\“(II Karlsruhe Institute of ., AECENAR
o T@Chnology i s NPTy P R egton guliemenny

10\%

Institut fir Technik der

Informationsverarbeitung

. . . INSTITUTE
(ITIV) in cooperation with \STROPHYSICS

Head of Institute

Prof. Dr.-Ing. K. D. Mller-Glaser
Prof. Dr.-Ing. Dr. h. c. J. Becker
Prof. Dr. rer. nat. Wilhelm Stork

Prototype for a base station for supernova remnant HI line
radio wave detector and analyzer (SRWDA)

Master Thesis

by
Suheeb Kassar

Supervisor: M.Sc. M.Eng. Samir Mourad, IAP (AECENAR)
Main Referee: Prof. Dr. rer. nat. Wilhelm Stork, ITIV (KIT)

I hereby declare that I wrote on my own and that I have followed the regulations relating to
good scientific practice of the Karlsruhe Institute of Technology (KIT) in its latest form. I did
not use any unacknowledged sources or means and I marked all references I used literally or

by content.

Karlsruhe, 6th of April 2014

M. Suheeb Kassar

Abstract

With the increasing dependence on the communication technology with wide bandwidth in
more Applications and devices especially in wireless Field SDR (Software Defined Radio) is
employed which provide flexibility in technical point of view (Software) respectively market

challenges.

The advantages of SDR as multiband, multicarrier, multimode, Multirate and variable

bandwidth enable to scan a wide range of frequencies with modified channel (modulation).

On the other hand SDR concept can be implemented in different reconfigurable Hardware
such as FPGA und DSP which means that replacing another analog elements for example
antenna in Hardware can be effected using software design concept in reprogrammable und

reconfigurable Systems .

This thesis describes the design and implementation of radio wave detector and analyzer
(SRWDA) for processing supernova radio signals collected using four antennas which gives

also direction information of the signals

The implemented Hardware in Software reduce the cost of station and at same time the right
choice for accelerated digital signal processing. The detected signal can be displayed on GUI

to observe a desired signals.

The project was carried out in corporation with the Institute for Astrophysics (IAP). Some of

the work was carried out in the IAP facility in Ras Nhache/Batroun/Lebanon.

ii

Table of contents

ABSTRACT 1I
TABLE OF CONTENTS 11
LIST OF FIGURES A\
LIST OF TABLES VI
LIST OF FORMULAS VII
LIST OF KEYWORDS VIII
1 INTRODUCTION 9
1.1 BACKGROUNDoiiiiitiiiieeeetteie e e et eee ettt eeeetatee e e eeaaaeeeeeeaaeeeseetaseessesaeeeeeeasaseeseesssaeesseseseesennssneesearaees 9
1.2 MOTIVATIONuttiieeeeieeeeeeeette e e e ecttae e e eeteeeeeeetaaaeeeetteeeeeeessaseeeaesssaeeseaasseeeeaasssaeseasssaeesenassseeeeasrseeeennrsnes 9
1.3 OBJECTIVES.....cuvieiiteeeeeeeeiteeeeieeeeseeeeiseeesseseeseeeeeeessesenseaeenes FEHLER! TEXTMARKE NICHT DEFINIERT.
14 OUTLINE. ... e tcttteeeeeetieee e e ettt e e eeeteeeeeeetaeeeeeseaareeeeesaasaaeeaasssaeeseessaeseseassseeeaasssaeeeesssseeeaansssaeseesssseesenraeeeens 9
2 BASICS 10
2.1 21-CM RADIO ASTRONOMY BASICSovviiiiiiiieee ittt eeette et eete e e e eetaaae e e etaae e e eeareaaeeetasaeeeeannneeens 10
2.2 RADIO WAVE RECEIVINGcooititiiiiititeeeeeitieeeeeiieeeeeeetaeeeeeetaaeeeeeesseesesaesssaeeessssseesansessesasssssesesissreees 11
2.3 SOFTWARE DESIGNED RADIOcceiiiiitiiiiiiiiiiee ettt eeeeetetee e ettt eeeteeeeeeetsaae e e eaaaaeeeeennaasaeseesasaeseesnneees 11
2.4 BASIC SDR RECEIVER ARCHITECTUREuuuiiiiiitieeeeiitaeeeeeeitueeeeeeeseeseseesssaeeeessseessensessesenssseesssisnseees 12
3 SYSTEM DESIGN 14

4 MECHANICS

4.1

5.1
5.1.1
5.1.2
513
5.14

6.1
6.1.1
6.1.2
6.1.3
6.1.4

6.2

6.3

6.4

7 SOFTWARE

7.1

FEHLER! TEXTMARKE NICHT DEFINIERT.

MECHANICAL DESIGNcoiitiiiitiiieeeeeee e et eee e FEHLER! TEXTMARKE NICHT DEFINIERT.

5 HARDWARE CONCEPTION 16
PLATFORM SELECTIONuvtiiuieeatteieteeeseseeeusesassesesseesssesssssesassessssssesssesssssssssssessssessssssssssessssssesssesssssees 16

HACKTT PIATFOTIN ...ttt ettt ettt st sbe e e eanens 16

BlAAERF PLAFOTIN ...ttt e et et ettt e sbeesbeesaaeeaee s 17

Ettus Research’s USRP BIOO............c..ucoouciiiueeeeeieeeeeeeeiiee e eeeiaeeeeeeiaeeeeeeeaaae e eeeaaeeeeenveeeeeeessnseesennes 17
REILSDR(820) ceeeeeeieeeee ettt e e ettt e e e et ae e e e ae e e e e e eaaaae e e e atae e e e e araeaeeeeaaaaeeeeanes 18

6 HARDWARE REALIZATION 19
HARDWARE OF USRP ..ottt ettt ettt ettt e st e s s tae e s e e s sasaasssaesssaaeesnseenssesssssaesnseasnssens 21

USRP BI100 S MOTREFDOATAveeeeeeeeeeeeceeeeeeeeeeeeecae e eeeaee e e e eaaae e e aae e e e etvaeaeeeearaaeeeennes 21

WBX 50-2200 MHz RxX/Tx as daugRterDOArd.................cccouvueviirirenieisiiniinieeeeneesienesieeseee e 22

FPGA ...t e et e e e n———e e e et e e e ea—ateeeeaaatee e 23

AD C COMVETTET ...t e ettt ettt e e e e e e e e e e ettt e e et e e e e e e e e e e e eeeetasssaeeraeeaaeeens 25

LOW NOISE AMPLIFIER LLINAooeiioeiiie ettt ee e et e ettt s e s e e e e e e s eaesaaeaasas s eeseesesenenens 25

LUINE AMPLIFIER ... oiiiiiieieeeieeteeee e e ee e e e e e e e ettt e e e e e e e e ee e e et e s aeaaaaaassesesseseaesssssassssnanssseseesesseenens 29

AANTENNA ..ottt ee ettt e e e e e e e e e e ee e tee et at e e ssseesaeeese st et as s s s as s eseseeseaessssssasssnassnssasessesssenens 29

31

SOFTWARE DESIGN ...ouuiiiiiiiiiiiiiiiiiiiieeee e FEHLER! TEXTMARKE NICHT DEFINIERT.
SOFTWARE IMPLEMENTATIONoovttuutuutteeeteeeeeeeetetetesasaseeseseseeessseetssssstannsassssesssessesssessmssmmnansees 36

7.2

8 INTEGRATION
9 INTEGRATION TEST

FEHLER! TEXTMARKE NICHT DEFINIERT.
FEHLER! TEXTMARKE NICHT DEFINIERT.

10 FUTURE WORK 40

11 LITERATURE 41
12 APPENDIX 42
A.l SOFTWAREuutiiiiiiitiieeeeitieeeeeiteeeaesetaseeeasatsaeeeesasreaaasassseaseasssseeeaassssssaassssaesasssssaasannssesaeesnssssessssssseeans 42
All SYSIEM SOfWATE ..ottt Fehler! Textmarke nicht definiert.
A.l.1.1 EXAMPIE.C et Fehler! Textmarke nicht definiert.

A2 HARDWARE ..ottt et 51
A2.1 Layout motherboard USRP B0ccccccouiminiiiiininiiieiciinieeie et sttt st sse e sneens 51

A3 LIST OF OFF-THE-SHELF ELECTRONIC COMPONENTS AND ASSEMBLIEScuvvttiiiiiiiieeesieeeeeeeiveeeesennnnes 56
A4 MECHANICAL COMPONENTS ...ccceeutiteeeiiutreeeeaissseeeeasseeeassesssssasasssssesassssssssssssssssssssssssessssssssssssssssssesssssses 57

iv

List of figures

Figure 1: hydroZen emiSSION.........eeiiiuuiieeiiiiieeeeteee et ee e ettt e e et e e ettt e e ettt ee e eneeeeeesnneeeeenneees 1
Figure 2: Spain MEChANiSIMSeiiiiiiiie ittt et e e et e e et ee e e 1
Figure 3: Radio SYSIEIMuuiiiiiiiiiie ettt ettt e e et e ettt e e et e e e e ee e e 1
Figure 4: Model of Software Radio [1]coeviiiiiiiiiiiiiieieieiiiiieee ettt e e e e e 1
Figure 5: Block scheme of typical SDR r€CeIVer.......c..eeeiiiiiiiiiiiiiiiiiiiieiieceeceeee e 1
Figure 8: Overview and comparison of different platformscccoeceeeiiniiiiiiniiinniiennnne. 16
Figure 9:USRP Instant SDR Kitc..c.oiiiiiiiiiiiiiii et 21
Figure 10: Architecure of B1OOcccuuiiiiiiiie ettt e 22
Figure 11: RF Front-End diagramocciiiiiiiiiiiiiee ettt 23
Figure 12: Receiver BIOCKS.c.uiiiiiiie et 24
Figure 13: DDC BIOCK. ... ttiiiiiiiiee ettt ettt et e et e e et te e e e eeeeanes 25
Figure 14: Schematic and platine of LINAccocooiiiiiiiiiiii e 26
Figure 15: Test Of LINA ...ttt sttt e et e 26
Figure 16: Output signal of LINA ...c...oiiiiiiiiie ettt e 26
FAGUIE 17 ..ttt ettt e et e e ettt e e e sttt e s ettt e e e st ee e e ntaeeeeanneeeeenneeas 1
Figure 18o Fehler! Textmarke nicht definiert.
Figure 19: Implementation of dial_tone example within Gnu Radio Companion..................... 1

List of tables

Vi

List of formulas

Formel 1.1: block diagram of a Zeneric radio..........ccuuvviieieeriiriiiiiiie e eeciiiieee e ee e e e

List of Keywords

ADC Analog-to-Digital converter

AF Audio Frequency

AGC Automatic Gain Control

AM Amplitude Modulation

BFO Beat Frequency Oscillator

CW Continuous Wave

DAB Digital Audio Broadcasting

DVB-T Digital Video Broadcasting - Terrestrial
RTL-SDR Software Defeind Radio Dongle
FFT Fast Fourier Transform

FM Frequency Modulation

FPGA Field Programmable Gate Array
FSF Free Software Foundation

GRC GNU Radio Companion

IF Intermediate Frequency

IAP Institute for AstroPhysics

I/O Input/output

ISO International Organization for Standardization
LNA Low Noise Amplifier

RDS Radio Data System

RF Radio Frequency

SRD Software Defined Radio

SRWDA supernova radio wave detector and analyzer.

USB Universal Serial Bus

viii

1 Introduction

1.1 Background

The gained information about the universe has been interpreted using radio frequency
electromagnetic signals that can be detected through radio digital receiver. One of the most
important beams is HI line 21cm that carry information about hydrogen atoms in space to get
different astronomic parameters of hydrogen atom as speed, direction or distance within the
galaxy etc. The rotation curve of our galaxy has also been calculated using the 21-cm hydrogen
line. It is then possible to use the plot of the rotation curve and the velocity to determine the

distance to a certain point within the galaxy [1].

The digital technology in communication scope made possible to measurement a spectrum line

and processes to get clean signals.

1.2 The SRWDA Project

The radio astronomical IAP project supernova radio wave detector and analyser (SRWDA) aims to
detect and analyze HI radio signals from supernova remnants. At the base station a set of
antennas, which gives also direction information of the signals, is aimed to be connected to a
computer which acts as Software Defined Radio (SDR). Afterwards an analysing program is aimed

to be installed.

Later the detectors are planned to be installed on satellites in the IAP SRWDA-SAT project [9] to

improve the resolution and to suppress disturbing signals from earth stations.

1.3 Objectives

In this thesis it is aimed to build a first prototype for a ground station for SRWDA.

1.4 Outline

This thesis presents the design and implementation of SDR (Software Defined Radio) receiver to
detect spectral line 21 cm of hydrogen atom for radio astronomy using reconfigurable platform

and open source software for implementing Digital signal processing.
Chapter 2 gives some scientific and technical background information.

Chapters 3 until the last chapter describe the successive development process of the prototype

according to the V model.

Chap

2 Basics

2.1 21-cm Radio Astronomy Basics

The hydrogen gas is one important of the main materials that can be found in throughout of the
space. The 1420 MHz radiation form hydrogen pass through the Earth's atmosphere and gives us a
more complete map of the hydrogen than that of the stars themselves since their visible light won't
penetrate the dust clouds. The radiation comes from the transition between the two levels of the
hydrogen 1s ground state, slightly split by the interaction between the electron spin and the

nuclear spin. In this procedure hydrogen in its lower state will absorb 1420 MHz.

Hydrogen hyperfine Nuclear Electron
structure spin spin
1s .~ 1 !
—_— J ls.g x 10 Cev
.- t '
1420 MHz
A=21cm

Figure 1: hydrogen emission

The electron moving around the proton can have a spin in the same direction as the proton's spin
(i.e., parallel) or spin in the direct opposite direction as the proton's spin (i.e., anti-parallel). The
energy state of an electron spinning antiparallel is slightly lower than the energy state of a parallel-
spin. Since atoms always want to be in the lowest energy state possible, the electron will
eventually flip to the anti-parallel spin direction if it were in the parallel spin direction. The energy
difference is very small, so a hydrogen atom can wait on average a few million years before it
undergoes this transition. The advantage for detecting the 21cm signal is to calculate the mass of
galaxies, to put limits on any changes over time of the universal gravitational constant and to
study dynamics of individual galaxies and to plot the rotation curve of our galaxy respectively the

velocity [1].

This splitting of the hydrogen ground state is extremely small compared to the ground state
energy of -13.6 eV, only about two parts in a million. The two states come from the fact that both
the electron and nuclear spins are 1/2 for the proton, so there are two possible states, spin parallel
and spin antiparallel. The state with the spins parallel is slightly higher in energy (less tightly
bound).

In visualizing the transition as a spin-flip, it should be noted that the quantum mechanical
property called "spin" is not literally a classical spinning charge sphere. It is a description of the
behaviour of quantum mechanical angular momentum and does not have a definitive classical

analogy. The observation of the 21cm line of hydrogen marked the birth of spectral-line radio
10

astronomy. It was first observed in 1951 by Harold Ewen and Edward M. Purcell at Harvard,
followed soon afterward by observers in Holland and Australia.

The prediction that the 21 cm line should be observable in emission was made in 1944 by Dutch
astronomer H. C. van de Hulst [2]. A radio telescope is powerful tool, which can “see” radio waves

emitted by radio sources in throughout the space.

Higher energy Spin
state flip

1420 MHz
A=21cm

Figure 2: Spain mechanisms

2.2 Radio Wave Receiving

Firstly we want to present the simple radio system diagram and explain their components to get

better understanding for complete system.

The electromagnetic signal has been received by an antenna and then converted into an electrical
signal. This signal is normally very weak and disturbed because of many factors as atmosphere ...
etc. therefor the noise must be removed from a signal amplified before it processing later. That will
be happened in the next stage (RFF) that processes a signal for ADC converter. RFF consists of
filter, amplifier und mixer to convert the radio frequency to lower frequency. The resulted analog
signal from RFF has to be digitized using Analog -Digital converter for further processing in suitable
hardware components as Digital Signal Processing (DSP), Field Programmable Gate Array (FPGA)

or microprocessor [2].

>
E —
9 - B = g
P}]
| §. [| EZ B w | g g
2 T 0 A~ X .2
o =g % R/ n 5 ~ E
= 2%} (Y —_ &2 5 S
g 9o = g8 S g : =
et oS = X [) 8 2
< s 2 = o = 2 v O
< (7 & = < A A zZ <

Figure 3: Radio system

Finally a processed radio signal can interface in modern system to a network or an application.

2.3 Software Designed Radio

The definition software radio was Joe Mitola in 1991 to refer to the class of reprogrammable or

reconfigurable radios [3]. That means, the same hardware components can execute different

functions at different times. However, a radio defines in software its modulation, error correction,
and encryption processes, exhibits some control over the RF hardware, and can be reprogramed is

clearly a software radio.

SDR is defined as a described radio in Software and whose physical layer behaviour can be
significantly altered through changes to its software in which the receive digitization is performed
at some stage downstream from the antenna, typically after wideband filtering, low noise
amplification, and down conversion to a lower frequency in subsequent stages — with a reverse
process occurring for the transmit digitization. Digital signal processing in flexible and

reconfigurable functional blocks defines the characteristics of the radio [4].

Hardware components of the traditionally radio system consists of the mixers, filters, amplifiers
and oscillators are replaced by software in SDR as indicated in the Figure 2.2. The hardware for
signal processing should be selected for high speed signal processing for example as GGP, FPGA
or DSP. The main advantage of an SDR is reconfigurability and customizable. The implementing
radio functions in software are more flexible than in hardware for a radio device to be
reconfigured for different use cases rather needing to redesign the hardware to support new
functionality. With the rapid evolution of wireless protocols and standards, a hardware radio
could be made obsolete due to the inability to conform to new standards or protocols. An SDR,
however, could be reconfigured to support new standards that may not have existed at the time
the device was built. Such flexibility is attractive to the manufacturers of the devices as it enables
them to update their SDR product through software and not necessarily need to change the
hardware of the radio. Such flexibility is helpful to fast update suchlike systems and allows

manufacturer to redesign the system without changing the hardware architecture.

Antenna
]] Processing Output
ADC Channelization | g
RF and Software Hardware
Hardware Sample Rate - Algorithms Sl —
I _ . < - (De)Modulation | - DSP P
: Conversion - Filters - ASICs -
| - Virtual Radio
: i I !
|
| | | | control +
e O, L e |

Figure 4: Model of Software Radio [1]

2.4 Basic SDR Receiver Architecture

The most used radio receivers use the architecture of super heterodyne receiver, in which a
received signal has been converted to a fixed intermediate frequency, which can be more
processed than the original radio carrier frequency. A detected signal is picked up via the antenna,
mixed with local oscillator to reduce frequency of an incoming signal to intermediate frequency
(IF) for further processing, filtered due unwanted signals filtered using low pass filter and finally

amplified with a low noise amplifier (LNA) for accommodation to ADC converter.

12

The digitized IF signal repeat oneself as spectral harmonic that can be placed near the baseband
frequency, helping frequency translation and digitization to be carried out simultaneously. For
next processing digital filtering and downconversion of sample rate (for receiving) are needed to
change a sampled signal from high frequency to lower frequency allowing a hardware as DSP or

FPGA to process it with suitable sample rate without loss of the information.

Typical SDR receivers have a simple und cheap direct-conversion or low intermediate frequency
architecture. The ideal SDR receiver would have all the radio-frequency bands and modes defined
software-wise, meaning it would consist only of an antenna, ADC and a programmable processor.
Typically, RF front-end of a SDR will consist of antenna circuitry, amplifiers, filters, local
oscillators and ADCs. When the signal is received, it is amplified and its carrier frequency

downconverted to a low-intermediate frequency in order for ADC to perform digitization.

The processing is done by some of the computational resources at our disposition — mainly,
General Purpose Processors (GPPs), Digital Signal Processors (DSPs) and Field Programmable
Gate Arrays (FPGAs), whereas some of the future resources may include a combination of the
aforementioned, thus extending the computational capacity. One of the most important aspects
when deciding on a computational resource that is to be used in the system is its
reprogrammability (important for implementation of new waveforms), therefore dedicated-

purpose circuitry is generally avoided in SDRs.

The basic receiving process is illustrated in Figure 2.3 with its principle design constraints will be
explained in this chapter.

Filter IF Amplifier FC

AV, ADC DSP SW
N\

Mixer

LNA

Local Oscillator

Figure 5: Block scheme of typical SDR receiver

The important design parameters that have to be considered during design SDR receiver system

are: input sensitivity, maximum expected input signal and blocker specifications.

3 System Design

The HI spectrum signal will be detected by the antenna which converts the electromagnetic signal
to analog signal to process with SDR system (Hardware and Software). Because of the weakness
of the incoming HI spectrum signal we have to use a low noise amplifier for filtering the incoming
signals and amplifying the hydrogen line signal at 1420 MHz. The filtered signal is then available
for further processing phase. It is important to integrate a line amplifier in the design taking into
account the signal line loss by using coaxial cable. For further high signal processing SDR platform
(SDR-hardware and-software) were needed to realize SRWDA model. Two designs have been

developed in IAP institute. The figures 6 und 7 give both alternative designs explained.

A software-defined radio (SDR) system is a hardware and software co-design system which can
tune to any frequency band and preform different communication functions (modulation,
demodulation, etc.) by means of a programmable hardware, which is controlled by software. SDR
platform software performs various amounts of digital signal processing in PC [1]. SDR has
evolved with advancement in computing machines and high-speed analog-digital (A/D) and
digital-analog (D/A) converters. Thus SDR allows a single device to support a wide range of

capabilities previously available only through multiple products [1].

As explained signals received by an antenna should be digitized so that SDR may processes these
digitized samples at RF frequencies (around GHz frequencies) to perform further signal processing
steps (IF conversion, filtering, baseband conversion etc). But due to certain limitations like
unavailability of A/D converters at very high frequencies (starting from a few GHz) and very high
speed general purpose computers, digitization takes place after the IF or baseband demodulator
stage. That typically means that hardware is still required to convert the signals of interest into and
out of the “baseband” frequencies in the digital domain, but all of the complex processing
performed at baseband is handled in the digital software domain [1]. Yet, such hardware is usually

fairly simple comprising of a local oscillator and mixer, and a pair of low-pass filters.

‘GMLU-Radio
LA BPF 1420 ADC DDC ,
: AMP . Tuner A b Display signals
" 1 N 1
— Low noise Band Pass Fiter Amplifier »{ | Analog digital Digital Down 24-1700 Mhz Usb 2.0 signalprocessing
amplifier converter Conversion .
! — Synchrenization
Hardware assernbly box DVT-RTL 820t + RTL 2832u P
Antesin Analog signal filtering Digrtal signal processing Software based signal proessing

Figure 6: 1.System design overview

GNL-Radia
- . Dizplay signals
Law noise Line RF Front- A—'\
| ADC FPGA i i
Amplifier e amplifiers ™ End o ™ Usb 2.0 S|gnalprncess.|ng
'~|_'|"" Synchronization
Satallitg Warp Daughter bagrd Usrp Mather boaane

WAX 50-7 A0 M=z Fayf B100
Ix

Figure 7: 2.System design overview

The digital signal will be sent via usb2.0 to host pc which software Gnu-Radio uses to control SDR
hardware platform and transmit and receive data. GNU Radio is an open-source software toolkit.
that, connected with hardware equipment such as USRP, allows for building Software Defined
Radios connect with hardware. We will later go into details also hardware components and

software respectively.

4 Hardware Conception

4.1 Platform Selection

This chapter describes the core idea for selecting receiver components to implement our system
and the desired environment work. These are the criterions which have to be fulfilled by a suitable

platform:

¢ The receiver system operates in 1420 MHz.

e Suitable for low-cost experimentation.

* Reprogrammability.

¢ Fully open source platform (hardware, software).

Couple of weeks of research narrowed the options down to the following SDR platforms:

SDR Platform Hackrf BladeRF USRP(B100) Rtl_SDR(E4000)

Frequency range 30 MHz - 6|300 MHz - 38|50 MHz -22|52-2200MHz
GHz GHz GHz

Bandwidth 20 MHz 28 MHz 16 MHz 3.57MHz

Simple size (ADC- | 8 bit 12 bit 12 bit/14 bit 8 bit

DAC)

Simple rate (ADC- | 20 Msps 40 Msps 64 Msps/128 | 3.2Msps

DAC) Msps

Transmit? Yes Yes Yes No

Interface speed USB 2 (480Mbit) | USB 3(5 gigabit) | USB 2 (480Mbit) | USB (480Mbit)

Open source Everything HDL + Code |HDL + Code |----—----
(SW+HW) Schematics Schematics

Supported OS Linux, OS X, |Linux, OS X, |Linux, OS X, | Linux, OS X,
Windows Windows Windows Windows

Supported Gnu radio Gnu radio Gnu-radio/ Gnu radio

software Labview

Price $300 $420 $675 $20

Figure 6: Overview and comparison of different platforms

4.1.1 Hackrf platform

Hackrf is open source hardware to build SDR system that has been developed by Michael

Ossmann HackRF operates from 30 MHz to 6 GHz, a wider range than any SDR peripheral

available today. This range includes the frequencies used by most of the digital radio systems on

Earth. It can operate at even lower frequencies in the MF and HF bands when paired with the

Ham It Up RF upconverter. HackRF can be used to transmit or receive radio signals. It operates in
16

half-duplex mode: it can transmit or receive but can't do both at the same time. However, full-

duplex operation is possible if you use two HackRF devices.

HackRF is designed primarily for use with a USB-attached host computer, but it can also be used
for stand-alone applications with Jared's HackRF PortaPack, an add-on that gives HackRF an LCD

screen, directional buttons, and audio ports

HackRF was designed to be the most widely useful SDR peripheral that can be manufactured at a
low cost. The estimated future retail price of HackRF is $300, but you can get one for even less by
backing the Kickstarter project today. The most important goal of the HackRF project is to produce
an open source design for a widely useful SDR peripheral. All hardware designs and software
source code are available under an open source license. The hardware designs are produced in

KiCad, an open source electronic design automation tool.

4.1.2 BladeRF Platform
bladeRF is a Software Defined Radio (SDR) platform make possible to enable a community of

hobbyists, and professionals to explore and experiment with the multidisciplinary facets of RF
communication. By providing source code modern radio systems will be simplified by covering
everything from the RF, analog, and digital hardware design to the firmware running on the ARM
MCU and FPGA to Linux kernel device drivers.

The bladeRF can tune from 300MHz to 3.8GHz without the need for extra boards. The current
open source drivers provide support for GNURadio among other things, allowing the bladeRF to
be placed into immediate use. This gives the bladeRF the flexibility to act as a custom RF modem, a
GSM and LTE pico cell, a GPS receiver, an ATSC transmitter or a combination Bluetooth/WiFi

client without the need for any expansion cards.

The bladeRF was designed to be highly integrated and fully reprogrammable. This means more
than just providing source code to modify the host software. The USB 3.0 (Cypress FX3)
microcontroller firmware is available to modify, as is the Altera Cyclone IV FPGA VHDL, bringing

developers as close to the RF transceiver as possible.

4.1.3 Ettus Research’s USRP B100

The Universal Software Radio Peripheral (USRP) is a digital acquisition (DAQ) system containing
four 64 MS/s, 12-bit A/D converters (ADCs), four 128 MS/s, 14-bit D/A converters (DACs), and
supports USB 2.0 interface or Ethernet(USRP N210). The USRP is capable of processing signals
with 16 MHz of bandwidth.

The USRP takes daughter-cards to map the frequency ranges of interest into the “baseband” that is
visible by the A/D hardware. The USRP is a most widespread SDR’s in academic environments,
Ettus products still count as the best-buy platforms for research. Ettus Research offers several
platforms — USRP, USRP2 and USRP N210 that differ in the level of instantaneous bandwidth they
can process; reprogrammability of the FPGA; type of interface to the computer (USB or Ethernet)

and, of course, price..

4.1.4 Rt_SDR (RTL2832+ E4000):

RTL-SDR is a very cheap software defined radio, that uses a DVB-T TV tuner dongle based on the
RTL2832U chipset (USB devices intended to allow you to watch over-the-air DVB-T broadcast
television) ,had a special “mode” that allow them to be used as crude SDR receivers. In this mode,
the digital base-band samples bypass the DVB-T demodulator/decoder in the RTL2832U chip, and
are sent over USB. Normally, these devices send partially-decoded MPEG transport frames over
the USB, but in this “SDR” mode, they send raw I/Q base-band samples instead.

These “dongles” are typically shipped with one of two or three different tuner chips, and the most
popular ones, E4000 tuner allows tuning to the hydrogen-line frequency of1420Mhz.

A driver library was quickly produced3 based on the information gleaned from datasheets and a
bit of reverse engineering. The driver library can be used stand-alone, or in concert with a “plug
in” for GnuRadio that allows Gnu Radio applications to use the RTLSDR devices. The
disadvantages by using Rtl_SDR outweigh his advantages because of the following reasons:

¢ Dynamic range is quite limited, due to use of an 8-bit ADC, roughly 45dB SFDR.

¢ Temperature stability is poor, leading to gain drift, and frequency drift.

® Phase and amplitude balance is quite poor, leading to image problems.

The total cost was 30 $.

18

5 Hardware Realization

5.1 Hardware of RTL SDR (RTL2832+E4000):

X1

To 500hm antenna)
or LPF / BPF filter
L

GND AL

R =
£
i 1 VREG
l " RTL2832U Veo T

Tuner IC.

E4000
OR
FCO0013

c4 |cavlc]cf
]
N
~

5.1.1 RTL2832

The RTL2832U is a high-performance DVB-T COFDM demodulator that supports a USB 2.0
interface. The RTL2832U complies with NorDig Unified 1.0.3, D-Book 5.0, and EN300 744 (ETSI
Specification). It supports 2K or 8K mode with 6, 7, and 8MHz bandwidth. Modulation

parameters, e.g., code rate, and guard interval, are automatically detected.

The RTL2832U supports tuners at IF (Intermediate Frequency, 36.125MHz), low-IF (4.57MHz), or
Zero-IF output using a 28.8MHz crystal, and includes FM/DAB/DAB+ Radio Support. Embedded
with an advanced ADC (Analog-to-Digital Converter), the RTL2832U features high stability in

portable reception.

The state-of-the-art RTL2832U features Realtek proprietary algorithms (patent-pending), including
superior channel estimation, co-channel interface rejection, long echo channel reception, and
impulse noise cancellation, and provides an ideal solution for a wide range of applications for PC-
TV, such as USB dongle and MiniCard/USB, and embedded system via USB interface.

5.1.2 Tuner E4000

The Elonics DigitalTune™ architecture provide solution around the ability to optimize each part of
the tuner signal chain from input to output. The tuner must be able to cover the complete

frequency spectrum required by the product, and output the
desired channel of interest all under control of the system controller. However, behind this

apparently simple concept lies a hugely complex and challenging design problem. In order to

provide such a solution, each stage in the RF tuner signal chain must be capable of being
modified to optimize the signal path characteristics for downstream processing, dependent on the
broadcast standard and the desired signal characteristics chosen by the system designer.

Figure 4 shows the internal block diagram of the E4000 multi-standard RF tuner. Although the
signal path looks conventional, the E4000 using the DigitalTune™ architecture provides unique

flexibility at each stage in the process from input to output.

elonics RF
E4000 Multi-Band RF Tuner LPF

<7 _. +)_ —\ ADC —
(o)

Mixer
LNA BPF Gain

Baseband
;N\ | DC Offset AGC Processor
\ Correction (Digital Filtering
Freq W snd

Data Demodulation)
-R- P poe -
/

Benefits of Tuner E4000

- A single re-configurable RF tuner front

- Parametric performance comparable to single function tuners
- Low system power

- Small PCB

- Few external components

- Low system cost

Zero IF Architecture
A zero IF architecture is part of the DigitalTune™ concept. A homodyne or zero IF architecture

as shown in Figure 7 employs a single stage to down convert the RF signal using a single

sideband mixer to a baseband signal centred at DC. A subsequent low pass filter removes the
higher frequency mixing products and attenuates unwanted out of band signals.

This filtered signal can then be digitised directly by a fast sampling ADC that has enough dynamic
range to absorb both the wanted and unwanted signals. Final fine tune filtering can then be

performed digitally.

The mixer output contains the sum and difference of the input signal frequencies to the mixer.
20

The advantages of a zero IF architecture are numerous if the intrinsic problems can be overcome.
There is no image because the signal is mixed to baseband, and therefore no image filter is
needed. Because there is no intermediate IF stage, there is also no requirement for a bandpass

IF filter. Finally power consumption is reduced, not only due to the simplification of the signal

chain but also because the signal amplification is done at lower frequencies

5.2 Hardware of USRP

The Universal Software Radio Peripheral (USRP) is a low-cost SDR system developed by Ettus
Research. The system consists of a motherboard with FPGA, 2 pairs of DACs and ADCs, digital
downconverters and upconverters with programmable interpolation rates, and a the second part
of the system is daughterboard which serve as RF front-end. The connection to the PC is done via
USB2.0. Ettuscompany offers a SDR kit containing of USRP B100 as motherboard, WBX 50-2200
MHz as daughterboard which is suitable for low cost-experiment. The total price costs 590 euro.

For mor details see appendix A6.

Figure 7:USRP Instant SDR Kit

5.2.1 USRP B100 as motherboard

A USRP motherboard is the heart of software defined system provides subsystems where can be
built reconfigurable structure for many application in wireless communication systems. The B100-
hardware provides low-cost RF processing capability, and up to 16 MS/s of signal streaming
through the USB 2.0 host interface. As shown in figure 3.2 the B100 consists of FPGA, ADC, DAC

and a USB interface.

FPGA - Xilinx Spartan 3A

ooC

Dl
et DECIM (g | ——— B4 MRS —

Dau =
i § ghter Board
&
| K
B
Lot Dusd E
UHD o IMiEP e J;:s =
usa 2o FX2 Command & Control cic
_ ———— : oAC £
Type B USHE PHY Data Streaming E
ADC/DAC Clk E
=
GPIO, 5P i
B
" o
TCXO [ADC/DAC €Ik ‘
Tuffw Clie
Configurable
Clack Generation
SMA 1PPS
i

SMA Ext Ref

Figure 8: Architecure of B100

5.2.2 WBX 50-2200 MHz Rx/Tx as daughterboard

A new front-end circuit is used for analog operations such as up/down-conversion, filtering, and
other signal conditioning. This modularity allows the USRP to serve applications that operate
between DC and 6 GHz. The main function of RF Front-End is to reject undesired signal using
filtering it after taking the signal from antenna and then converting the signal to a center frequency
with an amplitude compatible for the analog digital conversion process. The Ettus research has
developed many boards as RF so called daughterboardl which achieve our requirements und
cover different frequency bands. For the project, receiver boards operating in 1.4 GHz (HL
spectrum line) frequency band were needed, therefore two WBX 50-2200 MHz Rx/Tx

daughterboard were chosen.

The WBX is a wide bandwidth transceiver that provides up to 100 mW of output power and a
noise figure of 5 dB. The LO's for the receive and transmit chains operate independently, but can
be synchronized for MIMO operation. The WBX provides 40 MHz of bandwidth capability and is
ideal for applications requiring access to a number of different bands within its range - 50 MHz to
2.2 GHz [5]. This receiver architecture, shown in Figure 3.3, is implemented on the daughterboard
WBX.

1Ettus Research Company offers different boards for various application areas. For selecting a suitable
combination of boards Etts Company recommends new users evaluate their application requirements
against the specifications USRP devices.

22

Law noise Levw f. Lo
[amplifier . L passfifter . -\h‘hjir/-' . Passfilter H ADC }
.
Local osilator

Figure 9: RF Front-End diagram

5.23 FPGA
The FPGA plays an important role in the Radio system, providing digital signal processing, as well

as timing logic for clock, chip rate and time slot synthetization . The main functionality of FPGA is
to perform high bandwidth math, and to reduce the data rates to something you can squirt over
USB2.0. The FPGA connects to a USB2 interface chip, the Cypress FX2. Everything (FPGA circuitry
and USB Microcontroller) is programmable over the USB2 bus.

USRP B100 is powered by Xilinx Spartan 3A-1400 FPGA[5] and has the following characteristics:

¢ Configurable Logic Blocks (CLBs) contain flexible Look-Up Tables (LUTs) that implement logic
plus storage elements used as flip-flops or latches. CLBs perform a wide variety of logical
functions as well as store data.

¢ Input/output Blocks (IOBs) control the flow of data between the I/O pins and the internal logic
of the device. IOBs support bidirectional data flow plus 3-state operation. Supports a variety of
signal standards, including several high-performance differential standards. Double Data-Rate
(DDR) registers are included.

¢ Block RAM provides data storage in the form of 18-Kbit dual-port blocks.

® Multiplier Blocks accept two 18-bit binary numbers as inputs and calculate the product.

e Digital Clock Manager (DCM) Blocks provide self-calibrating, fully digital solutions for
distributing, delaying, multiplying, dividing, and phase-shifting clock signals.

The standard FPGA configuration includes digital down converters (DDC) implemented with

cascaded integrator-comb (CIC) filters. CIC filters are very high-performance filters using only

adds and delays. The FPGA implements 4 digital down converters (DDC). This allows 1, 2 or 4

separate RX channels. The receiver side includes 4 ADCs and 4 DDCs as shown in figure 3. Each

DDC has two inputs I and Q. Each of the 4 ADCs can be routed to either of I or the Q input of any

of the 4 DDCs.

MUX

Basic RX (side 0)

ADC 0 I

DDC
Q|
1 \
DDC X
Q - . . / \
. USB
;:-—

TV-RX (side 1) ADC?2

Bandpass signal
@ 5.75 MHz | ADC3

|
|
¥
Q
ug
(@]

S
Not currently implemented

Figure 10: Receiver Blocks

The MUX is like a router or a circuit switcher. It determines which ADC (or constantzero) is
connected to each DDC input. There are 4 DDCs. Each has two inputs. We can control the MUX

using usrp.set_mux () method in Python [6].

Each input (I0, QO, I1 ... I3, Q3) can be connected with which ADC by using 4 bits (0, 1, 2, 3 or 0xf).
For most real sampling applications, the Q input of each DDC is constant zero. So quite often we
don't need to modify the standard configuration of the FPGA. Actually it is anticipated that the
majority of USRP users will never need to use anything other than the standard FPGA

configuration.

The platform contains two digital downconverters with programmable decimation rates, in charge
of mixing, filtering and decimating arriving signals in the FPGA. Digital downconverters shift the
frequency band of the incoming high sampling rate digitized signal to the baseband and lower the
sampling rate without any information loss. First, the digitized stream is mixed with a digitized
cosine (for I channel) and digitized sine (for Q channel), producing the sum and the difference
components. These outputs are then put through the identical digital filters, filtering unwanted
components. At this point, because the bandwidth of the signals we want to process has been
reduced, sampling frequency can be loss lessly decimated The DDC converts down the signal
from the IF band to the base band. Second, it decimates the signal so that the data rate can be
adapted by the USB 2.0 and is reasonable for the computers' computing capability. The Figure 3.4
shows the block diagram of the DDC. The complex input signal (IF) is multiplied by the constant
frequency (usually also IF) exponential signal. The resulting signal is also complex and centered at
0. Then we decimate the signal with a factor N. Note that when there are multiple channels (up to
4), the channels are interleaved. For example, with 4 channels, the sequence sent over the USB
would be 10 Q0 IT Q1 12 Q2 I3 Q3 I0 QO I1 Q1, etc. The FPGA’s configuration data is stored

24

externally in PROM or some other non-volatile medium, either on or off the board. After applying

power, the configuration data is written to the FPGA.

Sampling rate = fs fs/N 16-bit
data to host
via USB
Input from i |
ADC * Decimating -
. Low Pass
Input from - - Filter » Q
ADC
i
sin CcOS
NCO Bandwidth
Sine / Cosine decimation
Generator factor =N

A

Center frequency
-fs/2 to +fs/2

Figure 11: DDC Block

Finally I/Q complex signal enters the computer via the USB. Here starts the software fabric with

signal processing.

5.2.4 ADC converter

In SDR system, the acquiring data via antenna has to be digitalized immediately in the receiver
chain. The B100 contains two 12 bit analog digital converters with sampling rate 64 MS/s. B100
ADC’s full range is 2V peak-to-peak with the input 50 ohms impedance. ADC performs sampling

and quantization of incoming signal at a certain sampling rate.

5.3 Low Noise Amplifier LNA

In wireless communications system, low noise amplifier (LNA) plays a significant role as the
critical interface between the antenna and the electronic circuits. An LNA can be considered as
front-end of the receiver channel. The noise of the total receive side is reduced by using an LNA
which capture and amplify a very weak signal received by antenna in addition to associated
random noise which the antenna presents to it. The main parameter of LNA is noise figure (NF)
that defines the degradation of the signal-to-noise ratio (SNR) due to effect of atmosphere, thermal

and other sources

Low noise amplifier has been developed in the Institute IAP with typical noise figure values 0.7 dB
und gain 12 dB. The figure 7 shows a schematic of an LNA using monolithic amplifier,, PGA-
103+“which is characterized through high dynamic range over a broad frequency range and with

low noise figure [1]. In addition, the PGA-103+ has good input and output return loss over a broad

frequency range without the need for external matching components and has demonstrated

excellent reliability.

f]]
SMA SMA H* Aakl
In Out 3
T -
-
@ o1 £ -
o0 V) In *Du C5
Ub >7V= 1N4004 I - 100p BEhl)
VR 1
6 | 100n Tnnn - | |
] | |
L L]]
100n j,’
|

Figure 12: Schematic and platine of LNA

Furthermore, an LNA has been tested using 8620C Sweep Oscillator and the results are to see on
Spectrum Analyzer (Anritsu MS 710E) as depicted in a figure 8

puT

8620C Sweep Oscillator
86222B RF Plug In

Attenuator 20dB

LNA 1420MHz

Power Supply 12V=

Figure 13: Test of LNA

The output signal of our test bed is to show in figure 9

Figure 14: Output signal of LNA

26

PGA-169
F - ZHEBMHE KL=+ @ dbn ledes 1-
|

i s G 8 |
i
G |
| T f
=l ¥ 1420MHz
I S| Gain 12dB
| i B
I ~—
|
il
i
|
|
|
|
|
|
I
|
|
I
|
|
REM: MH=E vew: M= SUP: 18eE/@ ATT:38480

Spectrum Analyzer

Anritsu MS 710 E

Gain PGA 103

Raferenz

HEK: 14Z28.8MHz — TEeomasEin

-1,9 dBm
~ F: 1428MH=z 5P:538.8MH=z~ RL:+ B.8dBr 248/ 1-
-0,44 dBm| -] I
— |
e
I G, T [T
I T
I -3,7 dBm
|
|
I
|
| G
I
|
|
I
|
aa¥ TNV T, (e, SN N oo
Ue -13,8dBm » b il e u f bl i T o
|
|
RBM- 1MHz @ UBHM: 3HHz@ SHFP: 18mS5- @3 ATT-38dBE
1170MHz 1420MHz 1670MHz

Figure 15 Output @ 2db

5.4 Hydrogen line filter

The frequency band to the observation of the hydrogen line which is worldwide exclusively at the
radio astronomy’s disposal suffices from 1400 to 1435 MHz On the upper and lower side of this
narrow frequency range strong transmitters work, such as L- band radar Mobile telephones etc..
The antennas and preamplifiers don’t have the selectivity to attenuate these strong signals. This
was the reason for the development of this filter. Only the frequency range around 1420MHz
passes the filter. All other frequencies become effectively attenuated. This filter is a must to
prevent interferences in an H-Line receiver.

e

& - - £

e, L

Figure 16

The installation of the filter should if possible at the receiver systems input. The insertion loss
worsens however the complete noise figure of the radio astronomical receiver. The filter behind
the preamplifier therefore is as recommended in the figure 8 shown commitments. Only if strong,
disturbing transmitters lead to doubtful results, the filter should be used in front of the
preamplifier. Please take care furthermore that no mechanical loads on the filter and his SMA
connectors work. The filter must be installed in normal atmospheric humidity at a dry place,
because the filter is not water protected. The preferred mounting place is in a temperature-

stabilized case direct with the preamplifier at the feed of the antenna.

The following figure shows the frequency response of hydrogen filter

drf+ 29.78MNH= - 3.38dE 4 FOLE INTERDIGITAL

F: 1428.8MHz SP:18.8MHz/ RL=+ 8 dBr SdB~” 1-

eimgespeiste Leistung 0dBm

o Dyrchgangsddmpfung ca) 2,5dB

Bandbrefte zw iSGhErI Markern: 49,2MHz @

Griin: Filter Durchlasgkurve

Rot: R EJrn_Loss_

e I N s

,

LN
L. Vi

EBH-3@@kH= VBM: IMH=® SHF: 185 @ ATT-38dBE=

Figure 17 frequency response

28

5.5 Preamplifier:

The IF amplifier serves as adjustment the output of analog hardware with digital hardware so that
adc converter can be able to work with high resolution. The next figures display the frequency
response and hardware parts

Figure 18 IF amplifier

The bandwidth of IF is 10- 1800 MHz.

MK 1420.0MHz - Us=- 4.48dBn INA UTF 25

F 1428MHz SPIS@8.8MHz~ RL:+ B dBn 5dB~ -
T
|

— f
1 1T
I
T
|
|
T
|
|
|
T
I
U -300Bm fasbaid l L

|
|
T
|
1

RBK: 3MHz VBH: IHHZ SHP: 18NS/ @ ATT:38dBE

Figure 19 frequency response of IF amp

The feed horn is a corrugated aperture-controlled horn in which the phase variation over the
aperture is small. By referring the design graph in [4, page 339], the directivity was calculated to be
about 6 dB.

5.6 Antenna and Feed horn

Two parabolic mesh-surface reflector antennas were used in this project. The first antenna was
thought for fixed receiver system without tracing the sun position having the diameter of 1.1 meters.
Following is the parabola arc of the reflector. The F/D ratio was calculated to be about 0.5.

30

6 Software
6.1 Gnu radio

Radio is a free & open-source software development toolkit developed by Eric Blossom that is
designed to couple PC host with hardware equipment (SDR platform) such as USRP, allowing for
building SDR systems. GNU radio operates as stand-alone software package and provides signal
processing blocks to implement software radios [3]. It can be used with readily-available low-cost
external RF hardware to create software-defined radios, or without hardware in a simulation-like
environment. Optimal operating system for building GNU Radio is Linux, but it can also be built

on MS Windows using one of Linux-like environments such as Cygwin or MinGW/MSYS.

Most of GNU Radio’s applications are written in Python as communicator function between
functional blocks, whereas every block is programmed in C++ for implementing signal processing
blocks. Python commands are used to control all of platform for software software-defined
parameters, such as transmit power, gain, frequency, antenna selection, etc., some of which can be
modified while the application is being executed. That means developer can implement real time

radio systems in this development environment.

GNU Radio has been structured on two main levels: signal processing blocks and flow graphs.
Blocks are designed to have a certain number of input and output ports, consisting of small Signal

processing components. When the blocks are appropriately connected, a flow graph is made.

GNU Radio it is very straightforward to modulate and simulate SDR systems. It has a same
principle as Matlab/Simulink and can be categorized as sinks, sources, filters and other functional
blocks.

® Sources blocks consist of outputs have no inputs and are used as the first element in
building the flow graph.

® Sinks consist of inputs and have no outputs and are typically the last element in building
the flow graph.

® TFilters are all the in between blocks and consist of both inputs and outputs.

® Flow-graph: the application is based on a flow-graph. Every flow-graph consists of
intermediate blocks along with source and sink blocks.

® Scheduler: It is created for each active block, which is based on steady stream of data flow
between the blocks. It is responsible for transferring data through the flow-graph- it
monitors each block for sufficient data at I/p and O/p buffers so as to trigger processing

function for those blocks.

Signal processingblocks

- b e
Source N [.| Sink

Files Files

Radiohardware Radio hardware

Other programs Other programs

Mikrophone Speaker

GLI

Figure 20 functionality of gnuradio

Various blocks such as different modulation/demodulation, filter, signal indicators, signal
generator and widgets, .etc. are written in C++ and already integrated within GNU Radio, while it
is also possible to write and add new blocks. Graphical interfaces are such as FFT sink and
oscilloscope supported in GNU Radio.

Two kinds of Flow graphs are available in GNU Radio either as hierarchical blocks or as top
blocks. Top blocks are top level flow graphs that contain all other flow graphs and have no
input/output (IO) ports.

Hierarchical blocks, on the other hand, contain a certain number of IO ports (used to connect to
other blocks). All of the basic signal processing blocks are connected within hierarchical blocks and
can that way be used as one block. Communication between blocks is achieved using data streams
considering to be connected together using same data type. It means that data types between
output of one block and input of the next have to be adequately set. GNU Radio supports different
data types such as byte, short, integer, float and complex (8 float byte).

6.2 Gnu Radio Architecture

The basic architecture of Gnuradio shows in following figure 18 containing a complex flow-graph
that consists of blocks modules and low-level algorithms. Every Block or algorithm is implemented
in C++ and offers various signal processing functions (Channel Coding, Filters, Modulations
technique etc). These functions can be converted (generated) automatically into python modules
using python “wrapper” (Simplified Wrapper) and it serves as the interface compiler allowing the
integration between C++ and Python language. As mentioned, the signal processing blocks are
written in C++ so that script language python connets the blocks together to form the flow graph
[1]. The generated blocks are used to buid a flow-graph model with the help of python. The
python framework is responsible for communication of data through module buffers and creates a

simple scheduler that helps to run blocks in a sequential order for signal iteration [1]

32

Python
-Application Development
-Creating Flow Graphs

Figure 21 Software architecture

6.3 Gnu Radio Companion (GRC)

GNU Radio Companion is a graphical user interface for GNU Radio that allows building flow
graphs by simply connecting visually-presented blocks. GRC is highly intuitive interface suitable
for GNU Radio beginners that resembles Matlab Simulink's one, so anyone with some background

in working with Simulink shouldn't have problems learning GRC as well.
From the Ubuntu terminal, GRC is started with command:
gnuradio-companion .

The dial_tone example can be considered as “Hello world” of GNU Radio can be done using GRC

as explained in Figure xx

> [Sources]
» [sinks]
> [Operators]

> [Type Conversions]
P [Stream Conversions)
P [Misc Conversions |
» [Synchronizers]

» [Level Controls]

» [Filters]

» [Modulators]

P [Error Correction]

> [Line Coding]

> [Vocoders]

» [Probes)

» [variables]

P [misc]

» [UHD]

> [NOAA]

B [wX Culwidgets |

> [Pager]

- — — > [QTouIwidgets]
(Generating Figure 22 Software architecture (5]
Executing:'

D
>> Done HTI

Figure 23: Implementation of dial_tone example within Gnu Radio Companion -

Dial_tone exsample generates two sine waves of the same amplitude at frequencies 350 Hz and 440

Hz, which corresponds to the sound of US dial tone, and outputs them to the sound card.

One can translate this graph into the correspondent python code by pressing on the button

“generate the flow graph % ”. The generated code will be saved in the Linux Ubuntu under

2

home/bin and then can be executed through the button ,execute the flow graph

The created code source of the dial_tone exsample is given and explained below.

#!/usr/bin/env python
from gnuradio import gr
from gnuradio import audio

def build_graph ():

sampling_freq = 48000

ampl=0.1

fg = gr.flow_graph ()

srcO = gr.sig_source_f (sampling_freq, gr.GR_SIN_WAVE, 350, ampl)
srcl = gr.sig_source_f (sampling_freq, gr.GR_SIN_WAVE, 440, ampl)
dst = audio.sink (sampling_freq)

fg.connect ((src0, 0), (dst, 0))

fg.connect ((src1, 0), (dst, 1))

return fg

if _name__=='_main__"

fg = build_graph ()

fg.start ()

raw_input ('Press Enter to quit: ')

fg.stop ()

The first line, #!/usr/bin/env python, points python to the location of python executable, and
is a line that has to be added to every program that we want to run directly from terminal
(as an executable).

Then, we define which modules to import — in this case, g7, which is always imported, and audio,

which allows us to use audio sink.

After that, sampling frequency is set according to sound card’s specifications (48 kHz is the

sampling frequency of majority of modern sound-cards), and the amplitude to 0.1.

gr.sig_source_f is used to create sine waves at the frequencies of 350 Hz and 440 Hz, where _f

extension, as previously explained, indicates that the produced data is of type float.

Then, the audio sink that writes received data to the sound card is created. It is worth mentioning

that audio sink only accepts float data as an input.

fg.connect connects the flow graph’s blocks — the first sine wave is connected to the port 0 of the

audio sink, while the second sine wave is connected to port 1.

34

6.4 Basic Blocks
6.4.1 RTL SDR source

The purpose of the Master thesis is converting a big part of the Hardware from receiver for
registration of the HL 21 cm spectrum into software using GnuRadio platform. So many
algorithms for signal processing and hardware functionality (filter, modulation etc...) can be made
in GRC (gnuradio-companion). The RTL SDR Usb(2382u) conduces as Front-End to detect Hl Signal
and convert it to digital signal. GnuRadio recognizes the incoming data from RTL SDR using
driver implemented by Osmsann [1] in GRC in order to recive IQ data so one inputs the desired

parameters as center frequency, gain, decimation etc.. through the graphic user interface driver to

tune the desired frequency. The RTL driver in GRC is given and explained as follows in Figure 18.

® ~pplications Places)] B3 en e = 4)) 150PM 8 iap Lt
File Edit vie Build Help
B X 2 AET O & = 3 <=2 C3
2 * [Debug Tools]
intitted = Lpehe
reciver & | untitled % € Properties: RTL2832 Source * [File Operators |
P ! — » [Math Operators |
102 top, Block Qutput Type Complex - » [Stream Operators |
Ganerate Options: WH Gl
Sample rate samp_rate * [Stream Tag Tools]
RTL2832 Source Froqudyey) 120 » [coding]
Verbose output; On o
samplerate: 2 Bandwidth (Hz) (2000 > [Equalizers]
Frequency (Hzk: = * [Packet Dperators]
Retetivs gain:on I Relative gain on » [OFDM]
Gain: [i
Varlable L ol » [symbol coding]
10: e ake wnmee [» [Deprecated]
Value: 3¢ e g T
. Aulo gain mode | Off - * [Resamplers]
custom usBVID K0 i [Chamelzeis]
* [channel Models |
Custom USB PID oo
» [UHD]
Custom Tuner Elonics E4000 (DVB) | = » [Graphical Sinks]
fer read length (bytes) [§ * [ACARS]
xfer timeout (ms)) * [sinks]
Use buffer on - [[Souces]
i Any Block Single Source
=kl S AnyBlock Source
Bufer level a s
l<c< Welcome to GNU Radio Companion 3.6.5 >>> HarlF: Satrce
foading: homs iep/Desktprecher i Crystal frequency (Hz) 0 osmocom source
ouputstas | No = RTL-SDR Source
Showing: */home/iap/Desktop/reciver.grc” » [Error Correction]
Showing: ™ > [poA]
* [WX GUI Widgets]
| cancet oK b [operstars]

Figure 24 RTL SDR driver in GnuRadio

In the properties window of RTL2832 (our source hardware) one can select too tuner which RTL
Usb contains (Elonics E4000 DVB).

6.4.2 WX GUI blocks

The WX GUI functions is very powerful tools to display and analyze a signal is to display in time
domain and frequency domain. This block made us easy to measure and analyzes a hydrogen line
1 graphically. The python framework provides such wonderful tools in Gunradio to construct

GUI tools. We used the following WX GUI blocks:
- FFT sink block

The function of FFT is used just as the signal sink ,based on fast Fourier transformation (FFT). It is
defined in the module in python interface “wxgui.fftsink.py”. The function

“make_fft_sink_c()”helps as the interface to create an instance of the FFT sink.
- Scope sink block

WX GUI scope is very useful tools in Gnu Radio to display the waveforms in the time domain. It

seems as software oscillograph.

6.5 Software design

The HI 21 c¢m signals with other signals were obtained directly from RTL SDR Usb. The incoming
digital data was filtered with FFT band-pass filter which filter the signal in frequency domain to
get better removing frequently noise, whereas the parameter of this filter can be connected with
GUI and then parameters of filter (center frequency, bandwidth, gain etc...) can be entered
through it. Hereafter the filtered signal has been converted back to time domain then the power
spectrum calculated and integrated to get average power. The averaging process ensures removing

the random noise from the signal as much as possible.

To make the signal detectable within desired range and probable noise a signal processing
technique is performed. The main idea of this technique is comparing the spectrum at Hydrogen
line with calculated spectrum created from shift the Hydrogen line signal a few Mhz. The exact
spectrum is calculated and stored for a certain period of time. The help signal comes into existence
using changing the local oscillator frequency of the mixer (IF stage) to a few MHz away from
Hydrogen line and then spectrum is calculated at that frequency. The Spectrum at the Hydrogen

line is named Signal and spectrum at some offset frequency from Hydrogen line is named Help.

6.6 Software Implementation

The RF signal coming from Satellite, amplified through LNA, pass-filtered using interdigital 4 pole
filter for passing signal 21 cm with bandwidth 20 Mhz finally through PGA circuit pre-amplified,
is fed into RTL SDR which has E4000 chip as tuner and a RTL 2382 u chip that contains an IF stage
for converting RF into IF and then baseband with a maximum bandwidth of 4 MHz This baseband
signal is available through usb2.0 interface to GnuRadio running on a PC for further processing.
The software for filters and FFT analyze are implemented in GnuRadio to calculate the power
spectrum. In order to have two slightly different frequency signals (Signal and Reference),

frequency switching is used. Instead, the whole band consisting of the signal as well as the

36

reference was obtained for processing. In our case this was as follows Signal at 1420.4 MHz with
2.5 MHz bandwidth (1419.15 - 1421.65) MHz.

Reference at 1417.9 MHz with 2.5 MHz bandwidth (1416.65 — 1419.15) MHz. Total bandwidth
comprising of Signal and Reference thus became 5 MHz. The signal and reference signals are then
filtered through separate filters, their FFT is calculated, averaged and finally the above

mathematical equation is applied to detect the required signal.

RTL USB Source

A

FFT(Pass band filter)

A

Cal signal power

‘ v

Signal processing

- Shifted signal

A

Conversion to time
domain

A

Display results

6.6.1 RTL Source

The HL signal was acquired using determining the signal’s parameters. The software diagram
begins always with signal source (hardware, software). The important parameters are listed as
follows.

Output type: IQ (In-phase and Quadrature) is used in signal kind of the typical kind signal in
wireless communication

Frequency: Frequency: This is the frequency which will be down-converted to 0 Hz (baseband). It

was set to the center of Reference frequency band i.e. 1417.9 MHz.

Sample rate:

Bandwidth: 4 MHz

Gain: 10 dB

Customer Tuner : Elonics E 4000 (DVB) is built on RTL SDR

ertles: RTL2832 Source

Complex i |
samp_rate
1420

Custom USBVID
Custom USB PID
Custom Tuner | Elanics E4000 (DVB)
fer read length (byzes)
Hor timeout (ms)

Use buffer

Buffer multipher
Buffer level

o
o
O
o
o

Crystal frequency (Hz) [0

Cutputstatus | No

6.6.2 FFT filter:
As explained the goal of using FFT filter is to remove noise in frequency domain. The suitable pass

band filter was implemented in FFT block.

6.7 Test and Measurements

The setup of total system was realized on the high mountains for testing the whole system for HL1
detection. This testing in real environment would be validating that all the components are placed

in the right order. (antenna, LNA, power supply etc).

Many experiments were carried out for the first test in different directions and then power values
of the signal were measured. As next step the antenna was orient in the direction of the sun and
power spectrum has been observed and that noted whereby the power values was shifted
compared to spectrum taken form many astronomical observatory in Heppenheim Germany [1]
and in offline environment (simulation) therefore power spectrum has been recorded regarding to
changing of preamplifier gain (hardware) and filters parameters (software). The results were
relative acceptable as expected. Then the antenna has scanned the sky for many angle values
inclusive in the direction of hydrogen line source. Figures 3-10, 3-12, 3-13 show the setup and the
difference in the spectrum of (sig-ref/ref) without and with the antenna pointed towards the
Hydrogen line source respectively. It can be seen from the figures 3-12 and 3-13 that the receiver

worked properly as the signal is differentiable from noise.

Comparing the spectrum taken with the old configuration of SALSA ([11], figure 3-11) pointed
toward the same direction of the galactic plane (Galactic longitude 1=120 degrees, Galactic latitude
b = 0) and the spectrum (figure 3-13), obtained with the upgraded digital software receiver
pointing in the same direction, clearly shows the functionality of the upgraded digital receiver. The
difference is spectrum can be explained by the approximate pointing during our experiment, but it

38

certainly looks like a detection! It would also have been useful to observe in a slightly larger or
shifted (towards right) band [11].

The observed spectrum range seems far wider than the actual spectrum band needed to observe
(within red circle in figure 3-13). This is due to the FFT Scope block of the GnuRadio, where no
zooming on a particular section of the spectrum is possible; hence we have to see the whole band
which is being translated from analog to digital domain through sampling. To observe only a small
part of spectrum, one could decimate the (SSGNAL-REFERENCE)/REFERENCE signal to a point
where the bandwidth is half the decimated sampling rate (Nyquist Theorem). Actually, a small

decimation is performed here if we compare figures 3-13 and 3-9 to see the difference.

7 Future Work

Parts of the system are planned to be put on a satellite in a further step in the IAP SRWDA-SAT
project [9]. The Gnu Radio receiver model will be converted to python code then stored on

memory of board computer

Figure 26 Import Receiver on Mockup model

Figure 25 Mock up model

40

8 Literature

[1] K. Rohlfs, Tools of radio astronomy, 2004.
[2] E. Grayver, Implementing software defined radio, 2013.

[3] L. Joseph Mitola, Software Radio Architecture: Object Oriented Appoaches to Wireless Systems
Engineering., John Wiley and Sons, 2000.

[4
[5
[6
[7

W. Tuttlebee, Software Defined Radio, England, 2002.

E. Comany, , https://www.ettus.com/product/details/WBX".

Xilinx, , http://www .xilinx.com/support/documentation/data_sheets/ds529.pdf".
D. Shen, ,,The USRP Board,” p. 7, Augst 2005.

[N B W S il S WAL}

[9] IAP SRWDA-SAT project, see www.aecenar.com/research

www.astronomynotes.com

WWwWWw.aao.gov.au

9 Appendix
A.1 Software

Python code

#!/usr/bin/env python
S o
Gnuradio Python Flow Graph

Title: Top Block

Generated: Tue May 6 15:46:55 2014

FHAHH A A A AR AR AR

from gnuradio import blocks

from gnuradio import eng_notation

from gnuradio import fft

from gnuradio import filter

from gnuradio import gr

from gnuradio import window

from gnuradio.eng_option import eng_option
from gnuradio.filter import firdes

from gnuradio.gr import firdes

from gnuradio.wxgui import fftsink2

from gnuradio.wxgui import forms

from grc_gnuradio import wxgui as grc_wxgui
from optparse import OptionParser

import ConfigParser

import baz

import wx

class top_block(grc_wxgui.top_block_gui) :

def _ _init__ (self):
grc_wxguil.top_block_gui.__init__ (self, title="Top Block")
_icon_path = "/usr/share/icons/hicolor/32x32/apps/gnuradio-—
grc.png"
self.SetIcon(wx.Icon(_icon_path, wx.BITMAP_TYPE_ANY))

S i i
Variables
S i i
self._variable_config 0_config = ConfigParser.ConfigParser ()
self._variable_config 0_config.read("default")
try: variable_config 0 =

self._variable_config_ 0_config.getfloat ("main", "key")
except: variable_config_0 = 0
self.variable_config_0 = variable_config_0
self.samp_rate = samp_rate = 10000000
self.low_cutoff = low_cutoff = 0.125
self.high_cutoff = high_cutoff = 0.375
self.gui_onoff = gui_onoff = False
self.gain = gain = 1
self.fft _size = fft_size = 1024
self.dec = dec = 10
self.avg_alpha = avg_alpha = 0.1
self.Sig_minus_Ref = Sig_minus_Ref = 2500000
self.Sig_freq = Sig_freq = 1420400000

42

self.Ref_freq = Ref_freqg = 1417900000
self.N = N = 1024
self .BW = BW = 2500000

HHAHHHHH AR A S A H A

Blocks

HHAHHHHH AR A S A H A

_gain_sizer = wx.BoxSizer (wx.VERTICAL)

self._gain_text_box = forms.text_box(
parent=self.GetWin(),
sizer=_gain_sizer,
value=self.gain,
callback=self.set_gain,
label="Filter Gain",
converter=forms.float_converter(),
proportion=0,

)

self._gain_slider = forms.slider (
parent=self.GetWin(),
sizer=_gain_sizer,
value=self.gain,
callback=self.set_gain,
minimum=1,
maximum=32,
num_steps=100,
style=wx.SL_HORIZONTAL,
cast=float,
proportion=1,

)

self.GridAdd(_gain_sizer, 0, 0, 1, 1)

_avg_alpha_sizer = wx.BoxSizer (wx.VERTICAL)

self._avg_alpha_text_box = forms.text_box(
parent=self.GetWin(),
sizer=_avg_alpha_sizer,
value=self.avg_alpha,
callback=self.set_avg_alpha,
label="Average Alpha",
converter=forms.float_converter(),
proportion=0,

)

self._avg_alpha_slider = forms.slider (
parent=self.GetWin(),
sizer=_avg_alpha_sizer,
value=self.avg_alpha,
callback=self.set_avg_alpha,
minimum=0.001,
maximum=0.25,
num_steps=100,
style=wx.SL_HORIZONTAL,
cast=float,
proportion=1,

)

self.GridAdd(_avg_alpha_sizer, 3, 0, 1, 3)

_BW_sizer = wx.BoxSizer (wx.VERTICAL)

self._BW_text_box = forms.text_box(
parent=self.GetWin(),
sizer=_BW_sizer,
value=self .BW,

callback=self.set_BW,
label="Bandwidth",
converter=forms.float_converter(),
proportion=0,
)
self. BW slider = forms.slider (
parent=self.GetWin (),
sizer=_BW_sizer,
value=self.BW,
callback=self.set_BW,
minimum=500000,
maximum=2500000,
num_steps=100,
style=wx.SL_HORIZONTAL,
cast=float,
proportion=1,
)
self.GridAdd (_BW_sizer, 0, 4, 1, 1)
self.wxgui_fftsink2_0_0_0 = fftsink2.fft_sink_c(
self.GetWin(),
baseband_freg=0,
y_per_div=10,
y_divs=10,
ref_level=0,
ref_scale=2.0,
sample_rate=samp_rate,
fft_size=1024,
fft_rate=15,
average=False,
avg_alpha=None,
title="FFT Plot",
peak_hold=False,
)
self.Add(self.wxgui_fftsink2_0_0_0.win)
self.wxgui_fftsink2_0_0 = fftsink2.fft_sink_c(
self.GetWin(),
baseband_freg=0,
y_per_div=10,
y_divs=10,
ref_level=0,
ref_scale=2.0,
sample_rate=samp_rate,
fft_size=1024,
fft_rate=15,
average=False,
avg_alpha=None,
title="FFT Plot",
peak_hold=False,
)
self.Add(self.wxgui_fftsink2_0_0.win)
self.wxgui_fftsink2_0 = fftsink2.fft_sink_c(
self.GetWin(),
baseband_freg=0,
y_per_div=10,
y_divs=10,
ref_level=0,
ref_scale=2.0,
sample_rate=samp_rate,

44

fft_size=1024,
fft_rate=15,
average=False,
avg_alpha=None,
title="FFT Plot",
peak_hold=False,
)
self.Add(self.wxgui_fftsink2_0.win)
self.single_pole_iir_ filter_xx 0_0 =
filter.single_pole_iir_filter_f£f(0.1, 1024)
self.single_pole_iir_filter_xx_ 0 =
filter.single_pole_iir_filter_f£f(0.1, 1024)

self.rtl12832_source_0 = baz.rtl_source_c(defer_creation=True,

output_size=gr.sizeof_gr_complex)
self.rtl12832_source_0.set_verbose(True)
self.rtl12832_source_0.set_vid(0x0)
self.rtl2832_source_0.set_pid(0x0)
self.rtl12832_source_0.set_tuner_name("edk")
self.rtl12832_source_0.set_default_timeout (0)
self.rtl2832_source_0.set_use_buffer (True)
self.rtl12832_source_0.set_fir coefficients(([]))

self.rtl2832_source_0.set_read_length(0)

if self.rtl2832 source_0O.create() == False: raise
Exception("Failed to create RTL2832 Source: rtl2832_source_0")

self.rtl2832_source_0.set_sample_rate(samp_rate)

self.rtl12832_source_0.set_frequency(1420000000)

self.rtl12832_source_0.set_auto_gain_mode (False)
self.rtl12832_source_0.set_relative_gain(True)
self.rtl2832_source_0.set_gain(27)

self._gui_onoff_check_box = forms.check_box
parent=self.GetWin(),
value=self.gui_onoff,
callback=self.set_gui_onoff,
label="check to parameter",
true=True,
false=False,
)
self.Add(self._gui_onoff_check_box)
self.freq xlating fir_filter_xxx_ 0 =
filter.freqg xlating_fir_filter_ccc(1,
(gr.firdes.complex_band_pass(gain,samp_rate, low_cutoff,high_cutoff, BwW,
,beta=6.76)), -2500000, samp_rate)
self.fft_vxx_ 0_0_0_0 = fft.fft_vcc (1024, True,
(window.hamming(N)), False, 1)
self.fft_vxx 0_0_0 = fft.fft_vcc (1024, True,
(window.blackmanharris (1024)), True, 1)

0

self.fft_vxx 0_0 = fft.fft_vfc (1024, True,
(window.blackmanharris (1024)), 1)
self.fft_filter_xxx_0_0_0 = filter.fft_filter_ccc(l,
(gr.firdes.complex_band_pass(gain, samp_rate, low_cutoff,high_cutoff,BW, O
,beta=6.76)), 1)
self.fft_filter_xxx_0_0 = filter.fft_filter_ccc (1,
(gr.firdes.complex_band_pass(gain, samp_rate, low_cutoff,high_cutoff,BW, O
,beta=6.76)), 1)
self.fft_filter xxx 0 = filter.fft_ filter_ccc(1l,
(gr.firdes.complex_band_pass(gain, samp_rate, low_cutoff,high_cutoff,BW, O
,beta=6.76)), 1)
self.blocks_vector_to_stream_0 =
blocks.vector_to_stream(gr.sizeof_gr_complex*1l, 1024)
self.blocks_stream_to_vector_0_0 =
blocks.stream_to_vector (gr.sizeof_gr_complex*1l, 1024)
self.blocks_stream to_vector_0 =
blocks.stream_to_vector (gr.sizeof_gr_complex*1l, 1024)
self.blocks_keep_one_in_n_0 =
blocks.keep_one_in_n(gr.sizeof_gr_complex*1l, 5)
self.blocks _divide_xx_0 = blocks.divide_ ff (1024)
self.blocks_conjugate_cc_0 = blocks.conjugate_cc()
self.blocks_complex_to_mag_squared_1_0 =
blocks.complex_to_mag_squared(1024)
self.blocks_complex_to_mag_squared_1 =
blocks.complex_to_mag_squared(1024)
self.blocks_add_const_vxx_0 = blocks.add_const_vEf(([-1]*N))
Ref freqg_sizer = wx.BoxSizer (wx.VERTICAL)
self._Ref_freq_text_box = forms.text_box(
parent=self.GetWin(),
sizer=_Ref_freq_sizer,
value=self.Ref_freq,
callback=self.set_Ref freq,
label="Reference frequency",
converter=forms.float_converter(),
proportion=0,
)
self._Ref freqg slider = forms.slider (
parent=self.GetWin(),
sizer=_Ref_freq_sizer,
value=self.Ref_freq,
callback=self.set_Ref_ freq,
minimum=1417400000,
maximum=1418400000,
num_steps=100,
style=wx.SL_HORIZONTAL,
cast=float,
proportion=1,
)
self.GridAdd (_Ref_freq_sizer, 0, 1, 1, 3)

FHAHAHHH AR H AR A AR A A B A A A AR AR HH

Connections

FHHHAHHH AR A H A HH AR A A A A A AR H A AR AR A AR SRS HH

self.connect ((self.fft_vxx 0_0_0_0, 0),
(self.blocks_complex_to_mag_squared_1, 0))

self.connect ((self.blocks_add_const_vxx_0, 0),
(self.fft_vxx_0_0, 0))

46

self.connect ((self.blocks_divide_xx_0, 0),
(self.blocks_add_const_vxx_0, 0))

self.connect ((self.single_pole_iir_filter_xx_0, 0),
(self.blocks_divide_xx_0, 1))

self.connect ((self.blocks_keep_one_in_n_0, 0),
(self.wxgui_fftsink2_0, 0))

self.connect ((self.fft_vxx_0_0, 0),
(self.blocks_vector_to_stream 0, 0))

self.connect ((self.blocks_complex_to_mag_ squared_1, 0),
(self.single_pole_iir_filter_xx_0, 0))

self.connect ((self.blocks_conjugate_cc_0, 0),
(self.freq xlating fir_filter_xxx_0, 0))

self.connect ((self.blocks_vector_to_stream_0, 0),
(self.blocks_conjugate_cc_0, 0))

self.connect((self.single_pole_iir_filter_xx_0_0, 0),
(self.blocks_divide_xx_0, 0))

self.connect((self.blocks_complex_to_mag_squared_1_0, 0),
(self.single_pole_iir filter_xx_0_0, 0))

self.connect ((self.fft_vxx 0_0_0, 0),
(self.blocks_complex_to_mag_squared_1_0, 0))

self.connect ((self.fft_filter_xxx 0, 0),
(self.blocks_keep_one_in_n_0, 0))

self.connect ((self.freq xlating fir filter_xxx_0, 0),
(self.fft_filter_xxx_0, 0))

self.connect ((self.rtl12832_source_0, 0),
(self.fft_filter_xxx_0_0, 0))

self.connect ((self.fft_filter_xxx 0_0, 0),
(self.wxgui_fftsink2_0_0, 0))

self.connect ((self.rtl12832_source_0, 0),
(self.fft_filter_xxx_0_0_0, 0))

self.connect ((self.fft_filter_xxx 0_0_0, 0),
(self.wxgui_fftsink2_0_0_0, 0))

self.connect ((self.fft_filter_xxx 0_0_0, 0),
(self.blocks_stream_to_vector_0, 0))

self.connect ((self.blocks_stream_to_vector_0, 0),
(self.fft_vxx_0_0_0_0, 0))

self.connect ((self.fft_filter_xxx 0_0, 0),
(self.blocks_stream_to_vector_0_0, 0))

self.connect ((self.blocks_stream_to_vector_0_0, 0),
(self.fft_vxx_0_0_0, 0))

def get_variable_config_ 0 (self):
return self.variable_config_ 0

def set_variable_config_0(self, variable_config_0):
self.variable_config_0 = variable_config_0

def get_samp_rate(self):
return self.samp_rate

def set_samp_rate(self, samp_rate):
self.samp_rate = samp_rate

self.freq xlating fir_filter_xxx_0.set_taps((gr.firdes.complex_band
_pass(self.gain,self.samp_rate,self.low_cutoff,self.high_cutoff,self.BW,
0 ,beta=6.76)))

self.fft_filter_xxx_0.set_taps((gr.firdes.complex_band_pass(self.ga
in,self.samp_rate,self.low_cutoff,self.high_cutoff,self.BW, O
,beta=6.76)))

self.fft_filter_xxx_0_0_0.set_taps((gr.firdes.complex_band_pass(sel
f.gain,self.samp_rate,self.low_cutoff,self.high_cutoff,self.BW, O
,beta=6.76)))
self.rtl12832_source_0.set_sample_rate(self.samp_rate)

self.fft_filter_xxx_0_0.set_taps((gr.firdes.complex_band_pass(self.
gain,self.samp_rate,self.low_cutoff,self.high_cutoff,self.BW, 0
,beta=6.76)))
self.wxgui_fftsink2_0.set_sample_rate(self.samp_rate)
self.wxgui_fftsink2_0_0_0.set_sample_rate(self.samp_rate)
self.wxgui_fftsink2_0_0.set_sample_rate(self.samp_rate)

def get_low_cutoff (self):
return self.low_cutoff

def set_low_cutoff(self, low_cutoff):
self.low_cutoff = low_cutoff

self.freq xlating fir_filter_xxx_0.set_taps((gr.firdes.complex_band
_pass(self.gain,self.samp_rate,self.low_cutoff,self.high_cutoff,self.BW,
0 ,beta=6.76)))

self.fft_filter_xxx_0.set_taps((gr.firdes.complex_band_pass(self.ga
in,self.samp_rate,self.low_cutoff,self.high_cutoff,self.BW, O
,beta=6.76)))

self.fft_filter_xxx_0_0_0.set_taps((gr.firdes.complex_band_pass(sel
f.gain,self.samp_rate,self.low_cutoff,self.high_cutoff,self.BW, 0
,beta=6.76)))

self.fft_filter_xxx_0_0.set_taps((gr.firdes.complex_band_pass(self.
gain,self.samp_rate,self.low_cutoff,self.high_cutoff,self.BW, 0
,beta=6.76)))

def get_high_cutoff(self):
return self.high_cutoff

def set_high_cutoff(self, high_cutoff):
self.high_cutoff = high_cutoff

self.freq xlating fir_filter_xxx_0.set_taps((gr.firdes.complex_band
_pass(self.gain,self.samp_rate,self.low_cutoff,self.high_cutoff,self.BW,
0 ,beta=6.76)))

self.fft_filter_xxx_0.set_taps((gr.firdes.complex_band_pass(self.ga
in, self.samp_rate,self.low_cutoff,self.high_cutoff,self.BW, 0
,beta=6.76)))

self.fft_filter_xxx_0_0_0.set_taps((gr.firdes.complex_band_pass(sel
f.gain,self.samp_rate,self.low_cutoff,self.high_cutoff,self.BW, O
, beta=6.76)))

self.fft_filter_xxx_0_0.set_taps((gr.firdes.complex_band_pass(self.
48

gain,self.samp_rate,self.low_cutoff,self.high_cutoff,self.BW, 0
,beta=6.76)))

def get_gui_onoff (self):
return self.gui_onoff

def set_gui_onoff(self, gui_onoff):
self.gui_onoff = gui_onoff
self._gui_onoff_check_box.set_value(self.gui_onoff)

def get_gain(self):
return self.gain

def set_gain(self, gain):
self.gain = gain
self._gain_slider.set_value(self.gain)
self._gain_text_box.set_value(self.gain)

self.freq xlating fir_filter_xxx_0.set_taps((gr.firdes.complex_band
_pass(self.gain,self.samp_rate,self.low_cutoff,self.high_cutoff,self.BW,
0 ,beta=6.76)))

self.fft_filter_xxx_0.set_taps((gr.firdes.complex_band_pass(self.ga
in,self.samp_rate,self.low_cutoff,self.high_cutoff,self.BW, O
, beta=6.76)))

self.fft_filter_xxx_0_0_0.set_taps((gr.firdes.complex_band_pass(sel
f.gain,self.samp_rate,self.low_cutoff,self.high_cutoff,self.BW, 0
,beta=6.76)))

self.fft_filter_xxx_0_0.set_taps((gr.firdes.complex_band_pass(self.
gain,self.samp_rate,self.low_cutoff,self.high_cutoff,self.BW, 0
,beta=6.76)))

def get_fft_size(self):
return self.fft_size

def set_fft_size(self, fft_size):
self.fft_size = fft_size

def get_dec(self):
return self.dec

def set_dec(self, dec):
self.dec = dec

def get_avg_alpha(self):
return self.avg_alpha

def set_avg_alpha(self, avg_alpha):
self.avg_alpha = avg_alpha
self._avg_alpha_slider.set_value(self.avg_alpha)
self._avg_alpha_text_box.set_value(self.avg_alpha)

def get_Sig_minus_Ref (self):
return self.Sig_minus_Ref

def set_Sig_minus_Ref(self, Sig_minus_Ref):

self.Sig_minus_Ref = Sig_minus_Ref

def get_Sig_freqg(self):
return self.Sig_freqg

def set_Sig_freqg(self, Sig_freq):
self.Sig _freq = Sig_freqg

def get_Ref_ freqg(self):
return self.Ref_freqg

def set_Ref freqg(self, Ref_freq):
self.Ref_freq = Ref_freq
self._Ref_freq_slider.set_value(self.Ref_freq)
self._Ref freq text_box.set_value(self.Ref_freq)

def get_N{(self):
return self.N

def set_N(self, N):
self.N = N
self.blocks_add_const_vxx_0.set_k(([-1]*self.N))

def get_BW(self):
return self.BW

def set_BW(self, BW):
self .BW = BW

self.freq xlating fir_filter_xxx_0.set_taps((gr.firdes.complex_band
_pass(self.gain,self.samp_rate,self.low_cutoff,self.high_cutoff,self.BW,
0 ,beta=6.76)))

self.fft_filter_xxx_0.set_taps((gr.firdes.complex_band_pass(self.ga
in,self.samp_rate,self.low_cutoff,self.high_cutoff,self.BW, O
,beta=6.76)))
self. BW slider.set_value(self.BW)
self._BW_text_box.set_value(self.BW)

self.fft_filter_xxx_0_0_0O.set_taps((gr.firdes.complex_band_pass(sel
f.gain,self.samp_rate,self.low_cutoff,self.high_cutoff,self.BW, O
,beta=6.76)))

self.fft_filter_xxx_0_0.set_taps((gr.firdes.complex_band_pass(self.
gain,self.samp_rate,self.low_cutoff,self.high_cutoff,self.BW, 0
,beta=6.76)))

if _ _name_ == '__main__ ':

parser = OptionParser (option_class=eng_option, usage="%$prog:
[options]™)

(options, args) = parser.parse_args()

tb = top_block()
tb.Run (True)

50

A.2 Hardware

SDR RTL 2382+4000

£auss, /

I

I!jﬂ(I

%¥3

B
i
LLELLL

IF Amplifier

Le]]
E4Bed

"y

[Ij:eIw:sIHL

e [End B

FRa J T [H . B

g Sl ETiE S

e =3

I I 11 hnij)ﬁqwi‘:“ IH
T T
i [9 ﬂ]

[
il

Yaee 17
e "'l

JRen A I (.
Ul =1 7 T

&

v la—dm

T T

‘\ sr.hk
UTF-025 .-—.—T!l it

7315

rl—.”

gl

ik

usB

Low noise amplifier

A

[B

SMA

Ub >7V= 1N4004

&-—y T

Low Noise Amplifier PGA 103+
Gain @1400 MHz 12dB

Noise Figure @1400MHz 0,7 dB
P1dB 22,5dBm typ. @ 2 GHz @5V
High IP3, 45dBm typ. @2GHz, 5V

L

tarkeroberseite

Out
J]i ’ iEmEE
| | T
S -
Bk

_! |
e - =T
| mm SRR

Anderungen Datum Name Bezeichnung: Blattzahl

Datum Name gez. LNA PG103+
gepr. Blatt-Nr.:

Zeichnungs-Nr.:

52

Motherboard USRP B100

I8t orrpars Faguad

TCXO Intemal Reference PenTCI oo ki w e g 2k O cureed

orpn TERD WETCXD X1

-

Brgr

ﬁ il] 2 _q“
e

_DEMI_LIH] 1

ovOD_CGs Ay

H CGEM SPI Header

a
nmo cm X4 VIND_PR
o
e
o ~om vine Jwew wer
| e 2 somen ileee e s
Fl e
o

SMaA Extemal Reference

H iz
wa
et SEN_COIM und MEBD_COEN
im0 5 e o d wim
. il P
g mIm 1 . AT, COER! spy sy Opan = 00 Made i =
B T asmeonm Bl st e a8
H = £ = K Sec gl ﬂum
5 = R4 % Rmi1S mUB G RIT mi18 e B
z 0 HOME < WONE . NONE D WOME
" b amsszm-crm
-
EFE
e
L T [pp— e
B
Sanarg, b m s s gt s _
el kg v i
H mnT mmd mmS mzd mn
WEHE < HOME < WOME < NOME D, WOHE
clock gen 3.3v tewo 3.3
wog cuet oot mog cuet oo e

e _> _H _.. _h 5 _.n _r. _—. _ru _. _ _

E £ E E G E E E E F E E

o

. Au co] e S mﬁu iy e
o1 m s _ o I ()) e) O s o = ot uh_ st Ze) ot NL orar| e
M [[

ciif cngcrid ondend cnd ond cizal crzd i o
o

o] e cidcim
H 1uf]0 10 1] 0 160 1] 0 9]0 1|0 1l 0 9]0 10| 0 1a70 10d] 0. 1000 1l 0. 10 1
£ g AT__..
T i USRP1+ Clotk Ganemiton
_ St
s aa T
+ s ‘o n v SAutery
T T T T T T T T T T T T T v T v T T T T T T - T T T T T

Lo
uw
o
| ELL ADSBER-ALIX "
Uy o[|% anancar
ALY ADC A1 LI PP sooet(S mepEl
QUTE A C] 2 s aDc a2 =
AUX ADC A2 U famaoc g auxpacal® mpoaca o
o - El H
L AR ER " SUXADCE1 B luocac e amoacs|? A DACE o
£2) = ALK AT ©] £ \BEE
= = = S ADC B2 U | ane
AUX DWC B .
L " WA ADC BEF U |aioe aoc e 9
QUTE B El ALK DAC 4 El NN E
OUTN B L] AUK DAC D) M= 5
i - —
| - I -
gl = =10
g— 13 = aon e ;
= - = - = <
=] 120 1og AvDDcT ooz
- - a[= H
= = il &
w00 E] ZEN TX DB
= =
o w01 = M w03 T oS gl & =
o o T 1= weso txps
200 TX OB
Mest o pin 120
g
) 1 =
o O
I - N
i t L
W - —
o i O DA spga et to pin 12
o i 10 L] 2
[FTE XL R o <
BT
ovDo: N
Flace on UT, LB
== == g
o [RF
USRP 1+ Daughterboad Interface
e $oaes 4
wvmoh IREG
Comer treq 100MKz, ~1SdEi0cave - IR
T s T ¥ T ¥ T ¥ T T ¥ T ¥ T w T w T z

AR RN RN RN AR

54

W cwmemarTe-mow

debug connector
sz

cToRe-L4

i

H

IENEEEEN]

USRP1+ Deowg and Mse
sou

——
= 8 e Bhur

E
@
2
8
g pusiups enabisa
£ mig:2] - 1
= sena siave
E
3
Secure Auth Chip
=
2 o pescoucs- 1 =
o Crmcasnes T e ur
T] I
Re3 a0
Fe2lcypress 3.3v
P -
=
o+
T ——
= —y =
. .ttt

fpga internal 1.2v
e

]

i}

]

{1

]

g‘ﬁ

+ :a
]

USRF 1+ Fower Generaton

Receiver box 250 €
Hydrogen filter

Power supply 22 €
Low 120 €
Amplifier

56

Line Amplifier 3.80€

Antenna = 120 €

s

A.4 Mechanical Components
Hydrogen Filter

A B C D E F
1
] M4x035 4.0 Max03 a0 6,66 6,66
/ S / / il ol
4.0
i N Deckel
T ¥ 2mm
2
2
o
2 @
3o
axM25
| Foeid
1,5 B6
iy } . 4 s
8.81 3 3,812 L L 3,812 mmy Ll
: T ! 5mm
kR 6,66 mm ! 66 mm TR F
“7.9 19,755 21,415 19,755 .gef’ “332mm” Lﬂ;%Z*
3 f 76,92 i ,
4 Anderungen Datum | Name Bezeichnung Blatizahl:
Datum Name gez:(01.02.2014 | J.-P.R. Interdigitales 4-Pol Filter
gepr.. Frequenz 1420MHz Blatt-Nr.
Zeichnungs-Nr.

58

