have been enabled.
The received signal along with the filtered signal (after the Xlating FIR filter) are shown below.

Filtered
5 m Data 0
0 4
g
3 =
£ -40
£]
]]
2 %7
=2 80
€
-100
-120 5 il M
T T T T T T T
-15.00 -10.00 -5.00 0.00 5.00 10.00 15.00
Frequency (kHz)
Received
B W Data 0
0 B
20 Message
@ 7
T -40
£ 7
g
g a
S -80
% 2
& -100 A
] Receiver 6.5 KHz Message
-120 <€ >
3 Center Center
-140 5
T T T T T T T
432985.00 432990.00 432995.00 433000.00 433005.00 433010.00 433015.00

Figure 3-10 Received Signal and filter signal

18

https://www.gnuradio.org/doc/doxygen/classgr_1_1filter_1_1firdes.html#a772eb5c542093d65518a6d721483aace

Here, the XIR filter center frequency, which will shift and filter the entire spectrum, is chosen

based on the frequency deviation between the receiver (hackRf transmission frequency which is
chosen 433 MHz) and the message center which is located 6.5 KHz away from the center. The filter
could almost perfectly filter out everything but the message but message distortions appeared as in

the figure below.

Amplitude

Message
9 TTT T 111N [] M1] N 11T = Mmain Message
= Modulated Message
0.5 4
oo—— 11 NI | I | - | I | | —
_0_5_
1
L L L
0 10 20 30 40 50 60
Time (ms)

Figure 3-11. Main message and the received message in real hardware application

The XIR filter requires a bit more tuning. The sample frequency also plays a major role in

message formation. Increasing or decreasing the sample rate significantly will lead to message
formation errors. I found that for FSK modulation, 32 KHz sample rate up-sampled to 4 MHz (for
the hackrf) is the best choice.

3.4 QPSK MODULATION METHOD

Transmitter:

19

Options Variable Variable Variable Parameter RRC Filter Taps Variable
Title: QPSK Tra...d Receiving 10 EBW 1D: nfilts 1Dz center_freq ID: my_const 1D: RRC_filter_taps 1D: freq offset value
Authar: rzja961 Value: 350m | | Value: 32 Value: 430M Label: Constellation Gain: 32 Value: 30k

Value: <gnuradi. 672e410f30=> | Sample Rate (Hz): 32
Qutput L Python o ~ mpi . R ;
Generate Options: QT GUI Variable RF carrier frequency - — Symibol Rate (Hz): 1 Digitally upcovert transmitted
ID: samp_rate Constellation definition E BW: 350m signal by this value to avoid
= = T . DC spurs, etc.
Variable | | Variable WValue: 4M | , I"'tp't | Parameter WL At the receiver end, we will
1Dz sps_TX | | ID: sps RX mport: numpy ID: hdr_format . e need to downconwvert signal
Value: 40 | | Value: 4 sample rate - Label: Header Formatter Rloot raised cosine dEﬁnmaHll:'ythis value.
determines BW Custom Embedded Value: <gnuradi.. 572607030~
Samples Samples per of transmitter and receiver. python Block uses
persignal signal at This should be larger this library. Header format definition
att T aiver than BW of signal itself.
arau Message Edit Box Tagged Stream Mux P
L i LAl | = Window Taps: nul:xl:rE[SDDF
Pre-padding Length: 4k

Post-padding Length: 4k
Insert phasing symbols: Yes
Length Tag Mame: len_key

/

Polyphase Arbitrary Resampler
“ Resampling Rate: 40
Taps: RRC_filter taps
Number of Filters: 32
Stop-band Attenuation: 100

g

Value:
Bl e msgh. >
Pair Mode: False
Static Mode: False

Repack Bits

Protocol Formatter
Bits perinput byte: &

Format Obj.: =gnur. ebfiod70=
Length Tag Name: len_key

Generate header
Differential Encoder

Coding: Differential
Modulus: 2

Chunks to Symbols

Apply B

Symbaol Table: -1, 1
Dimension: 1

emor
Multiply Const
Constant: 500m

Tagged Stream Multiply Length Tag
Signal Source
Sample Rate: 4M

Length tag names: len_key
Waveform: Cosine

Length Scalar: 40
Fix length tag to reflectthe resampling

E Frequency: 20k
Amplitude: 1

Offset: 0
Initial Phase (Radians): 0

Resample. Apply RRC filter

Perform frequency tranlation
(up conwvert)

Local oscillator

Figure 3-12. QPSK Transmitter Flowgraph

Receiver:

Virtual Source
treal

FLL Band-Edge
Samples Per Symbok: 4

Power Squelch

Rational Resampler
Threshokd (dB): -20

Interpolation: 1
Decimation: 10
Taps:

Fractional BW: 0
Perform frequency transia o
(down convert) Dawnsample a7

Filter Rolloff Factor: 350m
Prototype Filter Size: 45
Loop Bandwidth: 20m

Signal Source
Sample Rate: 4M
Waveform: Cosine
[Emd| Frequency:-30k
Amplitude: 1

Camier frequency sync

Offset: 0
Initial Phase (Radians): 0

Polyphase Clock Sync
‘Samples/Symbol: 4
Loop Bandwidth: 31.4m
Taps: RRC filter taps
Filter Size: 32
Initial Phase: 16
Maximum Rate Deviation: 1.5

PS: 1

Iocal scillatr
Linear Equalizer

Num. Taps: 11

Input Samples per Symbol: 1

Correlate Access Code - Tag Stream
Access Code: 10101 11111100
Threshold: 2

Tag Name: len fey2

Constellation Soft Decoder
Coding: Differential

Constellation Object: .. B30>

Tagged Stream to PDU black up ahead naeds

Comelates with access code to extract the payload. 920 7

Decision

Constellation Object
ID: cons

Async CRC32 -
Mode: Check crc. [=== amt |

This resulted in an error “Burst shaper skipped 112 samples”. So I tried another technique:

Eror detection

5 i
PDU Vectors: On

Iprnt_pdu

Display recovered
message

Constellation Type: Variable Constellation
Symbol Map: 0. 1. 3,2

Constellation Points:

Rotational Symmetry:
Dimensionality: 1
Normalization Type: Am piitude

1

Adaptive Algorithm
ID: alg
Algorithm Type: LMS

Figure 3-13. QPSK Receiver

Step Size: Im

20

Pair Mode: False

Message Strobe

be

PDU to Tagged Stream
Length tag name: packet len

Options T Import Variable Variable Variable P

Title: Not titled yet T i Import: math 1D; psk_center_freq 1D: R(C_HIter_TaDs_T)(ID: samples_per_symbol 1D: packet.header format
Author: rajagsl e Value: 918M Value: firdes.root_raised ... Value: 4 Label: Packet Header Format
Output L Python Import Value: <gnuradi...672e3b27b0>
Generate Options: QT GUI Import: numpy

Format Obj.: <gnur...db57070>
Length Tag Name: packet_len

Protocol Formatter

=

Repack Bits

Bits per input byte: 8
- Bits per output byte: 2

Static Mode: False

Embedded Python Block

Chunks to Symbols
Symbel Table: -1-1..1], 1+1]
Dimension: 1

Figure 3-14. QPSK second trial transmitter flowgraph

Tagged Stream Mux
‘4‘ Length tag names: packet len

Burst Shaper
Window Taps: ([1.]*1000)
Pre-padding Length: 5k
Post-padding Length: 5k
Insert phasing symbaols: Yes
Length Tag Name: packet_len

Interpolating FIR Filter
Interpolation: 4
Taps: RCC_Filter_Taps_TX

Virtual Sink
Stream ID: tx_out

set_symbol_table

Constellation Object

1D: gpsk_mod

Constellation Type: Variable Constellation
Symbol Map: 0. 1. 2.3

Constellation Points: ..1+1]

Rotational Symmetry: 4
Dimensionality: 1

Normalization Type: Amplitude

Variable
1D: RCC Filter_Taps_RX
Value: firdes.root raised ..

‘Constellation Decoder ‘Char To Float

s il

e o Constellation Object: ...b70> Scale: 1
s —— Decimation: 1 Costas Loop
b Taps: RCC_Filter_Taps_RX Loop Bandwidth: 62.8319m
Clock Recovery MM
Omega: 4 Correlate Access Code - Tag Stream o

‘Gain Omega: 7.65625m Float To Char Access Code: 10101...11111100

Unpack K Bits
K:2

Bits input byte: 2
Mu: 500m Scale: 1 Threshold: 0 ‘ e mhyb:tg. 9
Gain Mu: 175m Tag Name: packet. len I :
Omega Relative Limit: 5m
PDU Filter
Tagged Stream to PDU Key: packet_len
Length tag name: packet len #lpdus Value: () lpdus- rint
Invert Filter: No Message Debug
[EBET poyvectors: on
print_pdu

Figure 3-15. QPSK second trial receiver flowgraph

3.5 GFSKMODULATION/DEMODULATION

GFSK stands for Gaussian Frequency Shift keying. It is an improved version of the typical
FSK. It improves the frequency response by narrowing down the bandwidth.

In this experiment, I tried GFSK modulation and demodulation of a text file including the
letter “H “. Letter “H” has a decimal representation of 72 and the space has a decimal
representation of 32. The text file automatically includes an “end line” terminator which has a
decimal representation of 10. Hence, I am expecting my output message to be in form of 72 32
32 32 32 32 10. The figures below show the transmitter side (upper side of the flowgraph) and
the receiver side (lower part of the flowgraph). It can be clearly seen that the message has been
successfully transmitted (blue is the message and red is the received message).

21

Options = HL o o QT GUI Range
: : 1D 17 _gai
Titles Nt titled yer 104 zamp_rete | | 1D oW IDx freq —gain .
Author: rjs Labeh Ture IF Gain
| Value: 3M Value: 15M | | Values 4334
Output L Python Default Value: 16
Generate Optionsi QT GUI 2abl bl = Start1 0
D1 5p= 1D sensitivity Iy BT ::"' :“
Value: 50 | | Value 107 Value: 500m =

OT GUI Range OT GUI Range QT GUI Range QT GUI Range
1D1 VBA_gain 101 t_gein 11 gsin_Mu 1D freq_emor
Labeh Tune VGA Gein | | Labeh Tune T Gain | | Labeh Tune Mu Gain | | Labeh Tune Freq Emor
Default Valuz: 20 Default Value: 45 Default Value: 0 Default Value: 0
Starti1 Starti 1 Starti 0 Start: 0
Stopi 62 Stop: 47 Stopi 10 Stopi 1
Stepi 1l Stepr 1 Step: 10m Stepr 1Im

File Source

Filer ... ckRFFSKrextDat.cxx ream ream
" 5t to Tagged St

Repeat: Yes Unpack K Bits Packet Lgng::i

Add belg:j-n tage () Length Tag Key: packet_len

Length: 0

Virtual Sink
Stream ID1 received

GFSK Mod
Samples/Symbal 50
Sensitivity: 1.07
BTi 500m
Unpack: OF

Soapy HackRF Sink
T e
Sample Rate: 3M
Center Freq (Hz) 423

QT GUI Sink
Name: Received

FFT Size: 1024
Center Frequency (Hzhi 4334
Bandwidth (Hz) 3M

Update Rate: 10

Virtual Source
Stream IDh received
Virtual Source
Stream IDy mzg_out

QT GUI Time Sink

Name: Message

Numb. f Points1 200
Virtual Source s:::pl:':’hlmm ' Correlat
Stream IDi demodu..d_msg_out P — m rczn.f(:.
Tag Nami

GFSK Demod
Soapy HackRF Source Sﬂmqlfs:’iyr:l;;l 50
Device arguments: hackf=0 " -
Gain Mu 0

Sample Rate: 34
Center Freq (Hz)i 4334

Mu (Unusedh 0

Freq Erron 0

Omega Relative Limit: 0

3-16. GFSK mod/demod. Top part: TX, low part: RX

Virtual Sink

Stream

Frequency Display | Waterfall Display =~ Time Domain Display =~ Constellation Display
_ 0% m Data 0
& E
T -20
e 3
& -40
Q
w 60
2 - il ey o
£ i R
[T
& -100
-120 3
T T T T T T 1
431.500 432,000 432.500 433.000 433.500 434.000 434,500
Frequency (MHz)
Max Hold Average
Min Hold 0 =
v| Display RF Frequencies FFT Size: | 1024 I
3-17. Received Frequency Spectrum (centered at 2.4 GHz)
Tune TX Gain = S 450
TUNME MU GAIN 1ot ovsians s nr o ia s on as arer e e oo L Le Lt et L L Lt et e L L Lt R R e e et ee e e e e e e 00000 (%
TUME FT@G ETTOT 11,1111 u1 ar111 11 000000000000 0000 0001000010080 0000000 0000100000800 01 0808000000000 00000000 0000000
TuneVGA Gain T 1 s ko
TunelF Gain 5= . . . T 7 5 o © o v © 7 0 7 o o5 7 7 7 7 7 0 LAAP
Message Axes
® Message v| Autoscale
80 ® Demod Message v/ Grid
v| Axis Labels
70 -
Y Offset: | + -
60 | YRange: + | -
W X Max: i =
3 s
)] .
_E" Trigger
< 40 Free -
Positive M
{—
30 Level: T | S
Delay: + -
20
Extras
10 Autoscale
r T T T T T T
10 20 40 50 60 W stop

30
Time (us)

3-18. Source message in blue and received message in red

22

Although I received the message successfully however, there might be times where the
message gets corrupted and the transmitting power must be minimized then maximized in order to
get the correct shape of the message.

3.6 ConcLusioN UpT03.17.2022

I got good results using GFSK modulation and demodulation blocks. However, sometimes,
the transmitted signal gets corrupted at the receiving end. One possible reason is that the source
message and the received message has to be synchronize via a packet code which I will be working
on during the next days.

23

